Intel - EP4CE115F23I7N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	7155
Number of Logic Elements/Cells	114480
Total RAM Bits	3981312
Number of I/O	280
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce115f23i7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Word-Wide Multi-Device AP Configuration	8–26
Guidelines for Connecting Parallel Flash to Cyclone IV E Devices for an AP Interface	8–28
Configuring With Multiple Bus Masters	8–28
Estimating AP Configuration Time	8–30
Programming Parallel Flash Memories	8–31
PS Configuration	8–32
PS Configuration Using an External Host	8–33
PS Configuration Timing	8–36
PS Configuration Using a Download Cable	8–37
FPP Configuration	8–40
FPP Configuration Using an External Host	8–40
FPP Configuration Timing	8–44
JTAG Configuration	8–45
Configuring Cyclone IV Devices with Jam STAPL	8–52
Configuring Cyclone IV Devices with the JRunner Software Driver	8–52
Combining JTAG and AS Configuration Schemes	8–53
Programming Serial Configuration Devices In-System with the JTAG Interface	8–55
JTAG Instructions	8–57
Device Configuration Pins	8–62
Remote System Upgrade	8–69
Functional Description	8–69
Enabling Remote Update	8–70
Configuration Image Types	8–70
Remote System Upgrade Mode	8–71
Remote Update Mode	8–71
Dedicated Remote System Upgrade Circuitry	8–74
Remote System Upgrade Registers	8–75
Remote System Upgrade State Machine	8–78
User Watchdog Timer	8–79
Quartus II Software Support	8–80
Document Revision History	8–80

Chapter 9. SEU Mitigation in Cyclone IV Devices

Configuration Error Detection	9–1
User Mode Error Detection	9–2
Automated SEU Detection	9–3
CRC_ERROR Pin	9–3
Error Detection Block	9–4
Error Detection Registers	9–4
Error Detection Timing	9–5
Software Support	9–6
Accessing Error Detection Block Through User Logic	9–7
Recovering from CRC Errors	9–9
Document Revision History	9–10

Chapter 10. JTAG Boundary-Scan Testing for Cyclone IV Devices

IEEE Std. 1149.6 Boundary-Scan Register	
BST Operation Control	
EXTEST_PULSE	
EXTEST_TRAIN	
I/O Voltage Support in a JTAG Chain	
Boundary-Scan Description Language Support	10–6
Document Revision History	10–7

GCLK Network Clock	GCLK Networks																			
Sources	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
CLK15/DIFFCLK_6p (2)	—	—	_	—	—		—	—		—	—	_	_		_	~	—	—	~	—
PLL_1_C0 (3)	\checkmark	—		\checkmark	—	—	—	—	—	—	—	_	—	—	_	—	_	_	—	—
PLL_1_C1 (3)	—	\checkmark	—	—	\checkmark	—	—	—	—		—		—				_	_	_	—
PLL_1_C2 (3)	\checkmark	—	\checkmark	—	—	—	—	—	—	—	—	_	—	_	_	_			—	—
PLL_1_C3 (3)	—	~		~			_		_											—
PLL_1_C4 (3)	—	_	\checkmark	_	~	_	_	_	_		_								—	—
PLL_2_C0 (3)	—	—		—		~	—	—	~		—									—
PLL_2_C1 (3)	—	—	—	—	—	—	\checkmark	—	—	\checkmark	—		—	_			—	—	—	—
PLL_2_C2 (3)	—	_		_		\checkmark		~			_									—
PLL_2_C3 (3)	_	—	—	—	—	—	\checkmark	—	\checkmark	—	—	—	—	—	—	—	—	—	—	—
PLL_2_C4 (3)	—	—	—	—	—	—	—	\checkmark	—	\checkmark	—	—	—	—	—	—	—	—	—	—
PLL_3_C0	—	—	—	—	—	—	—	—	—	—	\checkmark	—	—	\checkmark	—	—	—	—	—	—
PLL_3_C1	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	—	\checkmark	—	—	—	—	—
PLL_3_C2	—	—	—	—	—	—	—	—	—	—	\checkmark	—	\checkmark	—	—	—	—	—	—	—
PLL_3_C3	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	\checkmark	—	—	—	—	—	—
PLL_3_C4	—	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	\checkmark	—	—	—	—	—
PLL_4_C0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	—	\checkmark	—
PLL_4_C1	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	—	\checkmark
PLL_4_C2	—	—		—	—	—	—	—	—		—		—	_		\checkmark	—	\checkmark	—	—
PLL_4_C3	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	\checkmark	—
PLL_4_C4	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	\checkmark
DPCLK0	\checkmark	—	—	—	—	—	—	—	—		—		—	—		—	—	—	—	—
DPCLK1	—	\checkmark	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
DPCLK7 (4)																				
CDPCLK0, Or	-	—	\checkmark	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CDPCLK7 (2), (5)																				

 Table 5–3.
 GCLK Network Connections for Cyclone IV E Devices (1)
 (Part 2 of 3)

Clock Switchover

The clock switchover feature allows the PLL to switch between two reference input clocks. Use this feature for clock redundancy or for a dual-clock domain application, such as a system that turns on the redundant clock if the previous clock stops running. Your design can automatically perform clock switchover when the clock is no longer toggling, or based on the user control signal, clkswitch.

Automatic Clock Switchover

PLLs of Cyclone IV devices support a fully configurable clock switchover capability.

When the current reference clock is not present, the clock-sense block automatically switches to the backup clock for PLL reference. The clock switchover circuit also sends out three status signals—clkbad0, clkbad1, and activeclock—from the PLL to implement a custom switchover circuit. You can select a clock source at the backup clock by connecting it to the inclk1 port of the PLL in your design.

Figure 5–17 shows the block diagram of the switchover circuit built into the PLL.

Figure 5–17. Automatic Clock Switchover Circuit

There are two ways to use the clock switchover feature:

- Use the switchover circuitry for switching from inclk0 to inclk1 running at the same frequency. For example, in applications that require a redundant clock with the same frequency as the reference clock, the switchover state machine generates a signal that controls the multiplexer select input shown in Figure 5–17. In this case, inclk1 becomes the reference clock for the PLL. This automatic switchover can switch back and forth between the inclk0 and inclk1 clocks any number of times, when one of the two clocks fails and the other clock is available.
- Use the clkswitch input for user- or system-controlled switch conditions. This is possible for same-frequency switchover or to switch between inputs of different frequencies. For example, if inclk0 is 66 MHz and inclk1 is 200 MHz, you must control the switchover because the automatic clock-sense circuitry cannot monitor primary and secondary clock frequencies with a frequency difference of more than

Signal Name	Description	Source	Destination
scanclk	Free running clock from core used in combination with phasestep to enable or disable dynamic phase shifting. Shared with scanclk for dynamic reconfiguration.	GCLK or I/O pins	PLL reconfiguration circuit
phasedone	When asserted, it indicates to core logic that the phase adjustment is complete and PLL is ready to act on a possible second adjustment pulse. Asserts based on internal PLL timing. De-asserts on the rising edge of scanclk.	PLL reconfiguration circuit	Logic array or I/O pins

Table 5-12.	Dvnamic	Phase	Shiftina	Control	Signals	(Part 2 of 2	1
						1	

Table 5–13 lists the PLL counter selection based on the corresponding PHASECOUNTERSELECT setting.

Table 5–13. Phase Counter Select Mapping

	phasecounterselec	Salaata	
[2]	[1]	[0]	Selects
0	0	0	All Output Counters
0	0	1	M Counter
0	1	0	C0 Counter
0	1	1	C1 Counter
1	0	0	C2 Counter
1	0	1	C3 Counter
1	1	0	C4 Counter

To perform one dynamic phase-shift, follow these steps:

- 1. Set PHASEUPDOWN and PHASECOUNTERSELECT as required.
- 2. Assert PHASESTEP for at least two SCANCLK cycles. Each PHASESTEP pulse allows one phase shift.
- 3. Deassert PHASESTEP after PHASEDONE goes low.
- 4. Wait for PHASEDONE to go high.
- 5. Repeat steps 1 through 4 as many times as required to perform multiple phaseshifts.

<code>PHASEUPDOWN</code> and <code>PHASECOUNTERSELECT</code> signals are synchronous to <code>SCANCLK</code> and must meet the t_{su} and t_h requirements with respect to the <code>SCANCLK</code> edges.

You can repeat dynamic phase-shifting indefinitely. For example, in a design where the VCO frequency is set to 1,000 MHz and the output clock frequency is set to 100 MHz, performing 40 dynamic phase shifts (each one yields 125 ps phase shift) results in shifting the output clock by 180°, in other words, a phase shift of 5 ns.

Designing with LVDS

Cyclone IV I/O banks support the LVDS I/O standard. The Cyclone IV GX right I/O banks support true LVDS transmitters while the Cyclone IV E left and right I/O banks support true LVDS transmitters. On the top and bottom I/O banks, the emulated LVDS transmitters are supported using two single-ended output buffers with external resistors. One of the single-ended output buffers is programmed to have opposite polarity. The LVDS receiver requires an external 100- Ω termination resistor between the two signals at the input buffer.

Figure 6–12 shows a point-to-point LVDS interface using Cyclone IV devices true LVDS output and input buffers.

Figure 6–12. Cyclone IV Devices LVDS Interface with True Output Buffer on the Right I/O Banks

Figure 6–13 shows a point-to-point LVDS interface with Cyclone IV devices LVDS using two single-ended output buffers and external resistors.

Figure 6–13. LVDS Interface with External Resistor Network on the Top and Bottom I/O Banks (1)

(1) $R_{\rm S} = 120 \ \Omega$. $R_{\rm P} = 170 \ \Omega$.

BLVDS I/O Standard Support in Cyclone IV Devices

The BLVDS I/O standard is a high-speed differential data transmission technology that extends the benefits of standard point-to-point LVDS to multipoint configuration that supports bidirectional half-duplex communication. BLVDS differs from standard LVDS by providing a higher drive to achieve similar signal swings at the receiver while loaded with two terminations at both ends of the bus.

Table 7–1 lists the number of DQS or DQ groups supported on each side of the Cyclone IV GX device.

Table 7–1. (Cyclone IV GX D	evice DQS and D) Bus Mode Suppo	rt for Each Side of	the Device
--------------	-----------------	-----------------	------------------	---------------------	------------

Device	Package	Side	Number ×8 Groups	Number ×9 Groups	Number ×16 Groups	Number ×18 Groups	Number ×32 Groups	Number ×36 Groups
		Right	1	0	0	0	—	—
EP4CGX15	169-pin FBGA	Top (1)	1	0	0	0	—	—
		Bottom ⁽²⁾	1	0	0	0	—	—
		Right	1	0	0	0	—	—
	169-pin FBGA	Top (1)	1	0	0	0	—	—
		Bottom ⁽²⁾	1	0	0	0	—	—
		Right	2	2	1	1	—	—
	324-pin FBGA	Тор	2	2	1	1	—	—
EP40GX30		Bottom	2	2	1	1	—	—
		Right	4	2	2	2	1	1
	484-pin FBGA <i>(3)</i>	Тор	4	2	2	2	1	1
		Bottom	4	2	2	2	1	1
	484-pin FBGA	Right	4	2	2	2	1	1
		Тор	4	2	2	2	1	1
EP4CGX50		Bottom	4	2	2	2	1	1
EP4CGX75	672-pin FBGA	Right	4	2	2	2	1	1
		Тор	4	2	2	2	1	1
		Bottom	4	2	2	2	1	1
		Right	4	2	2	2	1	1
	484-pin FBGA	Тор	4	2	2	2	1	1
		Bottom	4	2	2	2	1	1
ED4CCV110		Right	4	2	2	2	1	1
	672-pin FBGA	Тор	4	2	2	2	1	1
		Bottom	4	2	2	2	1	1
		Right	6	3	2	2	1	1
	896-pin FBGA	Тор	6	3	3	3	1	1
		Bottom	6	3	3	3	1	1

Notes to Table 7-1:

(1) Some of the DQ pins can be used as RUP and RDN pins. You cannot use these groups if you are using these pins as RUP and RDN pins for OCT calibration.

(2) Some of the DQ pins can be used as RUP pins while the DM pins can be used as RDN pins. You cannot use these groups if you are using the RUP and RDN pins for OCT calibration.

(3) Only available for EP4CGX30 device.

Table 8–8 provides the configuration time for AS configuration.

Symbol	Parameter	Cyclone IV E	Cyclone IV GX	Unit
t _{SU}	Setup time	10	8	ns
t _H	Hold time	0	0	ns
t _{co}	Clock-to-output time	4	4	ns

Table 8–8. AS Configuration Time for Cyclone IV Devices ⁽¹⁾

Note to Table 8–8:

(1) For the AS configuration timing diagram, refer to the Serial Configuration (EPCS) Devices Datasheet.

Enabling compression reduces the amount of configuration data that is sent to the Cyclone IV device, which also reduces configuration time. On average, compression reduces configuration time by 50%.

Programming Serial Configuration Devices

Serial configuration devices are non-volatile, flash memory-based devices. You can program these devices in-system with the USB-Blaster[™] or ByteBlaster[™] II download cables. Alternatively, you can program them with the Altera Programming Unit (APU), supported third-party programmers, or a microprocessor with the SRunner software driver.

You can perform in-system programming of serial configuration devices through the AS programming interface. During in-system programming, the download cable disables device access to the AS interface by driving the nCE pin high. Cyclone IV devices are also held in reset by a low level on nCONFIG. After programming is complete, the download cable releases nCE and nCONFIG, allowing the pull-down and pull-up resistors to drive V_{CC} and GND, respectively.

To perform in-system programming of a serial configuration device through the AS programming interface, you must place the diodes and capacitors as close as possible to the Cyclone IV device. You must ensure that the diodes and capacitors maintain a maximum AC voltage of 4.1 V (Figure 8–6).

IF you want to use the setup shown in Figure 8–6 to perform in-system programming of a serial configuration device and single- or multi-device AS configuration, you do not require a series resistor on the DATA line at the near end of the serial configuration device. The existing diodes and capacitors are sufficient.

Altera has developed the Serial FlashLoader (SFL), a JTAG-based in-system programming solution for Altera serial configuration devices. The SFL is a bridge design for the Cyclone IV device that uses its JTAG interface to access the EPCS JIC (JTAG Indirect Configuration Device Programming) file and then uses the AS interface to program the EPCS device. Both the JTAG interface and AS interface are bridged together inside the SFL design.

To For more information about implementing the SFL with Cyclone IV devices, refer to *AN 370: Using the Serial FlashLoader with the Quartus II Software.*

FPP Configuration

The FPP configuration in Cyclone IV devices is designed to meet the increasing demand for faster configuration time. Cyclone IV devices are designed with the capability of receiving byte-wide configuration data per clock cycle.

You can perform FPP configuration of Cyclone IV devices with an intelligent host, such as a MAX II device or microprocessor with flash memory. If your system already contains a CFI flash memory, you can use it for the Cyclone IV device configuration storage as well. The MAX II PFL feature in MAX II devices provides an efficient method to program CFI flash memory devices through the JTAG interface and the logic to control configuration from the flash memory device to the Cyclone IV device.

- ***** For more information about the PFL, refer to *AN* 386: Using the Parallel Flash Loader with the Quartus II Software.
- FPP configuration is supported in EP4CGX30 (only for F484 package), EP4CGX50, EP4CGX75, EP4CGX110, EP4CGX150, and all Cyclone IV E devices.
- The FPP configuration is not supported in E144 package of Cyclone IV E devices.
- Cyclone IV devices do not support enhanced configuration devices for FPP configuration.

FPP Configuration Using an External Host

FPP configuration using an external host provides a fast method to configure Cyclone IV devices. In the FPP configuration scheme, you can use an external host device to control the transfer of configuration data from a storage device, such as flash memory, to the target Cyclone IV device. You can store configuration data in an **.rbf**, **.hex**, or **.ttf** format. When using the external host, a design that controls the configuration process, such as fetching the data from flash memory and sending it to The user watchdog timer is disabled in factory configurations and during the configuration cycle of the application configuration. It is enabled after the application configuration enters user mode.

Quartus II Software Support

Implementation in your design requires a remote system upgrade interface between the Cyclone IV device logic array and remote system upgrade circuitry. You must also generate configuration files for production and remote programming of the system configuration memory. The Quartus II software provides these features.

The two implementation options, ALTREMOTE_UPDATE megafunction and remote system upgrade atom, are for the interface between the remote system upgrade circuitry and the device logic array interface. Using the megafunction block instead of creating your own logic saves design time and offers more efficient logic synthesis and device implementation.

• For more information about the ALTREMOTE_UPDATE megafunction, refer to the *Remote Update Circuitry (ALTREMOTE_UPDATE) Megafunction User Guide*.

Document Revision History

Table 8–28 lists the revision history for this chapter.

abie 0-20. Ducui	nent nevision n	
Date	Version	Changes
		■ Added Table 8–6.
		 Updated Table 8–9 to add new device options and packages.
May 2013	1.7	■ Updated Figure 8–16 and Figure 8–22 to include user mode.
		Updated the "Dedicated" column for DATA[0] and DCLK in Table 8–19.
		 Updated the "User Mode" and "Pin Type" columns for DCLK in Table 8–20.
ebruary 2013	1.6	Updated Table 8–9 to add new device options and packages.
October 2012		 Updated "AP Configuration Supported Flash Memories", "Configuration Data Decompression", and "Overriding the Internal Oscillator" sections.
	1.5	 Updated Figure 8–3, Figure 8–4, Figure 8–5, Figure 8–7, Figure 8–8, Figure 8–9, Figure 8–10, and Figure 8–11.
		■ Updated Table 8–2, Table 8–8, Table 8–12, Table 8–13, Table 8–18, and Table 8–
		 Added information about how to gain control of EPCS pins.
		 Updated "Reset", "Single-Device AS Configuration", "Single-Device AP Configuration", and "Overriding the Internal Oscillator" sections.
November 2011	1.4	■ Added Table 8–7.
		■ Updated Table 8–6 and Table 8–19.
		■ Updated Figure 8–3, Figure 8–4, and Figure 8–5.
		 Updated for the Quartus II software version 10.1 release.
December 2010	1.2	 Added Cyclone IV E new device package information.
	1.0	■ Updated Table 8–7, Table 8–10, and Table 8–11.
		 Minor text edits.

Table 8–28. Document Revision History (Part 1 of 2)

8-19.

^{••••}

In some applications, it is necessary for a device to wake up very quickly to begin operation. Cyclone IV devices offer the Fast-On feature to support fast wake-up time applications. The MSEL pin settings determine the POR time (t_{POR}) of the device.

- **To** For more information about the MSEL pin settings, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- For more information about the POR specifications, refer to the *Cyclone IV Device Datasheet* chapter.

Document Revision History

Table 11–3 lists the revision history for this chapter.

Table 11-3. Document Revision History

Date	Version	Changes
May 2013	1.3	Updated Note (4) in Table 11–1.
July 2010	1.2	 Updated for the Quartus II software version 10.0 release. Updated "I/O Pins Remain Tri-stated During Power-Up" section. Updated Table 11–1
February 2010	1.1	Updated Table 11–1 and Table 11–2 for the Quartus II software version 9.1 SP1 release.
November 2009	1.0	Initial release.

Section I. Transceivers

This section provides a complete overview of all features relating to the Cyclone[®] IV device transceivers. This section includes the following chapters:

- Chapter 1, Cyclone IV Transceivers Architecture
- Chapter 2, Cyclone IV Reset Control and Power Down
- Chapter 3, Cyclone IV Dynamic Reconfiguration

Revision History

Refer to the chapter for its own specific revision history. For information about when the chapter was updated, refer to the Chapter Revision Dates section, which appears in the complete handbook. For example, when operating an EP4CGX150 transmitter channel at 3.125 Gbps without byte serializer, the FPGA fabric frequency is 312.5 MHz (3.125 Gbps/10). This implementation violates the frequency limit and is not supported. Channel operation at 3.125 Gbps is supported when byte serializer is used, where the FPGA fabric frequency is 156.25 MHz (3.125 Gbps/20).

The byte serializer forwards the least significant byte first, followed by the most significant byte.

8B/10B Encoder

The optional 8B/10B encoder generates 10-bit code groups with proper disparity from the 8-bit data and 1-bit control identifier as shown in Figure 1–5.

The encoder is compliant with Clause 36 of the *IEEE 802.3 Specification*.

Figure 1–5. 8B/10B Encoder Block Diagram

The 1-bit control identifier (tx_ctrlenable) port controls the 8-bit translation to either a 10-bit data word (Dx.y) or a 10-bit control word (Kx.y). Figure 1–6 shows the 8B/10B encoding operation with the tx_ctrlenable port, where the second 8'hBC data is encoded as a control word when tx_ctrlenable port is asserted, while the rest of the data is encoded as a data word.

The IEEE 802.3 8B/10B encoder specification identifies only a set of 8-bit characters for which the tx_ctrlenable port should be asserted. If you assert tx_ctrlenable port for any other set of characters, the 8B/10B encoder might encode the output 10-bit code as an invalid code (it does not map to a valid Dx.y or Kx.y code), or an unintended valid Dx.y code, depending on the value entered. It is possible for a downstream 8B/10B decoder to decode an invalid control word into a valid Dx.y code without asserting any code error flags. Altera recommends not to assert tx ctrlenable port for unsupported 8-bit characters.

converted within the XGMII extender sublayer into an 8B/10B encoded data stream. Each data stream is then transmitted across a single differential pair running at 3.125 Gbps. At the XAUI receiver, the incoming data is decoded and mapped back to the 32bit XGMII format. This provides a transparent extension of the physical reach of the XGMII and also reduces the interface pin count.

Figure 1–62. XAUI in 10 Gbps LAN Layers

XAUI functions as a self-managed interface because code group synchronization, channel deskew, and clock domain decoupling is handled with no upper layer support requirements. This functionality is based on the PCS code groups that are used during the inter-packet gap time and idle periods.

Clock Rate Compensation

In XAUI mode, the rate match FIFO compensates up to ± 100 ppm (200 ppm total) difference between the upstream transmitter and the local receiver reference clock. The XAUI protocol requires the transmitter to send /R/ (/K28.0/) code groups simultaneously on all four lanes (denoted as ||R|| column) during inter-packet gaps, adhering to rules listed in the IEEE P802.3ae specification.

The rate match operation begins after rx_syncstatus and rx_channelaligned are asserted. The rx_syncstatus signal is from the word aligner, indicating that synchronization is acquired on all four channels, while rx_channelaligned signal is from the deskew FIFO, indicating channel alignment.

The rate match FIFO looks for the ||R|| column (simultaneous /R/ code groups on all four channels) and deletes or inserts ||R|| columns to prevent the rate match FIFO from overflowing or under running. The rate match FIFO can insert or delete as many ||R|| columns as necessary to perform the rate match operation.

The rx_rmfifodatadeleted and rx_rmfifodatainserted flags that indicate rate match FIFO deletion and insertion events, respectively, are forwarded to the FPGA fabric. If an ||R|| column is deleted, the rx_rmfifodeleted flag from each of the four channels goes high for one clock cycle per deleted ||R|| column. If an ||R|| column is inserted, the rx_rmfifoinserted flag from each of the four channels goes high for one clock cycle per deleted ||R|| column. If an ||R|| column is inserted, the rx_rmfifoinserted flag from each of the four channels goes high for one clock cycle per inserted ||R|| column.

The rate match FIFO does not insert or delete code groups automatically to overcome FIFO empty or full conditions. In this case, the rate match FIFO asserts the rx_rmfifofull and rx_rmfifoempty flags for at least three recovered clock cycles to indicate rate match FIFO full and empty conditions, respectively. You must then assert the rx_digitalreset signal to reset the receiver PCS blocks.

Deterministic Latency Mode

Deterministic Latency mode provides the transceiver configuration that allows no latency uncertainty in the datapath and features to strictly control latency variation. This mode supports non-bonded (×1) and bonded (×4) channel configurations, and is typically used to support CPRI and OBSAI protocols that require accurate delay measurements along the datapath. The Cyclone IV GX transceivers configured in Deterministic Latency mode provides the following features:

- registered mode phase compensation FIFO
- receive bit-slip indication
- transmit bit-slip control
- PLL PFD feedback

Figure 1–68 shows the transceiver channel datapath and clocking when configured in SDI mode.

Note to Figure 1–68:

(1) High-speed recovered clock.

PRBS

Figure 1–74 shows the datapath for the PRBS, high and low frequency pattern test modes. The pattern generator is located in TX PCS before the serializer, and PRBS pattern verifier located in RX PCS after the word aligner.

Figure 1–74. PRBS Pattern Test Mode Datapath

Note to Figure 1-74:

(1) Serial loopback path is optional and can be enabled for the PRBS verifier to check the PRBS pattern

Table 1–25 lists the supported PRBS, high and low frequency patterns, and corresponding channel settings. The PRBS pattern repeats after completing an iteration. The number of bits a PRBS X pattern sends before repeating the pattern is $2^{(X-1)}$ bits.

Table 1–25. PRBS, High and Low Frequency Patterns, and Channel Settings (Part 1 of 2)

			8-bit Cha	nnel Width		10-bit Channel Width					
Patterns	Polynomial	Channel Width of 8 bits (1)	Word Alignment Pattern	Maximum Data Rate (Gbps) for F324 and Smaller Packages	Maximum Data Rate (Gbps) for F484 and Larger Packages	Channel Width of 10-bits (1)	Word Alignment Pattern	Maximum Data Rate (Gbps) for F324 and Smaller Packages	Maximum Data Rate (Gbps) for F484 and Larger Packages		
PRBS 7	X ⁷ + X ⁶ + 1	Y	16'h3040	2.0	2.5	Ν	—	—	_		
PRBS 8	X ⁸ + X ⁷ + 1	Y	16'hFF5A	2.0	2.5	N	—	—	—		
PRBS 10	$X^{10} + X^7 + 1$	N	—	—	—	Y	10'h3FF	2.5	3.125		
PRBS 23	$X^{23} + X^{18} + 1$	Y	16'hFFFF	2.0	2.5	Ν	_	_	_		
High frequency ⁽²⁾	1010101010	Y	_	2.0	2.5	Y	_	2.5	3.125		

Document Revision History

Table 1–30 lists the revision history for this chapter.

Table 1-30.	Document	Revision	History
	Boounione	1101101011	

Date	Version	Changes
		■ Updated the GiGE row in Table 1–14.
February 2015	3.7	 Updated the "GIGE Mode" section.
		 Updated the note in the "Clock Frequency Compensation" section.
October 2013	3.6	Updated Figure 1–15 and Table 1–4.
May 2013	3.5	Updated Table 1–27 by setting "rx_locktodata" and "rx_locktorefclk" to "Input"
		■ Updated the data rate for the V-by-one protocol and the F324 package support in HD-SDI in Table 1–1.
October 2012	3.4	■ Updated note (1) to Figure 1–27.
		 Added latency information to Figure 1–67.
November 2011	2.2	 Updated "Word Aligner" and "Basic Mode" sections.
	3.3	■ Updated Figure 1–37.
	10 3.2	 Updated for the Quartus II software version 10.1 release.
December 2010		■ Updated Table 1–1, Table 1–5, Table 1–11, Table 1–14, Table 1–24, Table 1–25, Table 1–26, Table 1–27, Table 1–28, and Table 1–29.
		 Updated "8B/10B Encoder", "Transmitter Output Buffer", "Receiver Input Buffer", "Clock Data Recovery", "Miscellaneous Transmitter PCS Features", "Miscellaneous Receiver PCS Feature", "Input Reference Clocking", "PCI Express (PIPE) Mode", "Channel Deskewing", "Lane Synchronization", "Serial Loopback", and "Self Test Modes" sections.
		■ Added Figure 1–9, Figure 1–10, Figure 1–19, Figure 1–20, and Figure 1–43.
		■ Updated Figure 1–53, Figure 1–55, Figure 1–59, Figure 1–60, Figure 1–69, Figure 1–70, Figure 1–71, Figure 1–72, Figure 1–73, and Figure 1–74.
November 2010	3.1	Updated Introductory information.
		 Updated information for the Quartus II software version 10.0 release.
July 2010	3.0	 Reset control, power down, and dynamic reconfiguration information moved to new Cyclone IV Reset Control and Power Down and Cyclone IV Dynamic Reconfiguration chapters.

User Reset and Power-Down Signals

Each transceiver channel in the Cyclone IV GX device has individual reset signals to reset its physical coding sublayer (PCS) and physical medium attachment (PMA). The transceiver block also has a power-down signal that affects the multipurpose phase-locked loops (PLLs), general purpose PLLs, and all the channels in the transceiver block.

Table 2–1 lists the reset signals available for each transceiver channel.

Signal	ALTGX MegaWizard Plug-In Manager Configurations	Description
ty digitalreset (1)	 Transmitter Only Receiver and Transmitter 	Provides asynchronous reset to all digital logic in the transmitter PCS, including the XAUI transmit state machine.
en_argrourrobot		The minimum pulse width for this signal is two parallel clock cycles.
rx_digitalreset ⁽¹⁾	 Receiver Only Receiver and Transmitter 	 Resets all digital logic in the receiver PCS, including: XAUI receiver state machines GIGE receiver state machines XAUI channel alignment state machine BIST-PRBS verifier BIST-incremental verifier The minimum pulse width for this signal is two parallel clock evologies
rx_analogreset	 Receiver Only Receiver and Transmitter 	Resets the receiver CDR present in the receiver channel. The minimum pulse width is two parallel clock cycles.

Table 2–1. Transceiver Channel Reset Signals

Note to Table 2–1:

(1) Assert this signal until the clocks coming out of the multipurpose PLL and receiver CDR are stabilized. Stable parallel clocks are essential for proper operation of transmitter and receiver phase-compensation FIFOs in the PCS.

Functional Simulation of the Dynamic Reconfiguration Process

This section describes the points to be considered during functional simulation of the dynamic reconfiguration process.

- You must connect the ALTGX_RECONFIG instance to the ALTGX_instance/ALTGX instances in your design for functional simulation.
- The functional simulation uses a reduced timing model of the dynamic reconfiguration controller. The duration of the offset cancellation process is 16 reconfig_clk clock cycles for functional simulation only.
- The gxb_powerdown signal must not be asserted during the offset cancellation sequence (for functional simulation and silicon).

Document Revision History

Table 3–8 lists the revision history for this chapter.

 Table 3–8.
 Document Revision History

Date	Version	Changes
November 2011	2.1	 Updated "Dynamic Reconfiguration Controller Architecture", "PMA Controls Reconfiguration Mode", "PLL Reconfiguration Mode", and "Error Indication During Dynamic Reconfiguration" sections.
		■ Updated Table 3–2 and Table 3–4.
		 Updated for the Quartus II software version 10.1 release.
	2.0	■ Updated Table 3–1, Table 3–2, Table 3–3, Table 3–4, Table 3–5, and Table 3–6.
		■ Added Table 3–7.
December 2010		■ Updated Figure 3–1, Figure 3–11, Figure 3–13, and Figure 3–14.
		 Updated "Offset Cancellation Feature", "Error Indication During Dynamic Reconfiguration", "Data Rate Reconfiguration Mode Using RX Local Divider", "PMA Controls Reconfiguration Mode", and "Control and Status Signals for Channel Reconfiguration" sections.
July 2010	1.0	Initial release.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1–6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	_	-10		10	μA
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$		-10		10	μA

Notes to Table 1-6:

(1) This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCI0} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).

(2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

 Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2)⁽¹⁾

		V _{CC10} (V)												
Parameter	Condition	1	.2	1	.5	1	.8	2	.5	3	.0	3	.3	Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μΑ
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μΑ
Bus hold low, overdrive current	$0 V < V_{IN} < V_{CCIO}$		125	_	175	_	200	_	300	_	500	_	500	μA
Bus hold high, overdrive current	$0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{CCIO}}$		-125		-175		-200		-300		-500		-500	μA