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1–8 Chapter 1: Cyclone IV FPGA Device Family Overview
Cyclone IV Device Family Architecture
Cyclone IV Device Family Architecture
This section describes Cyclone IV device architecture and contains the following 
topics:

■ “FPGA Core Fabric”

■ “I/O Features”

■ “Clock Management”

■ “External Memory Interfaces”

■ “Configuration”

■ “High-Speed Transceivers (Cyclone IV GX Devices Only)”

■ “Hard IP for PCI Express (Cyclone IV GX Devices Only)”

FPGA Core Fabric
Cyclone IV devices leverage the same core fabric as the very successful Cyclone series 
devices. The fabric consists of LEs, made of 4-input look up tables (LUTs), memory 
blocks, and multipliers.

Each Cyclone IV device M9K memory block provides 9 Kbits of embedded SRAM 
memory. You can configure the M9K blocks as single port, simple dual port, or true 
dual port RAM, as well as FIFO buffers or ROM. They can also be configured to 
implement any of the data widths in Table 1–7.

The multiplier architecture in Cyclone IV devices is the same as in the existing 
Cyclone series devices. The embedded multiplier blocks can implement an 18 × 18 or 
two 9 × 9 multipliers in a single block. Altera offers a complete suite of DSP IP 
including finite impulse response (FIR), fast Fourier transform (FFT), and numerically 
controlled oscillator (NCO) functions for use with the multiplier blocks. The 
Quartus® II design software’s DSP Builder tool integrates MathWorks Simulink and 
MATLAB design environments for a streamlined DSP design flow. 

f For more information, refer to the Logic Elements and Logic Array Blocks in Cyclone IV 
Devices, Memory Blocks in Cyclone IV Devices, and Embedded Multipliers in Cyclone IV 
Devices chapters.

Table 1–7. M9K Block Data Widths for Cyclone IV Device Family

Mode Data Width Configurations

Single port or simple dual port ×1, ×2, ×4, ×8/9, ×16/18, and ×32/36

True dual port ×1, ×2, ×4, ×8/9, and ×16/18
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1
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3–8 Chapter 3: Memory Blocks in Cyclone IV Devices
Memory Modes
1 Violating the setup or hold time on the M9K memory block input registers may 
corrupt memory contents. This applies to both read and write operations.

Single-Port Mode
Single-port mode supports non-simultaneous read and write operations from a single 
address. Figure 3–6 shows the single-port memory configuration for Cyclone IV 
devices M9K memory blocks.

During a write operation, the behavior of the RAM outputs is configurable. If you 
activate rden during a write operation, the RAM outputs show either the new data 
being written or the old data at that address. If you perform a write operation with 
rden deactivated, the RAM outputs retain the values they held during the most recent 
active rden signal.

To choose the desired behavior, set the Read-During-Write option to either New Data 
or Old Data in the RAM MegaWizard Plug-In Manager in the Quartus II software. For 
more information about read-during-write mode, refer to “Read-During-Write 
Operations” on page 3–15. 

The port width configurations for M9K blocks in single-port mode are as follow:

■ 8192 × 1

■ 4096 × 2

■ 2048 × 4

■ 1024 × 8

■ 1024 × 9

■ 512 × 16

■ 512 × 18

■ 256 × 32

■ 256 × 36

Figure 3–6. Single-Port Memory (1), (2)

Notes to Figure 3–6:

(1) You can implement two single-port memory blocks in a single M9K block.
(2) For more information, refer to “Packed Mode Support” on page 3–4.

data[ ]
address[ ]
wren
byteena[]
addressstall
   inclock
inclocken
rden
aclr

outclock

q[]

outclocken
Cyclone IV Device Handbook, November 2011 Altera Corporation
Volume 1



Chapter 3: Memory Blocks in Cyclone IV Devices 3–9
Memory Modes
Figure 3–7 shows a timing waveform for read and write operations in single-port 
mode with unregistered outputs. Registering the outputs of the RAM simply delays 
the q output by one clock cycle.

Simple Dual-Port Mode
Simple dual-port mode supports simultaneous read and write operations to different 
locations. Figure 3–8 shows the simple dual-port memory configuration.

Cyclone IV devices M9K memory blocks support mixed-width configurations, 
allowing different read and write port widths. Table 3–3 lists mixed-width 
configurations.

Figure 3–7. Cyclone IV Devices Single-Port Mode Timing Waveform

clk_a

wren_a

address_a

data_a

rden_a

q_a (old data)

a0 a1

A B C D E F

a0(old data) a1(old data)A B D E

q_a (new data) A DB C E F

Figure 3–8. Cyclone IV Devices Simple Dual-Port Memory (1)

Note to Figure 3–8:

(1) Simple dual-port RAM supports input or output clock mode in addition to the read or write clock mode shown. 

data[ ]
wraddress[ ]
wren
byteena[]
wr_addressstall
wrclock
wrclocken
aclr

rdaddress[ ]
rden

q[ ]
rd_addressstall

rdclock
rdclocken

Table 3–3.  Cyclone IV Devices M9K Block Mixed-Width Configurations (Simple Dual-Port Mode) (Part 1 of 2)

Read Port
Write Port

8192 × 1 4096 × 2 2048 × 4 1024 × 8 512 × 16 256 × 32 1024 × 9 512 × 18 256 × 36

8192 × 1 v v v v v v — — —

4096 × 2 v v v v v v — — —

2048 × 4 v v v v v v — — —

1024 × 8 v v v v v v — — —
November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 1



6–14 Chapter 6: I/O Features in Cyclone IV Devices
Termination Scheme for I/O Standards
Voltage-Referenced I/O Standard Termination
Voltage-referenced I/O standards require an input reference voltage (VREF) and a 
termination voltage (VTT). The reference voltage of the receiving device tracks the 
termination voltage of the transmitting device, as shown in Figure 6–5 and Figure 6–6.

Figure 6–5. Cyclone IV Devices HSTL I/O Standard Termination
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Figure 6–6. Cyclone IV Devices SSTL I/O Standard Termination
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Chapter 6: I/O Features in Cyclone IV Devices 6–33
High-Speed I/O Standards Support
A resistor network is required to attenuate the output voltage swing to meet RSDS, 
mini-LVDS, and PPDS specifications when using emulated transmitters. You can 
modify the resistor network values to reduce power or improve the noise margin. 

The resistor values chosen must satisfy Equation 6–1.

1 Altera recommends that you perform simulations using Cyclone IV devices IBIS 
models to validate that custom resistor values meet the RSDS, mini-LVDS, or PPDS 
requirements.

It is possible to use a single external resistor instead of using three resistors in the 
resistor network for an RSDS interface, as shown in Figure 6–17. The external 
single-resistor solution reduces the external resistor count while still achieving the 
required signaling level for RSDS. However, the performance of the single-resistor 
solution is lower than the performance with the three-resistor network.

Figure 6–17 shows the RSDS interface with a single resistor network on the top and 
bottom I/O banks.

Note to Figure 6–16: 

(1) RS and RP values are pending characterization.

Equation 6–1. Resistor Network

Figure 6–16. RSDS, Mini-LVDS, or PPDS Interface with External Resistor Network on the Top and 
Bottom I/O Banks (1)

RS
RP

2
-------

RS
RP

2
-------+

-------------------- 50 =

Figure 6–17. RSDS Interface with Single Resistor Network on the Top and Bottom I/O Banks (1)

Note to Figure 6–17: 

(1) RP value is pending characterization.

RSDS Receiver

100 Ω
 50 Ω

Cyclone IV Device 

Single Resistor Network

Emulated
RSDS Transmitter

RP

 50 Ω
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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True Differential Output Buffer Feature
Differential SSTL I/O Standard Support in Cyclone IV Devices
The differential SSTL I/O standard is a memory-bus standard used for applications 
such as high-speed DDR SDRAM interfaces. Cyclone IV devices support differential 
SSTL-2 and SSTL-18 I/O standards. The differential SSTL output standard is only 
supported at PLL#_CLKOUT pins using two single-ended SSTL output buffers 
(PLL#_CLKOUTp and PLL#_CLKOUTn), with the second output programmed to have 
opposite polarity. The differential SSTL input standard is supported on the GCLK 
pins only, treating differential inputs as two single-ended SSTL and only decoding 
one of them.

The differential SSTL I/O standard requires two differential inputs with an external 
reference voltage (VREF) as well as an external termination voltage (VTT) of 0.5 × VCCIO 
to which termination resistors are connected.

f For differential SSTL electrical specifications, refer to “Differential I/O Standard 
Termination” on page 6–15 and the Cyclone IV Device Datasheet chapter.

1 Figure 6–8 on page 6–15 shows the differential SSTL Class I and Class II interface.

Differential HSTL I/O Standard Support in Cyclone IV Devices
The differential HSTL I/O standard is used for the applications designed to operate in 
0 V to 1.2 V, 0 V to 1.5 V, or 0 V to 1.8 V HSTL logic switching range. Cyclone IV 
devices support differential HSTL-18, HSTL-15, and HSTL-12 I/O standards. The 
differential HSTL input standard is available on GCLK pins only, treating the 
differential inputs as two single-ended HSTL and only decoding one of them. The 
differential HSTL output standard is only supported at the PLL#_CLKOUT pins using 
two single-ended HSTL output buffers (PLL#_CLKOUTp and PLL#_CLKOUTn), with the 
second output programmed to have opposite polarity. 

The differential HSTL I/O standard requires two differential inputs with an external 
reference voltage (VREF), as well as an external termination voltage (VTT) of 0.5 × VCCIO 

to which termination resistors are connected. 

f For differential HSTL signaling characteristics, refer to “Differential I/O Standard 
Termination” on page 6–15 and the Cyclone IV Device Datasheet chapter.

1 Figure 6–7 on page 6–15 shows the differential HSTL Class I and Class II interface.

True Differential Output Buffer Feature
Cyclone IV devices true differential transmitters offer programmable 
pre-emphasis—you can turn it on or off. The default setting is on. 

Programmable Pre-Emphasis
The programmable pre-emphasis boosts the high frequencies of the output signal to 
compensate the frequency-dependant attenuation of the transmission line to 
maximize the data eye opening at the far-end receiver. Without pre-emphasis, the 
output current is limited by the VOD specification and the output impedance of the 
transmitter. At high frequency, the slew rate may not be fast enough to reach full VOD 
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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6–38 Chapter 6: I/O Features in Cyclone IV Devices
Software Overview
Board Design Considerations
This section explains how to achieve the optimal performance from a Cyclone IV I/O 
interface and ensure first-time success in implementing a functional design with 
optimal signal quality. You must consider the critical issues of controlled impedance 
of traces and connectors, differential routing, and termination techniques to get the 
best performance from Cyclone IV devices. 

Use the following general guidelines to improve signal quality:

■ Base board designs on controlled differential impedance. Calculate and compare 
all parameters, such as trace width, trace thickness, and the distance between two 
differential traces.

■ Maintain equal distance between traces in differential I/O standard pairs as much 
as possible. Routing the pair of traces close to each other maximizes the 
common-mode rejection ratio (CMRR).

■ Longer traces have more inductance and capacitance. These traces must be as 
short as possible to limit signal integrity issues.

■ Place termination resistors as close to receiver input pins as possible.

■ Use surface mount components.

■ Avoid 90° corners on board traces.

■ Use high-performance connectors.

■ Design backplane and card traces so that trace impedance matches the impedance 
of the connector and termination.

■ Keep an equal number of vias for both signal traces.

■ Create equal trace lengths to avoid skew between signals. Unequal trace lengths 
result in misplaced crossing points and decrease system margins as the TCCS 
value increases.

■ Limit vias because they cause discontinuities.

■ Keep switching transistor-to-transistor logic (TTL) signals away from differential 
signals to avoid possible noise coupling.

■ Do not route TTL clock signals to areas under or above the differential signals.

■ Analyze system-level signals.

f For PCB layout guidelines, refer to AN 224: High-Speed Board Layout Guidelines and 
AN 315: Guidelines for Designing High-Speed FPGA PCBs.

Software Overview
Cyclone IV devices high-speed I/O system interfaces are created in core logic by a 
Quartus II software megafunction because they do not have a dedicated circuit for the 
SERDES. Cyclone IV devices use the I/O registers and LE registers to improve the 
timing performance and support the SERDES. The Quartus II software allows you to 
design your high-speed interfaces using ALTLVDS megafunction. This megafunction 
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1

http://www.altera.com/literature/an/an224.pdf
http://www.altera.com/literature/an/an315.pdf


Chapter 7: External Memory Interfaces in Cyclone IV Devices 7–9
Cyclone IV Devices Memory Interfaces Pin Support
Figure 7–3 shows the location and numbering of the DQS, DQ, or CQ# pins in I/O banks 
of the Cyclone IV GX device in the 324-pin FBGA package only.

Figure 7–4 shows the location and numbering of the DQS, DQ, or CQ# pins in I/O 
banks of the Cyclone IV GX device in the 169-pin FBGA package.

Figure 7–3. DQS, CQ, or CQ# Pins for Cyclone IV GX Devices in the 324-Pin FBGA Package

Figure 7–4. DQS, CQ, or CQ# Pins for Cyclone IV GX Devices in the 169-Pin FBGA Package
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8–16 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
Figure 8–4. Multi-Device AS Configuration in Which Devices Receive the Same Data with Multiple .sof

Notes to Figure 8–4: 

(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the pull-up resistor to the VCCIO supply voltage of the I/O bank in which the nCE pin resides.
(3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. You must set the master device in AS mode and the slave 

devices in PS mode. To connect the MSEL pins for the master device in AS mode and the slave devices in PS mode, refer to Table 8–3 on page 8–8, 
Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND.

(5) Connect the series resistor at the near end of the serial configuration device.
(6) Connect the repeater buffers between the master and slave devices for DATA[0] and DCLK. All I/O inputs must maintain a maximum AC voltage 

of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in “Configuration and JTAG Pin I/O 
Requirements” on page 8–5.

(7) The 50- series resistors are optional if the 3.3-V configuration voltage standard is applied. For optimal signal integrity, connect these 50- series 
resistors if the 2.5- or 3.0-V configuration voltage standard is applied.

(8) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA[1] pin in AP and 
FPP modes.

(9) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.
(10) For multi-devices AS configuration using Cyclone IV E with 1,0 V core voltage, the maximum board trace-length from the serial configuration 

device to the junction-split on both DCLK and Data0 line is 3.5 inches.
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Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–17
Configuration
Single SRAM Object File

The second method configures both the master device and slave devices with the 
same .sof. The serial configuration device stores one copy of the .sof. You must set up 
one or more slave devices in the chain. All the slave devices must be set up in the 
same way (Figure 8–5).

In this setup, all the Cyclone IV devices in the chain are connected for concurrent 
configuration. This reduces the AS configuration time because all the Cyclone IV 
devices are configured in one configuration cycle. Connect the nCE input pins of all the 
Cyclone IV devices to GND. You can either leave the nCEO output pins on all the 
Cyclone IV devices unconnected or use the nCEO output pins as normal user I/O pins. 
The DATA and DCLK pins are connected in parallel to all the Cyclone IV devices.

Figure 8–5. Multi-Device AS Configuration in Which Devices Receive the Same Data with a Single .sof

Notes to Figure 8–5: 

(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(3) The MSEL pin settings vary for different configuration voltage standards and POR time. You must set the master device of the Cyclone IV device 

in AS mode and the slave devices in PS mode. To connect the MSEL pins for the master device in AS mode and slave devices in PS mode, refer to 
Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND.

(4) Connect the series resistor at the near end of the serial configuration device.
(5) Connect the repeater buffers between the master and slave devices for DATA[0] and DCLK. All I/O inputs must maintain a maximum AC voltage 

of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in “Configuration and JTAG Pin I/O 
Requirements” on page 8–5.

(6) The 50- series resistors are optional if the 3.3-V configuration voltage standard is applied. For optimal signal integrity, connect these 50- series 
resistors if the 2.5- or 3.0-V configuration voltage standard is applied.

(7) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA[1] pin in AP and 
FPP modes.

(8) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.
(9) For multi-devices AS configuration using Cyclone IV E with 1,0 V core voltage, the maximum board trace-length from the serial configuration 

device to the junction-split on both DCLK and Data0 line is 3.5 inches.
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Configuration
During device configuration, Cyclone IV E devices read configuration data using the 
parallel interface and configure their SRAM cells. This scheme is referred to as the AP 
configuration scheme because the device controls the configuration interface. This 
scheme contrasts with the FPP configuration scheme, where an external host controls 
the interface.

AP Configuration Supported Flash Memories
The AP configuration controller in Cyclone IV E devices is designed to interface with 
two industry-standard flash families—the Micron P30 Parallel NOR flash family and 
the Micron P33 Parallel NOR flash family. Unlike serial configuration devices, both of 
the flash families supported in AP configuration scheme are designed to interface 
with microprocessors. By configuring from an industry standard microprocessor flash 
which allows access to the flash after entering user mode, the AP configuration 
scheme allows you to combine configuration data and user data (microprocessor boot 
code) on the same flash memory.

The Micron P30 flash family and the P33 flash family support a continuous 
synchronous burst read mode at 40 MHz DCLK frequency for reading data from the 
flash. Additionally, the Micron P30 and P33 flash families have identical pin-out and 
adopt similar protocols for data access.

1 Cyclone IV E devices use a 40-MHz oscillator for the AP configuration scheme. The 
oscillator is the same oscillator used in the Cyclone IV E AS configuration scheme.

Table 8–10 lists the supported families of the commodity parallel flash for the AP 
configuration scheme.

Configuring Cyclone IV E devices from the Micron P30 and P33 family 512-Mbit flash 
memory is possible, but you must properly drive the extra address and FLASH_nCE 
pins as required by these flash memories.

f To check for supported speed grades and package options, refer to the respective flash 
datasheets.

The AP configuration scheme in Cyclone IV E devices supports flash speed grades of 
40 MHz and above. However, AP configuration for all these speed grades must be 
capped at 40 MHz. The advantage of faster speed grades is realized when your design 
in the Cyclone IV E devices accesses flash memory in user mode.

Table 8–10. Supported Commodity Flash for AP Configuration Scheme for Cyclone IV E 
Devices (1) 

Flash Memory Density Micron P30 Flash Family (2) Micron P33 Flash Family (3)

64 Mbit v v
128 Mbit v v
256 Mbit v v

Notes to Table 8–10:
(1) The AP configuration scheme only supports flash memory speed grades of 40 MHz and above.
(2) 3.3- , 3.0-, 2.5-, and 1.8-V I/O options are supported for the Micron P30 flash family.
(3) 3.3-, 3.0- and 2.5-V I/O options are supported for the Micron P33 flash family.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



8–50 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
When programming a JTAG device chain, one JTAG-compatible header is connected 
to several devices. The number of devices in the JTAG chain is limited only by the 
drive capability of the download cable. When four or more devices are connected in a 
JTAG chain, Altera recommends buffering the TCK, TDI, and TMS pins with an on-board 
buffer.

JTAG-chain device programming is ideal when the system contains multiple devices, 
or when testing your system with JTAG BST circuitry. Figure 8–25 and Figure 8–26 
show multi-device JTAG configuration.

For devices using 2.5-, 3.0-, and 3.3-V VCCIO supply, you must refer to Figure 8–25. All 
I/O inputs must maintain a maximum AC voltage of 4.1 V because JTAG pins do not 
have the internal PCI clamping diodes to prevent voltage overshoot when using 2.5-, 
3.0-, and 3.3- V VCCIO supply. You must power up the VCC of the download cable with 
a 2.5-V VCCA supply. For device using VCCIO of 1.2, 1.5 V, and 1.8 V, refer to 
Figure 8–26. You can power up the VCC of the download cable with the supply from 
VCCIO.

Figure 8–25. JTAG Configuration of Multiple Devices Using a Download Cable (2.5, 3.0, and 3.3-V VCCIO Powering the 
JTAG Pins)

Notes to Figure 8–25:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use a JTAG configuration, connect the nCONFIG 

pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
(3) Pin 6 of the header is a VIO reference voltage for the MasterBlaster output driver. VIO must match the VCCA of the device. For this value, refer to the 

MasterBlaster Serial/USB Communications Cable User Guide. In the ByteBlasterMV cable, this pin is a no connect. In the USB-Blaster and 
ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming, otherwise it is a no connect.

(4) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
(5) Power up the VCC of the ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V supply from VCCA. Third-party programmers must switch 

to 2.5 V. Pin 4 of the header is a VCC power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V 
circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the MasterBlaster Serial/USB Communications Cable User 
Guide.

(6) Resistor value can vary from 1 k to 10 k.
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9–8 Chapter 9: SEU Mitigation in Cyclone IV Devices
Software Support
Figure 9–3 shows the error detection block diagram in FPGA devices and shows the 
interface that the WYSIWYG atom enables in your design.

1 The user logic is affected by the soft error failure, so reading out the 32-bit CRC 
signature through the regout should not be relied upon to detect a soft error. You 
should rely on the CRC_ERROR output signal itself, because this CRC_ERROR output 
signal cannot be affected by a soft error.

To enable the cycloneiv_crcblock WYSIWYG atom, you must name the atom for 
each Cyclone IV device accordingly.

Example 9–1 shows an example of how to define the input and output ports of a 
WYSIWYG atom in a Cyclone IV device.

Figure 9–3. Error Detection Block Diagram
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Example 9–1. Error Detection Block Diagram

cycloneiv_crcblock<crcblock_name>

(

.clk(<clock source>),

.shiftnld(<shiftnld source>),

.ldsrc(<ldsrc source>),

.crcerror(<crcerror out destination>),

.regout(<output destination>),

);
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Figure 1–36 and Figure 1–37 show the independent high-speed clock and bonded 
low-speed clock distributions for transceivers in F324 and smaller packages, and in 
F484 and larger packages in bonded (×2 and ×4) channel configuration.

Figure 1–36. Clock Distribution in Bonded (×2 and ×4) Channel Configuration for Transceivers in 
F324 and Smaller Packages.

Notes to Figure 1–36:

(1) Transceiver channels 2 and 3 are not available for devices in F169 and smaller packages.
(2) High-speed clock.
(3) Low-speed clock.
(4) Bonded common low-speed clock path.
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PCIe Initialization/Compliance Phase
After the device is powered up, a PCIe-compliant device goes through the compliance 
phase during initialization. The rx_digitalreset signal must be deasserted during 
this compliance phase to achieve transitions on the pipephydonestatus signal, as 
expected by the link layer. The rx_digitalreset signal is deasserted based on the 
assertion of the rx_freqlocked signal.

During the initialization/compliance phase, do not use the rx_freqlocked signal to 
trigger a deassertion of the rx_digitalreset signal. Instead, perform the following 
reset sequence:

1. After power up, assert pll_areset for a minimum period of 1 s (the time 
between markers 1 and 2). Keep the tx_digitalreset, rx_analogreset, and 
rx_digitalreset signals asserted during this time period. After you deassert the 
pll_areset signal, the multipurpose PLL starts locking to the input reference 
clock.

2. After the multipurpose PLL locks, as indicated by the pll_locked signal going 
high (marker 3), deassert tx_digitalreset. For a receiver operation, after 
deassertion of busy signal, wait for two parallel clock cycles to deassert the 
rx_analogreset signal. After rx_analogreset is deasserted, the receiver CDR 
starts locking to the receiver input reference clock.

3. Deassert both the rx_analogreset signal (marker 6) and rx_digitalreset signal 
(marker 7) together, as indicated in Figure 2–10. After deasserting 
rx_digitalreset, the pipephydonestatus signal transitions from the transceiver 
channel to indicate the status to the link layer. Depending on its status, 
pipephydonestatus helps with the continuation of the compliance phase. After 
successful completion of this phase, the device enters into the normal operation 
phase.

PCIe Normal Phase
For the normal PCIe phase:

1. After completion of the Initialization/Compliance phase, during the normal 
operation phase at the Gen1 data rate, when the rx_freqlocked signal is 
deasserted (marker 9 in Figure 2–10).

2. Wait for the rx_freqlocked signal to go high again. In this phase, the received data 
is valid (not electrical idle) and the receiver CDR locks to the incoming data. 
Proceed with the reset sequence after assertion of the rx_freqlocked signal. 

3. After the rx_freqlocked signal goes high, wait for at least tLTD_Manual before 
asserting rx_digitalreset (marker 12 in Figure 2–10) for two parallel receive 
clock cycles so that the receiver phase compensation FIFO is initialized. For 
bonded PCIe Gen 1 mode (×2 and ×4), wait for all the rx_freqlocked signals to go 
high, then wait for tLTD_Manual before asserting rx_digitalreset for 2 parallel clock 
cycles.
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Table 3–4 describes the tx_datainfull[21..0] FPGA fabric-transceiver channel 
interface signals.

Table 3–4. tx_datainfull[21..0] FPGA Fabric-Transceiver Channel Interface Signal Descriptions  (1)

FPGA Fabric-Transceiver Channel 
Interface Description

Transmit Signal Description (Based on Cyclone IV GX Supported FPGA 
Fabric-Transceiver Channel Interface Widths)

8-bit FPGA fabric-Transceiver Channel 
Interface

tx_datainfull[7:0]: 8-bit data (tx_datain)

The following signals are used only in 8B/10B modes:

tx_datainfull[8]: Control bit (tx_ctrlenable)

tx_datainfull[9]

Transmitter force disparity Compliance (PCI Express [PIPE]) (tx_forcedisp) in 
all modes except PCI Express (PIPE) functional mode. For PCI Express (PIPE) 
functional mode, (tx_forcedispcompliance) is used.

■ For non-PIPE:

tx_datainfull[10]: Forced disparity value (tx_dispval)

■ For PCIe:

tx_datainfull[10]: Forced electrical idle (tx_forceelecidle)

10-bit FPGA fabric-Transceiver 
Channel Interface tx_datainfull[9:0]: 10-bit data (tx_datain)

16-bit FPGA fabric-Transceiver 
Channel Interface with PCS-PMA set 
to 8/10 bits

Two 8-bit Data (tx_datain)

tx_datainfull[7:0] - tx_datain (LSByte) and tx_datainfull[18:11] - 
tx_datain (MSByte) 

The following signals are used only in 8B/10B modes:

tx_datainfull[8] - tx_ctrlenable (LSB) and tx_datainfull[19] - 
tx_ctrlenable (MSB)

Force Disparity Enable

■ For non-PIPE:

tx_datainfull[9] - tx_forcedisp (LSB) and tx_datainfull[20] - 
tx_forcedisp (MSB)

■ For PCIe:

tx_datainfull[9] - tx_forcedispcompliance and tx_datainfull[20] - 0

Force Disparity Value

■ For non-PIPE:

tx_datainfull[10] - tx_dispval (LSB) and tx_datainfull[21] - 
tx_dispval (MSB)

■ For PCIe:

tx_datainfull[10] - tx_forceelecidle and tx_datainfull[21] - 
tx_forceelecidle

20-bit FPGA fabric-Transceiver 
Channel Interface with PCS-PMA set 
to 10 bits

Two 10-bit Data (tx_datain)

tx_datainfull[9:0] - tx_datain (LSByte) and tx_datainfull[20:11] - 
tx_datain (MSByte)

Note to Table 3–4:

(1) For all transceiver-related ports, refer to the “Transceiver Port Lists” section in the Cyclone IV GX Transceiver Architecture chapter.

http://www.altera.com/literature/hb/cyclone-iv/cyiv-52001.pdf
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LVPECL, LVDS

Data rate (F324 and 
smaller package) (15) — 600 — 2500 600 — 2500 600 — 2500

Data rate (F484 and 
larger package) (15) — 600 — 3125 600 — 3125 600 — 2500

Absolute VMAX for a 
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Operational VMAX for 
a receiver pin — — — 1.5 — — 1.5 — — 1.5

Absolute VMIN for a 
receiver pin — –0.4 — — –0.4 — — –0.4 — —

Peak-to-peak 
differential input 
voltage VID (diff p-p)

VICM = 0.82 V 
setting, Data Rate 
= 600 Mbps to 
3.125 Gbps

0.1 — 2.7 0.1 — 2.7 0.1 — 2.7

VICM VICM = 0.82 V 
setting — 820 ± 

10% — — 820 ± 
10% — — 820 ± 

10% —

Differential on-chip 
termination resistors

100 setting — 100 — — 100 — — 100 —

150 setting — 150 — — 150 — — 150 —

Differential and 
common mode 
return loss

PIPE, Serial 
Rapid I/O SR, 
SATA, CPRI LV, 
SDI, XAUI

Compliant

Programmable ppm 
detector (4) — ± 62.5, 100, 125, 200,

250, 300

Clock data recovery 
(CDR) ppm 
tolerance (without 
spread-spectrum 
clocking enabled)

— — —
±300 (5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

CDR ppm tolerance 
(with synchronous 
spread-spectrum 
clocking enabled) (8)

— — —
350 to –

5350 
(7), (9)

— —
350 to 
–5350 
(7), (9)

— —
350 to –

5350 
(7), (9)

Run length — — 80 — — 80 — — 80 —

Programmable 
equalization

No Equalization — — 1.5 — — 1.5 — — 1.5

Medium Low — — 4.5 — — 4.5 — — 4.5

Medium High — — 5.5 — — 5.5 — — 5.5

High — — 7 — — 7 — — 7

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 2 of 4)

Symbol/
Description Conditions

C6 C7, I7 C8

Min Typ Max Min Typ Max Min Typ Max
Cyclone IV Device Handbook, December 2016 Altera Corporation
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Table 1–42 and Table 1–43 list the IOE programmable delay for Cyclone IV E 1.2 V 
core voltage devices.

Table 1–42. IOE Programmable Delay on Column Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

Parameter Paths 
Affected

Number 
of 

Setting

Min 
Offset

Max Offset

UFast Corner Slow Corner

C6 I7 A7 C6 C7 C8 I7 A7

Input delay from pin to 
internal cells

Pad to I/O 
dataout to 
core

7 0 1.314 1.211 1.211 2.177 2.340 2.433 2.388 2.508

Input delay from pin to 
input register

Pad to I/O 
input register 8 0 1.307 1.203 1.203 2.19 2.387 2.540 2.430 2.545

Delay from output 
register to output pin

I/O output 
register to 
pad

2 0 0.437 0.402 0.402 0.747 0.820 0.880 0.834 0.873

Input delay from 
dual-purpose clock pin 
to fan-out destinations

Pad to global 
clock 
network

12 0 0.693 0.665 0.665 1.200 1.379 1.532 1.393 1.441

Notes to Table 1–42:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1–43. IOE Programmable Delay on Row Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

Parameter Paths 
Affected

Number 
of 

Setting

Min 
Offset

Max Offset

UFast Corner Slow Corner

C6 I7 A7 C6 C7 C8 I7 A7

Input delay from pin to 
internal cells

Pad to I/O 
dataout to 
core

7 0 1.314 1.209 1.209 2.201 2.386 2.510 2.429 2.548

Input delay from pin to 
input register

Pad to I/O 
input register 8 0 1.312 1.207 1.207 2.202 2.402 2.558 2.447 2.557

Delay from output 
register to output pin

I/O output 
register to 
pad

2 0 0.458 0.419 0.419 0.783 0.861 0.924 0.875 0.915

Input delay from 
dual-purpose clock pin 
to fan-out destinations

Pad to global 
clock 
network

12 0 0.686 0.657 0.657 1.185 1.360 1.506 1.376 1.422

Notes to Table 1–43:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.
December 2016 Altera Corporation Cyclone IV Device Handbook,
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K — —

L — —

M — —

N — —

O — —

P PLL Block

The following highlights the PLL specification parameters:

Q — —

Table 1–46. Glossary (Part 2 of 5)

Letter Term Definitions

TDO

TCK

tJPZX tJPCO

tJSCO tJSXZ

tJPH

tJSH

t JPXZ

 tJCP

 tJPSU_TMS t JCL tJCH

TDI

TMS

Signal 
to be 

Captured

Signal 
to be 

Driven

 tJPSU_TDI

tJSZX

tJSSU

 

Core Clock

Phase tap

Reconfigurable in User Mode

Key

CLK

N

M

PFD VCOCP LF

CLKOUT Pins

GCLK

fINPFDfIN

fVCO fOUT

fOUT _EXT

Switchover

Counters
C0..C4
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