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2–2 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
Logic Elements
Figure 2–1 shows the LEs for Cyclone IV devices.

LE Features
You can configure the programmable register of each LE for D, T, JK, or SR flipflop 
operation. Each register has data, clock, clock enable, and clear inputs. Signals that 
use the global clock network, general-purpose I/O pins, or any internal logic can 
drive the clock and clear control signals of the register. Either general-purpose I/O 
pins or the internal logic can drive the clock enable. For combinational functions, the 
LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output independently drives these three outputs. Two LE outputs 
drive the column or row and direct link routing connections, while one LE drives the 
local interconnect resources. This allows the LUT to drive one output while the 
register drives another output. This feature, called register packing, improves device 
utilization because the device can use the register and the LUT for unrelated 
functions. The LAB-wide synchronous load control signal is not available when using 
register packing. For more information about the synchronous load control signal, 
refer to “LAB Control Signals” on page 2–6.

The register feedback mode allows the register output to feed back into the LUT of the 
same LE to ensure that the register is packed with its own fan-out LUT, providing 
another mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–1. Cyclone IV Device LEs 
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3–18 Chapter 3: Memory Blocks in Cyclone IV Devices
Document Revision History
Power-Up Conditions and Memory Initialization
The M9K memory block outputs of Cyclone IV devices power up to zero (cleared) 
regardless of whether the output registers are used or bypassed. All M9K memory 
blocks support initialization using a .mif. You can create .mifs in the Quartus II 
software and specify their use using the RAM MegaWizard Plug-In Manager when 
instantiating memory in your design. Even if memory is pre-initialized (for example, 
using a .mif), it still powers up with its outputs cleared. Only the subsequent read 
after power up outputs the pre-initialized values.

f For more information about .mifs, refer to the RAM Megafunction User Guide and the 
Quartus II Handbook.

Power Management
The M9K memory block clock enables of Cyclone IV devices allow you to control 
clocking of each M9K memory block to reduce AC power consumption. Use the rden 
signal to ensure that read operations only occur when necessary. If your design does 
not require read-during-write, reduce power consumption by deasserting the rden 
signal during write operations or any period when there are no memory operations. 
The Quartus II software automatically powers down any unused M9K memory 
blocks to save static power.

Document Revision History
Table 3–6 shows the revision history for this chapter.

Table 3–6. Document Revision History

Date Version Changes

November 2011 1.1 Updated the “Byte Enable Support” section.

November 2009 1.0 Initial release.
Cyclone IV Device Handbook, November 2011 Altera Corporation
Volume 1
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–15
Clock Networks
From the clock sources listed above, only two clock input pins, two out of four PLL 
clock outputs (two clock outputs from either adjacent PLLs), one DPCLK pin, and one 
source from internal logic can drive into any given clock control block, as shown in 
Figure 5–1 on page 5–11. 

Out of these six inputs to any clock control block, the two clock input pins and two 
PLL outputs are dynamically selected to feed a GCLK. The clock control block 
supports static selection of the signal from internal logic.

Figure 5–5 shows a simplified version of the clock control blocks on each side of the 
Cyclone IV GX device periphery.

The inputs to the five clock control blocks on each side of the Cyclone IV E device 
must be chosen from among the following clock sources:

■ Three or four clock input pins, depending on the specific device

■ Five PLL counter outputs

■ Two DPCLK pins and two CDPCLK pins from both the left and right sides and four 
DPCLK pins from both the top and bottom

■ Five signals from internal logic

From the clock sources listed above, only two clock input pins, two PLL clock outputs, 
one DPCLK or CDPCLK pin, and one source from internal logic can drive into any given 
clock control block, as shown in Figure 5–1 on page 5–11. 

Out of these six inputs to any clock control block, the two clock input pins and two 
PLL outputs are dynamically selected to feed a GCLK. The clock control block 
supports static selection of the signal from internal logic.

Figure 5–5. Clock Control Blocks on Each Side of Cyclone IV GX Device

Notes to Figure 5–5:

(1) The EP4CGX15 device has two DPCLK pins; the EP4CGX22 and EP4CGX30 devices have four DPCLK pins; the 
EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices have six DPCLK pins.

(2) Each clock control block in the EP4CGX15, EP4CGX22, and EP4CGX30 devices can drive five GCLK networks. Each 
clock control block in the EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices can drive six GCLK 
networks.
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5–26 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Hardware Features
Deterministic Latency Compensation Mode
The deterministic latency mode compensates for the delay of the multipurpose PLLs 
through the clock network and serializer in Common Public Radio Interface (CPRI) 
applications. In this mode, the PLL PFD feedback path compensates the latency 
uncertainty in Tx dataout and Tx clkout paths relative to the reference clock.

Hardware Features
Cyclone IV PLLs support several features for general-purpose clock management. 
This section discusses clock multiplication and division implementation, 
phase shifting implementations, and programmable duty cycles. 

Clock Multiplication and Division
Each Cyclone IV PLL provides clock synthesis for PLL output ports using 
M/(N*post-scale counter) scaling factors. The input clock is divided by a pre-scale 
factor, N, and is then multiplied by the M feedback factor. The control loop drives the 
VCO to match fIN (M/N). Each output port has a unique post-scale counter that 
divides down the high-frequency VCO. For multiple PLL outputs with different 
frequencies, the VCO value is the least common multiple of the output frequencies 
that meets its frequency specifications. For example, if output frequencies required 
from one PLL are 33 and 66 MHz, the Quartus II software sets the VCO to 660 MHz 
(the least common multiple of 33 and 66 MHz in the VCO range). Then, the post-scale 
counters scale down the VCO frequency for each output port.

There is one pre-scale counter, N, and one multiply counter, M, per PLL, with a range 
of 1 to 512 for both M and N. The N counter does not use duty cycle control because 
the purpose of this counter is only to calculate frequency division. There are five 
generic post-scale counters per PLL that can feed GCLKs or external clock outputs. 
These post-scale counters range from 1 to 512 with a 50% duty cycle setting. The 
post-scale counters range from 1 to 256 with any non-50% duty cycle setting. The sum 
of the high/low count values chosen for a design selects the divide value for a given 
counter.

The Quartus II software automatically chooses the appropriate scaling factors 
according to the input frequency, multiplication, and division values entered into the 
ALTPLL megafunction.

1 Phase alignment between output counters is determined using the tPLL_PSERR 
specification.
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1



6–4 Chapter 6: I/O Features in Cyclone IV Devices
I/O Element Features
Table 6–2 on page 6–7 shows the possible settings for I/O standards with current 
strength control. These programmable current strength settings are a valuable tool in 
helping decrease the effects of simultaneously switching outputs (SSO) in conjunction 
with reducing system noise. The supported settings ensure that the device driver 
meets the specifications for IOH and IOL of the corresponding I/O standard.

1 When you use programmable current strength, on-chip series termination (RS OCT) is 
not available. 

Slew Rate Control
The output buffer for each Cyclone IV I/O pin provides optional programmable 
output slew-rate control. Table 6–2 on page 6–7 shows the possible slew rate option 
and the Quartus II default slew rate setting. However, these fast transitions may 
introduce noise transients in the system. A slower slew rate reduces system noise, but 
adds a nominal delay to rising and falling edges. Because each I/O pin has an 
individual slew-rate control, you can specify the slew rate on a pin-by-pin basis. The 
slew-rate control affects both the rising and falling edges. Slew rate control is available 
for single-ended I/O standards with current strength of 8 mA or higher. 

1 You cannot use the programmable slew rate feature when using OCT with calibration.

1 You cannot use the programmable slew rate feature when using the 3.0-V PCI, 
3.0-V PCI-X, 3.3-V LVTTL, or 3.3-V LVCMOS I/O standards. Only the fast slew rate 
(default) setting is available.

Open-Drain Output
Cyclone IV devices provide an optional open-drain (equivalent to an open-collector) 
output for each I/O pin. This open-drain output enables the device to provide 
system-level control signals (for example, interrupt and write enable signals) that are 
asserted by multiple devices in your system.

Bus Hold
Each Cyclone IV device user I/O pin provides an optional bus-hold feature. The 
bus-hold circuitry holds the signal on an I/O pin at its last-driven state. Because the 
bus-hold feature holds the last-driven state of the pin until the next input signal is 
present, an external pull-up or pull-down resistor is not necessary to hold a signal 
level when the bus is tri-stated.

The bus-hold circuitry also pulls undriven pins away from the input threshold 
voltage in which noise can cause unintended high-frequency switching. You can select 
this feature individually for each I/O pin. The bus-hold output drives no higher than 
VCCIO to prevent overdriving signals.

1 If you enable the bus-hold feature, the device cannot use the programmable pull-up 
option. Disable the bus-hold feature when the I/O pin is configured for differential 
signals. Bus-hold circuitry is not available on dedicated clock pins.

Bus-hold circuitry is only active after configuration. When going into user mode, the 
bus-hold circuit captures the value on the pin present at the end of configuration.
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1



6–40 Chapter 6: I/O Features in Cyclone IV Devices
Document Revision History
February 2010 2.0

■ Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1 
release.

■ Updated Table 6–2, Table 6–3, and Table 6–10.

■ Updated “I/O Banks” section.

■ Added Figure 6–9.

■ Updated Figure 6–10 and Figure 6–11.

■ Added Table 6–4, Table 6–6, and Table 6–8.

November 2009 1.0 Initial release.

Table 6–12. Document Revision History (Part 2 of 2)

Date Version Changes
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1



7–2 Chapter 7: External Memory Interfaces in Cyclone IV Devices
Cyclone IV Devices Memory Interfaces Pin Support
Figure 7–1 shows the block diagram of a typical external memory interface data path 
in Cyclone IV devices.

f For more information about implementing complete external memory interfaces, refer 
to the External Memory Interface Handbook.

Cyclone IV Devices Memory Interfaces Pin Support
Cyclone IV devices use data (DQ), data strobe (DQS), clock, command, and address 
pins to interface with external memory. Some memory interfaces use the data mask 
(DM) or byte write select (BWS#) pins to enable data masking. This section describes 
how Cyclone IV devices support all these different pins. 

f For more information about pin utilization, refer to Volume 2: Device, Pin, and Board 
Layout Guidelines of the External Memory Interface Handbook.

Data and Data Clock/Strobe Pins
Cyclone IV data pins for external memory interfaces are called D for write data, Q for 
read data, or DQ for shared read and write data pins. The read-data strobes or read 
clocks are called DQS pins. Cyclone IV devices support both bidirectional data strobes 
and unidirectional read clocks. Depending on the external memory standard, the DQ 
and DQS are bidirectional signals (in DDR2 and DDR SDRAM) or unidirectional 
signals (in QDR II SRAM). Connect the bidirectional DQ data signals to the same 
Cyclone IV devices DQ pins. For unidirectional D or Q signals, connect the read-data 
signals to a group of DQ pins and the write-data signals to a different group of DQ pins.

1 In QDR II SRAM, the Q read-data group must be placed at a different VREF bank 
location from the D write-data group, command, or address pins.

Figure 7–1. Cyclone IV Devices External Memory Data Path (1)
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7–14 Chapter 7: External Memory Interfaces in Cyclone IV Devices
Cyclone IV Devices Memory Interfaces Features
DDR Output Registers
A dedicated write DDIO block is implemented in the DDR output and output enable 
paths. 

Figure 7–8 shows how a Cyclone IV dedicated write DDIO block is implemented in 
the I/O element (IOE) registers.

The two DDR output registers are located in the I/O element (IOE) block. Two serial 
data streams routed through datain_l and datain_h, are fed into two registers, 
output register Ao and output register Bo, respectively, on the same clock edge. 
The output from output register Ao is captured on the falling edge of the clock, while 
the output from output register Bo is captured on the rising edge of the clock. The 
registered outputs are multiplexed by the common clock to drive the DDR output pin 
at twice the data rate. 

The DDR output enable path has a similar structure to the DDR output path in the 
IOE block. The second output enable register provides the write preamble for the DQS 
strobe in DDR external memory interfaces. This active-low output enable register 
extends the high-impedance state of the pin by half a clock cycle to provide the 
external memory’s DQS write preamble time specification. 

f For more information about Cyclone IV IOE registers, refer to the Cyclone IV Device 
I/O Features chapter.

Figure 7–8. Cyclone IV Dedicated Write DDIO
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–5
Configuration
Use the data in Table 8–2 to estimate the file size before design compilation. Different 
configuration file formats, such as Hexadecimal (.hex) or Tabular Text File (.ttf) 
formats, have different file sizes. However, for any specific version of the Quartus II 
software, any design targeted for the same device has the same uncompressed 
configuration file size. If you use compression, the file size varies after each 
compilation, because the compression ratio depends on the design.

f For more information about setting device configuration options or creating 
configuration files, refer to the Software Settings section in volume 2 of the 
Configuration Handbook.

Configuration and JTAG Pin I/O Requirements
Cyclone IV devices are manufactured using the TSMC 60-nm low-k dielectric process. 
Although Cyclone IV devices use TSMC 2.5-V transistor technology in the I/O 
buffers, the devices are compatible and able to interface with 2.5, 3.0, and 3.3-V 
configuration voltage standards by following specific requirements.

All I/O inputs must maintain a maximum AC voltage of 4.1 V. When using a serial 
configuration device in an AS configuration scheme, you must connect a 25- series 
resistor for the DATA[0] pin. When cascading the Cyclone IV device family in a 
multi-device configuration for AS, AP, FPP, and PS configuration schemes, you must 
connect the repeater buffers between the master and slave devices for the DATA and 
DCLK pins. When using the JTAG configuration scheme in a multi-device 
configuration, connect 25- resistors on both ends of the TDO-TDI path if the TDO 
output driver is a non-Cyclone IV device. 

The output resistance of the repeater buffers and the TDO path for all cases must fit the 
maximum overshoot equation shown in Equation 8–1.

Cyclone IV GX

EP4CGX15 3,805,568

EP4CGX22 7,600,040

EP4CGX30 
7,600,040

22,010,888 (1)

EP4CGX50 22,010,888

EP4CGX75 22,010,888

EP4CGX110 39,425,016

EP4CGX150 39,425,016

Note to Table 8–2:

(1) Only for the F484 package.

Table 8–2. Uncompressed Raw Binary File (.rbf) Sizes for Cyclone IV Devices (Part 2 of 2) 

Device Data Size (bits)

Equation 8–1. (1)

Note to Equation 8–1:
(1) ZO is the transmission line impedance and RE is the equivalent resistance of the output buffer.

0.8ZO RE 1.8ZO 
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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8–20 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
f For more information about the USB-Blaster download cable, refer to the USB-Blaster 
Download Cable User Guide. For more information about the ByteBlaster II download 
cable, refer to the ByteBlaster II Download Cable User Guide.

Figure 8–6 shows the download cable connections to the serial configuration device.

Figure 8–6. In-System Programming of Serial Configuration Devices

Notes to Figure 8–6:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(3) Power up the VCC of the ByteBlaster II or USB-Blaster download cable with the 3.3-V supply.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, 

Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND.
(5) The diodes and capacitors must be placed as close as possible to the Cyclone IV device. You must ensure that the diodes and capacitors maintain 

a maximum AC voltage of 4.1 V. The external diodes and capacitors are required to prevent damage to the Cyclone IV device AS configuration 
input pins due to possible overshoot when programming the serial configuration device with a download cable. Altera recommends using the 
Schottky diode, which has a relatively lower forward diode voltage (VF) than the switching and Zener diodes, for effective voltage clamping. 

(6) When cascading Cyclone IV devices in a multi-device AS configuration, connect the repeater buffers between the master and slave devices for 
DATA[0] and DCLK. All I/O inputs must maintain a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the 
maximum overshoot equation outlined in “Configuration and JTAG Pin I/O Requirements” on page 8–5.

(7) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA[1] pin in AP and 
FPP modes.

(8) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–25
Configuration
1 There are no series resistors required in AP configuration mode for Cyclone IV E 
devices when using the Micron flash at 2.5-, 3.0-, and 3.3-V I/O standard. The output 
buffer of the Micron P30 IBIS model does not overshoot above 4.1 V. Thus, series 
resistors are not required for the 2.5-, 3.0-, and 3.3-V AP configuration option. 
However, if there are any other devices sharing the same flash I/Os with Cyclone IV E 
devices, all shared pins are still subject to the 4.1-V limit and may require series 
resistors.

Default read mode of the supported parallel flash memory and all writes to the 
parallel flash memory are asynchronous. Both the parallel flash families support a 
synchronous read mode, with data supplied on the positive edge of DCLK.

The serial clock (DCLK) generated by Cyclone IV E devices controls the entire 
configuration cycle and provides timing for the parallel interface.

Multi-Device AP Configuration
You can configure multiple Cyclone IV E devices using a single parallel flash. You can 
cascade multiple Cyclone IV E devices using the chip-enable (nCE) and 
chip-enable-out (nCEO) pins. The first device in the chain must have its nCE pin 
connected to GND. You must connect its nCEO pin to the nCE pin of the next device in 
the chain. Use an external 10-k pull-up resistor to pull the nCEO signal high to its 
VCCIO level to help the internal weak pull-up resistor. When the first device captures 
all its configuration data from the bitstream, it drives the nCEO pin low, enabling the 
next device in the chain. You can leave the nCEO pin of the last device unconnected or 
use it as a user I/O pin after configuration if the last device in the chain is a 
Cyclone IV E device. The nCONFIG, nSTATUS, CONF_DONE, DCLK, DATA[15..8], and 
DATA[7..0] pins of each device in the chain are connected (Figure 8–8 on page 8–26 
and Figure 8–9 on page 8–27).

The first Cyclone IV E device in the chain, as shown in Figure 8–8 on page 8–26 and 
Figure 8–9 on page 8–27, is the configuration master device and controls the 
configuration of the entire chain. You must connect its MSEL pins to select the AP 
configuration scheme. The remaining Cyclone IV E devices are used as configuration 
slaves. You must connect their MSEL pins to select the FPP configuration scheme. Any 
other Altera device that supports FPP configuration can also be part of the chain as a 
configuration slave.

The following are the configurations for the DATA[15..0] bus in a multi-device AP 
configuration:

■ Byte-wide multi-device AP configuration

■ Word-wide multi-device AP configuration
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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9. SEU Mitigation in Cyclone IV Devices
This chapter describes the cyclical redundancy check (CRC) error detection feature in 
user mode and how to recover from soft errors.

1 Configuration error detection is supported in all Cyclone® IV devices including 
Cyclone IV GX devices, Cyclone IV E devices with 1.0-V core voltage, and 
Cyclone IV E devices with 1.2-V core voltage. However, user mode error detection is 
only supported in Cyclone IV GX devices and Cyclone IV E devices with 1.2-V core 
voltage.

Dedicated circuitry built into Cyclone IV devices consists of a CRC error detection 
feature that can optionally check for a single-event upset (SEU) continuously and 
automatically.

In critical applications used in the fields of avionics, telecommunications, system 
control, medical, and military applications, it is important to be able to:

■ Confirm the accuracy of the configuration data stored in an FPGA device

■ Alert the system to an occurrence of a configuration error

Using the CRC error detection feature for Cyclone IV devices does not impact fitting 
or performance.

This chapter contains the following sections:

■ “Configuration Error Detection” on page 9–1

■ “User Mode Error Detection” on page 9–2

■ “Automated SEU Detection” on page 9–3

■ “CRC_ERROR Pin” on page 9–3

■ “Error Detection Block” on page 9–4

■ “Error Detection Timing” on page 9–5

■ “Software Support” on page 9–6

■ “Recovering from CRC Errors” on page 9–9

Configuration Error Detection

1 Configuration error detection is available in all Cyclone IV devices including 
Cyclone IV GX devices, Cyclone IV E devices with 1.0-V core voltage, and 
Cyclone IV E devices with 1.2-V core voltage.
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Transmitter Channel Datapath
The following sections describe the Cyclone IV GX transmitter channel datapath 
architecture as shown in Figure 1–3:

■ TX Phase Compensation FIFO

■ Byte Serializer

■ 8B/10B Encoder

■ Serializer

■ Transmitter Output Buffer

TX Phase Compensation FIFO
The TX phase compensation FIFO compensates for the phase difference between the 
low-speed parallel clock and the FPGA fabric interface clock, when interfacing the 
transmitter channel to the FPGA fabric (directly or through the PIPE and 
PCIe hard IP). The FIFO is four words deep, with latency between two to three 
parallel clock cycles. Figure 1–4 shows the TX phase compensation FIFO block 
diagram.

1 The FIFO can operate in registered mode, contributing to only one parallel clock cycle 
of latency in Deterministic Latency functional mode. For more information, refer to 
“Deterministic Latency Mode” on page 1–73.

f For more information about FIFO clocking, refer to “FPGA Fabric-Transceiver 
Interface Clocking” on page 1–43.

Byte Serializer
The byte serializer divides the input datapath width by two to allow transmitter 
channel operation at higher data rates while meeting the maximum FPGA fabric 
frequency limit. This module is required in configurations that exceed the maximum 
FPGA fabric-transceiver interface clock frequency limit and optional in configurations 
that do not. 

f For the FPGA fabric-transceiver interface frequency specifications, refer to the Cyclone 
IV Device Data Sheet.

Figure 1–4. TX Phase Compensation FIFO Block Diagram

Note to Figure 1–4:

(1) The x refers to the supported 8-, 10-, 16-, or 20-bits transceiver channel width.

tx_phase_comp_fifo_errorTX Phase
Compensation

FIFO

wr_clk rd_clk

tx_datain[x..0] (1) Data output to
the byte serializer

or the 8B/10B encoder 

http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
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The input reference clocks reside in banks 3A, 3B, 8A, and 8B have dedicated 
VCC_CLKIN3A, VCC_CLKIN3B, VCC_CLKIN8A, and VCC_CLKIN8B power supplies separately in 
their respective I/O banks to avoid the different power level requirements in the same 
bank for general purpose I/Os (GPIOs). Table 1–6 lists the supported I/O standard 
for the REFCLK pins.

Figure 1–26. PLL Input Reference Clocks in Transceiver Operation for F484 and Larger Packages 
(1), (2), (3)

Notes to Figure 1–26:

(1) The REFCLK2 and REFCLK3 pins are dual-purpose CLKIO, REFCLK, or DIFFCLK pins that reside in banks 3A and 8A 
respectively.

(2) The REFCLK[1..0] and REFCLK[5..4] pins are dual-purpose differential REFCLK or DIFFCLK pins that reside in 
banks 3B and 8B respectively. These clock input pins do not have access to the clock control blocks and GCLK 
networks. For more details, refer to the Clock Networks and PLLs in Cyclone IV Devices chapter.

(3) Using any clock input pins other than the designated REFCLK pins as shown here to drive the MPLLs and GPLLs may 
have reduced jitter performance. 

Transceiver
Block

GXBL1

MPLL_8

REFCLK3

REFCLK[1..0]

MPLL_7

Transceiver
Block

GXBL0

MPLL_6

MPLL_5

REFCLK[5..4]

REFCLK2

GPLL_1

GPLL_2

Not applicable in
F484 package

Table 1–6. REFCLK I/O Standard Support

I/O Standard HSSI 
Protocol Coupling Terminatio

n

VCC_CLKIN Level I/O Pin Type

Input Output Column I/O Row I/O Supported 
Banks

LVDS ALL Differential 
AC (Needs 

off-chip 
resistor to 

restore 
VCM)

Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

LVPECL ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

1.2 V, 1.5 V, 
3.3 V PCML

ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

ALL Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

HCSL PCIe Differential 
DC Off-chip 2.5 V Not Supported Yes No 3A, 3B, 8A, 8B

http://www.altera.com/literature/hb/cyclone-iv/cyiv-51005.pdf
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Bonded Channel Configuration
In bonded channel configuration, the low-speed clock for the bonded channels share a 
common bonded clock path that reduces clock skew between the bonded channels. 
The phase compensation FIFOs in bonded channels share a set of pointers and control 
logic that results in equal FIFO latency between the bonded channels. These features 
collectively result in lower channel-to-channel skew when implementing 
multi-channel serial interface in bonded channel configuration.

In a transceiver block, the high-speed clock for each bonded channels is distributed 
independently from one of the two multipurpose PLLs directly adjacent to the block. 
The low-speed clock for bonded channels is distributed from a common bonded clock 
path that selects from one of the two multipurpose PLLs directly adjacent to the block. 
Transceiver channels for devices in F484 and larger packages support additional 
clocking flexibility for ×2 bonded channels. In these packages, the ×2 bonded channels 
support high-speed and low-speed bonded clock distribution from PLLs beyond the 
two multipurpose PLLs directly adjacent to the block. Table 1–10 lists the high- and 
low-speed clock sources for the bonded channels.

1 When implementing ×2 bonded channel configuration in a transceiver block, 
remaining channels 2 and 3 are available to implement other non-bonded channel 
configuration.

Table 1–10. High- and Low-Speed Clock Sources for Bonded Channels in Bonded Channel 
Configuration

Package Transceiver 
Block Bonded Channels

High- and Low-Speed Clocks Source

Option 1 Option 2

F324 and smaller GXBL0
×2 in channels 0, 1
×4 in all channels MPLL_1 MPLL_2

F484 and larger

GXBL0
×2 in channels 0, 1 MPLL_5/

GPLL_1
MPLL_6

×4 in all channels MPLL_5 MPLL_6

GXBL1 (1)
×2 in channels 0, 1 MPLL_7/

MPLL_6
MPLL_8

×4 in all channels MPLL_7 MPLL_8

Note to Table 1–10:

(1) GXBL1 is not available for transceivers in F484 package.
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Figure 1–36 and Figure 1–37 show the independent high-speed clock and bonded 
low-speed clock distributions for transceivers in F324 and smaller packages, and in 
F484 and larger packages in bonded (×2 and ×4) channel configuration.

Figure 1–36. Clock Distribution in Bonded (×2 and ×4) Channel Configuration for Transceivers in 
F324 and Smaller Packages.

Notes to Figure 1–36:

(1) Transceiver channels 2 and 3 are not available for devices in F169 and smaller packages.
(2) High-speed clock.
(3) Low-speed clock.
(4) Bonded common low-speed clock path.

Transceiver
Block

GXBL0

2 Bonded Channel Configuration+

MPLL_2

TX PMA

TX PMA

TX PMA

TX PMA

Ch3
(1)

MPLL_1

Ch2
(1)

Ch1

Ch0

(3)

(4) (4)

(2)

Transceiver
Block

GXBL0

4 Bonded Channel Configuration+

MPLL_2

TX PMA

TX PMA

TX PMA

TX PMA

Ch3
(1)

MPLL_1

Ch2
(1)

Ch1

Ch0

(3)

(2)
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Figure 1–57 shows an example of even numbers of /Dx.y/ between the last 
automatically sent /K28.5/ and the first user-sent /K28.5/. The first user-sent 
/K28.5/ code group received at an odd code group boundary in cycle n + 3 takes the 
receiver synchronization state machine in Loss-of-Sync state. The first 
synchronization ordered-set /K28.5/Dx.y/ in cycles n + 3 and n + 4 is discounted and 
three additional ordered sets are required for successful synchronization.

Running Disparity Preservation with Idle Ordered Set
During idle ordered sets transmission in GIGE mode, the transmitter ensures a 
negative running disparity at the end of an idle ordered set. Any /Dx.y/, except for 
/D21.5/ (part of /C1/ ordered set) or /D2.2/ (part of /C2/ ordered set) following a 
/K28.5/ is automatically replaced with either of the following:

■ A /D5.6/ (/I1/ ordered set) if the running disparity before /K28.5/ is positive

■ A /D16.2/ (/I2/ ordered set) if the running disparity before /K28.5/ is negative

Lane Synchronization
In GIGE mode, the word aligner is configured in automatic synchronization state 
machine mode that complies with the IEEE P802.3ae standard. A synchronization 
ordered set is a /K28.5/ code group followed by an odd number of valid /Dx.y/ code 
groups. Table 1–19 lists the synchronization state machine parameters that 
implements the GbE-compliant synchronization.

Figure 1–57. Example of Reset Condition in GIGE Mode

tx_digitalreset

clock

n n + 1 n + 2 n + 3 n + 4

tx_dataout K28.5 xxx K28.5 K28.5 Dx.y Dx.y K28.5 Dx.yK28.5 K28.5 Dx.y K28.5 Dx.y

Table 1–19. Synchronization State Machine Parameters (1)

Parameter Value

Number of valid synchronization ordered sets received to achieve 
synchronization 3

Number of erroneous code groups received to lose synchronization 4

Number of continuous good code groups received to reduce the error count by 
one 4

Note to Table 1–19:

(1) The word aligner supports 7-bit and 10-bit pattern lengths in GIGE mode.



1–88 Chapter 1: Cyclone IV Transceivers Architecture
Transceiver Top-Level Port Lists

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

RX PCS

rx_rmfifofull Output
Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

Rate match FIFO full status indicator.

■ A high level indicates the rate match FIFO is full. 

■ Driven for a minimum of two serial clock cycles in 
configurations without a byte serializer and a 
minimum of three recovered clock cycles in 
configurations with a byte serializer.

rx_rmfifoempty Output
Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

Rate match FIFO empty status indicator.

■ A high level indicates the rate match FIFO is empty. 

■ Driven for a minimum of two serial clock cycles in 
configurations without a byte serializer and a 
minimum of three recovered clock cycles in 
configurations with a byte serializer.

rx_ctrldetect Output
Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

8B/10B decoder control or data identifier. 

■ A high level indicates received code group is a /Kx.y/ 
control code group.

■ A low level indicates received code group is a /Dx.y/ 
data code group.

rx_errdetect Output
Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

8B/10B code group violation or disparity error indicator. 

■ A high level indicates that a code group violation or 
disparity error was detected on the associated 
received code group. 

■ Use with the rx_disperr signal to differentiate 
between a code group violation or a disparity error as 
follows: [rx_errdetect:rx_disperr]

■ 2'b00—no error

■ 2'b10—code group violation

■ 2'b11—disparity error or both

rx_disperr Output
Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

8B/10B disparity error indicator. 

■ A high level indicates that a disparity error was 
detected on the associated received code group.

rx_runningdisp Output
Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

8B/10B current running disparity indicator.

■ A high level indicates a positive current running 
disparity at the end of the decoded byte

■ A low level indicates a negative current running 
disparity at the end of the decoded byte

rx_enabyteord Input Asynchronous signal
Enable byte ordering control

■ A low-to-high transition triggers the byte ordering 
block to restart byte ordering operation.

rx_byteorder
alignstatus Output

Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

Byte ordering status indicator.

■ A high level indicates that the byte ordering block has 
detected the programmed byte ordering pattern in the 
least significant byte of the received data from the 
byte deserializer.

rx_dataout Output
Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

Parallel data output from the receiver to the FPGA fabric.

■ Bus width depends on channel width multiplied by 
number of channels per instance.

Table 1–27. Receiver Ports in ALTGX Megafunction for Cyclone IV GX (Part 2 of 3)

Block Port Name Input/
Output Clock Domain Description
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RL Receiver differential input discrete resistor (external to Cyclone IV devices).

Receiver Input 
Waveform

Receiver input waveform for LVDS and LVPECL differential standards:

Receiver input 
skew margin 
(RSKM)

High-speed I/O block: The total margin left after accounting for the sampling window and TCCS. 
RSKM = (TUI – SW – TCCS) / 2.

S

Single-ended 
voltage-
referenced I/O 
Standard

The JEDEC standard for SSTl and HSTL I/O standards defines both the AC and DC input signal 
values. The AC values indicate the voltage levels at which the receiver must meet its timing 
specifications. The DC values indicate the voltage levels at which the final logic state of the 
receiver is unambiguously defined. After the receiver input crosses the AC value, the receiver 
changes to the new logic state. The new logic state is then maintained as long as the input stays 
beyond the DC threshold. This approach is intended to provide predictable receiver timing in the 
presence of input waveform ringing.

SW (Sampling 
Window) 

High-speed I/O block: The period of time during which the data must be valid to capture it 
correctly. The setup and hold times determine the ideal strobe position in the sampling window.

Table 1–46. Glossary (Part 3 of 5)

Letter Term Definitions

Single-Ended Waveform

Differential Waveform (Mathematical Function of Positive & Negative Channel)

Positive Channel (p) = VIH

Negative Channel (n) = VIL

Ground

VID

VID

 0 V

VCM

p - n 

VID

 

VIH(AC)

VIH(DC)

VREF
VIL(DC)

VIL(AC)

VOH

VOL

VCCIO

VSS
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3


