Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Active | | Number of LABs/CLBs | 7155 | | Number of Logic Elements/Cells | 114480 | | Total RAM Bits | 3981312 | | Number of I/O | 528 | | Number of Gates | - | | Voltage - Supply | 0.97V ~ 1.03V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 85°C (TJ) | | Package / Case | 780-BGA | | Supplier Device Package | 780-FBGA (29x29) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/ep4ce115f29c8l | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong This chapter provides additional information about the document and Altera. ## **About this Handbook** This handbook provides comprehensive information about the Altera® Cyclone® IV family of devices. ## **How to Contact Altera** To locate the most up-to-date information about Altera products, refer to the following table. | Contact (1) | Contact Method | Address | |--------------------------------|----------------|---------------------------| | Technical support | Website | www.altera.com/support | | Toohnical training | Website | www.altera.com/training | | Technical training | Email | custrain@altera.com | | Product literature | Website | www.altera.com/literature | | Nontechnical support (general) | Email | nacomp@altera.com | | (software licensing) | Email | authorization@altera.com | ### Note to Table: # **Typographic Conventions** The following table shows the typographic conventions this document uses. | Visual Cue | Meaning | |---|---| | Bold Type with Initial Capital
Letters | Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI. | | bold type | Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, qdesigns directory, \textbf{D}: drive, and \textbf{chiptrip.gdf} file. | | Italic Type with Initial Capital Letters | Indicate document titles. For example, Stratix IV Design Guidelines. | | | Indicates variables. For example, $n + 1$. | | italic type | Variable names are enclosed in angle brackets (< >). For example, <file name=""> and <project name="">.pof file.</project></file> | | Initial Capital Letters | Indicate keyboard keys and menu names. For example, the Delete key and the Options menu. | | "Subheading Title" | Quotation marks indicate references to sections in a document and titles of Quartus II Help topics. For example, "Typographic Conventions." | ⁽¹⁾ You can also contact your local Altera sales office or sales representative. Table 7–1 lists the number of DQS or DQ groups supported on each side of the Cyclone IV GX device. Table 7-1. Cyclone IV GX Device DQS and DQ Bus Mode Support for Each Side of the Device | Device | Package | Side | Number
×8
Groups | Number
×9
Groups | Number
×16
Groups | Number
×18
Groups | Number
×32
Groups | Number
×36
Groups | |----------------------|------------------|------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------| | | | Right | 1 | 0 | 0 | 0 | _ | _ | | EP4CGX15 | 169-pin FBGA | Top (1) | 1 | 0 | 0 | 0 | _ | _ | | | | Bottom (2) | 1 | 0 | 0 | 0 | _ | _ | | | | Right | 1 | 0 | 0 | 0 | _ | _ | | | 169-pin FBGA | Top (1) | 1 | 0 | 0 | 0 | _ | _ | | | | Bottom (2) | 1 | 0 | 0 | 0 | _ | _ | | ED4CCV00 | | Right | 2 | 2 | 1 | 1 | _ | _ | | EP4CGX22
EP4CGX30 | 324-pin FBGA | Тор | 2 | 2 | 1 | 1 | _ | _ | | EF4UUASU | | Bottom | 2 | 2 | 1 | 1 | _ | _ | | | 484-pin FBGA (3) | Right | 4 | 2 | 2 | 2 | 1 | 1 | | | | Тор | 4 | 2 | 2 | 2 | 1 | 1 | | | | Bottom | 4 | 2 | 2 | 2 | 1 | 1 | | | 484-pin FBGA | Right | 4 | 2 | 2 | 2 | 1 | 1 | | | | Тор | 4 | 2 | 2 | 2 | 1 | 1 | | EP4CGX50
EP4CGX75 | | Bottom | 4 | 2 | 2 | 2 | 1 | 1 | | | 672-pin FBGA | Right | 4 | 2 | 2 | 2 | 1 | 1 | | | | Тор | 4 | 2 | 2 | 2 | 1 | 1 | | | | Bottom | 4 | 2 | 2 | 2 | 1 | 1 | | | | Right | 4 | 2 | 2 | 2 | 1 | 1 | | | 484-pin FBGA | Тор | 4 | 2 | 2 | 2 | 1 | 1 | | | | Bottom | 4 | 2 | 2 | 2 | 1 | 1 | | EP4CGX110 | | Right | 4 | 2 | 2 | 2 | 1 | 1 | | EP4CGX110 | 672-pin FBGA | Тор | 4 | 2 | 2 | 2 | 1 | 1 | | EF40UX13U | | Bottom | 4 | 2 | 2 | 2 | 1 | 1 | | | | Right | 6 | 3 | 2 | 2 | 1 | 1 | | | 896-pin FBGA | Тор | 6 | 3 | 3 | 3 | 1 | 1 | | | | Bottom | 6 | 3 | 3 | 3 | 1 | 1 | ## Notes to Table 7-1: ⁽¹⁾ Some of the DQ pins can be used as RUP and RDN pins. You cannot use these groups if you are using these pins as RUP and RDN pins for OCT calibration ⁽²⁾ Some of the DQ pins can be used as RUP pins while the DM pins can be used as RDN pins. You cannot use these groups if you are using the RUP and RDN pins for OCT calibration. ⁽³⁾ Only available for EP4CGX30 device. ## **Dedicated Remote System Upgrade Circuitry** This section describes the implementation of the Cyclone IV device remote system upgrade dedicated circuitry. The remote system upgrade circuitry is implemented in hard logic. This dedicated circuitry interfaces with the user-defined factory application configurations implemented in the Cyclone IV device logic array to provide the complete remote configuration solution. The remote system upgrade circuitry contains the remote system upgrade registers, a watchdog timer, and state machines that control those components. Figure 8–33 shows the data path of the remote system upgrade block. Figure 8–33. Remote System Upgrade Circuit Data Path (1) #### Notes to Figure 8-33: - (1) The RU_DOUT, RU_SHIFTNLD, RU_CAPTNUPDT, RU_CLK, RU_DIN, RU_NCONFIG, and RU_NRSTIMER signals are internally controlled by the ALTREMOTE_UPDATE megafunction. - (2) The RU_CLK refers to the ALTREMOTE_UPDATE megafunction block "clock" input. For more information, refer to the Remote Update Circuitry (ALTREMOTE_UPDATE) Megafunction User Guide. The divisor value divides the frequency of the configuration oscillator output clock. This output clock is used as the clock source for the error detection process. 8. Click OK. Figure 9-2. Enabling the Error Detection CRC Feature in the Quartus II Software ## **Accessing Error Detection Block Through User Logic** The error detection circuit stores the computed 32-bit CRC signature in a 32-bit register, which is read out by user logic from the core. The cycloneiv_crcblock primitive is a WYSIWYG component used to establish the interface from the user logic to the error detection circuit. The cycloneiv_crcblock primitive atom contains the input and output ports that must be included in the atom. To access the logic array, the cycloneiv_crcblock WYSIWYG atom must be inserted into your design. # **Architectural Overview** Figure 1–3 shows the Cyclone IV GX transceiver channel datapath. Figure 1–3. Transceiver Channel Datapath for Cyclone IV GX Devices Each transceiver channel consists of a transmitter and a receiver datapath. Each datapath is further structured into the following: - Physical media attachment (PMA)—includes analog circuitry for I/O buffers, clock data recovery (CDR), serializer/deserializer (SERDES), and programmable pre-emphasis and equalization to optimize serial data channel performance. - Physical coding sublayer (PCS)—includes hard logic implementation of digital functionality within the transceiver that is compliant with supported protocols. Outbound parallel data from the FPGA fabric flows through the transmitter PCS and PMA, is transmitted as serial data. Received inbound serial data flows through the receiver PMA and PCS into the FPGA fabric. The transceiver supports the following interface widths: - FPGA fabric-transceiver PCS—8, 10, 16, or 20 bits - PMA-PCS—8 or 10 bits - The transceiver channel interfaces through the PIPE when configured for PCIe protocol implementation. The PIPE is compliant with version 2.00 of the PHY Interface for the PCI Express Architecture specification. Figure 1–32. Clock Distribution in Non-Bonded Channel Configuration for Transceivers in F484 and Larger Packages ## Notes to Figure 1–32: - (1) High-speed clock. - (2) Low-speed clock. - (3) These PLLs have restricted clock driving capability and may not reach all connected channels. For details, refer to Table 1–9. The transceiver datapath clocking varies in non-bonded channel configuration depending on the PCS configuration. Figure 1–33 shows the datapath clocking in transmitter only operation. In this mode, each channel selects the high- and low-speed clock from one of the supported PLLs. The high-speed clock feeds to the serializer for parallel to serial operation. The low-speed clock feeds to the following blocks in the transmitter PCS: - 8B/10B encoder - read clock of the byte serializer - read clock of the TX phase compensation FIFO The compliance pattern is a repeating sequence of the four code groups: /K28.5/; /D21.5/; /K28.5/; /D10.2/. Figure 1–53 shows the compliance pattern transmission where the $tx_forcedispcompliance$ port must be asserted in the same parallel clock cycle as /K28.5/D21.5/ of the compliance pattern on $tx_datain[15..0]$ port. Figure 1-53. Compliance Pattern Transmission Support in PCI Express (PIPE) Mode ## **Reset Requirement** Cyclone IV GX devices meets the PCIe reset time requirement from device power up to the link active state with the configuration schemes listed in Table 1–17. Table 1–18. Electrical Idle Inference Conditions | Device | Configuration Scheme | Configuration Time (ms) | |--------------|-----------------------------|--------------------------------| | EP4CGX15 | Passive serial (PS) | 51 | | EP4CGX22 | PS | 92 | | EP4CGX30 (1) | PS | 92 | | EP4CGX50 | Fast passive parallel (FPP) | 41 | | EP4CGX75 | FPP | 41 | | EP4CGX110 | FPP | 70 | | EP4CGX150 | FPP | 70 | ### Note to Table 1-18: ## **GIGE Mode** GIGE mode provides the transceiver channel datapath configuration for GbE (specifically the 1000 Base-X physical layer device (PHY) standard) protocol implementation. The Cyclone IV GX transceiver provides the PMA and the following PCS functions as defined in the IEEE 802.3 specification for 1000 Base-X PHY: - 8B/10B encoding and decoding - synchronization If you enabled the auto-negotiation state machine in the FPGA core with the rate match FIFO, refer to "Clock Frequency Compensation" on page 1–63. ⁽¹⁾ EP4CGX30 device in F484 package fulfills the PCIe reset time requirement using FPP configuration scheme with configuration time of 41 ms. ## **Contents** | Chapter Revision Dates | | |---|------| | Additional Information How to Contact Altera | | | Section I. Device Datasheet | | | Chapter 1. Cyclone IV Device Datasheet | | | Operating Conditions | | | Absolute Maximum Ratings | | | Maximum Allowed Overshoot or Undershoot Voltage | | | Recommended Operating Conditions | | | ESD Performance | | | DC Characteristics | | | Supply Current | | | Bus Hold | | | OCT Specifications | 1–8 | | Pin Capacitance | | | Internal Weak Pull-Up and Weak Pull-Down Resistor | | | Hot-Socketing | | | Schmitt Trigger Input | | | I/O Standard Specifications | | | Power Consumption | | | Switching Characteristics | | | Transceiver Performance Specifications | | | Core Performance Specifications | | | Clock Tree Specifications | 1–23 | | PLL Specifications | | | Embedded Multiplier Specifications | | | Memory Block Specifications | 1–26 | | Configuration and JTAG Specifications | 1–26 | | Periphery Performance | | | High-Speed I/O Specifications | | | External Memory Interface Specifications | | | Duty Cycle Distortion Specifications | | | OCT Calibration Timing Specification | | | IOE Programmable Delay | | | I/O Timing | | | Glossary | | | Document Revision History | 1–42 | This chapter provides additional information about the document and Altera. # **About this Handbook** This handbook provides comprehensive information about the Altera® Cyclone® IV family of devices. ## **How to Contact Altera** To locate the most up-to-date information about Altera products, refer to the following table. | Contact (1) | Contact Method | Address | |--------------------------------|----------------|---------------------------| | Technical support | Website | www.altera.com/support | | Technical training | Website | www.altera.com/training | | 16011110ai trailling | Email | custrain@altera.com | | Product literature | Website | www.altera.com/literature | | Nontechnical support (general) | Email | nacomp@altera.com | | (software licensing) | Email | authorization@altera.com | ### Note to Table: # **Typographic Conventions** The following table shows the typographic conventions this document uses. | Visual Cue | Meaning | | |---|--|--| | Bold Type with Initial Capital
Letters | Indicate command names, dialog box titles, dialog box options, and other GUI labels. For example, Save As dialog box. For GUI elements, capitalization matches the GUI. | | | bold type | Indicates directory names, project names, disk drive names, file names, file name extensions, software utility names, and GUI labels. For example, qdesigns directory, D: drive, and chiptrip.gdf file. | | | Italic Type with Initial Capital Letters | Indicate document titles. For example, Stratix IV Design Guidelines. | | | | Indicates variables. For example, $n + 1$. | | | italic type | Variable names are enclosed in angle brackets (< >). For example, <file name=""> and <project name="">.pof file.</project></file> | | | Initial Capital Letters | Indicate keyboard keys and menu names. For example, the Delete key and the Options menu. | | | "Subheading Title" | Quotation marks indicate references to sections in a document and titles of Quartus II Help topics. For example, "Typographic Conventions." | | ⁽¹⁾ You can also contact your local Altera sales office or sales representative. | Visual Cue | Meaning | |--|--| | | Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn. | | Courier type | Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf. | | | Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI). | | + | An angled arrow instructs you to press the Enter key. | | 1., 2., 3., and
a., b., c., and so on | Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure. | | | Bullets indicate a list of items when the sequence of the items is not important. | | | The hand points to information that requires special attention. | | ? | The question mark directs you to a software help system with related information. | | ••• | The feet direct you to another document or website with related information. | | ■ | The multimedia icon directs you to a related multimedia presentation. | | AUTION | A caution calls attention to a condition or possible situation that can damage or destroy the product or your work. | | WARNING | A warning calls attention to a condition or possible situation that can cause you injury. | | | The envelope links to the Email Subscription Management Center page of the Altera website, where you can sign up to receive update notifications for Altera documents. | | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------------|---|-----------------------------------|-------|-----|-------------------|------| | V _{CCA_GXB} | Transceiver PMA and auxiliary power supply | _ | 2.375 | 2.5 | 2.625 | V | | V _{CCL_GXB} | Transceiver PMA and auxiliary power supply | _ | 1.16 | 1.2 | 1.24 | V | | V _I | DC input voltage | _ | -0.5 | | 3.6 | V | | V ₀ | DC output voltage | _ | 0 | _ | V _{CCIO} | V | | т | Operating junction temperature | For commercial use | 0 | _ | 85 | °C | | T_J | Operating junction temperature | For industrial use | -40 | | 100 | °C | | t _{RAMP} | Power supply ramp time | Standard power-on reset (POR) (7) | 50 μs | _ | 50 ms | _ | | | | Fast POR (8) | 50 μs | _ | 3 ms | _ | | I _{Diode} | Magnitude of DC current across PCI-clamp diode when enabled | _ | _ | _ | 10 | mA | #### Notes to Table 1-4: - (1) All VCCA pins must be powered to 2.5 V (even when PLLs are not used) and must be powered up and powered down at the same time. - (2) You must connect V_{CCD PLL} to V_{CCINT} through a decoupling capacitor and ferrite bead. - (3) Power supplies must rise monotonically. - (4) V_{CCIO} for all I/O banks must be powered up during device operation. Configurations pins are powered up by V_{CCIO} of I/O Banks 3, 8, and 9 where I/O Banks 3 and 9 only support V_{CCIO} of 1.5, 1.8, 2.5, 3.0, and 3.3 V. For fast passive parallel (FPP) configuration mode, the V_{CCIO} level of I/O Bank 8 must be powered up to 1.5, 1.8, 2.5, 3.0, and 3.3 V. - (5) You must set V_{CC_CLKIN} to 2.5 V if you use CLKIN as a high-speed serial interface (HSSI) refclk or as a DIFFCLK input. - (6) The CLKIN pins in I/O Banks 3B and 8B can support single-ended I/O standard when the pins are used to clock left PLLs in non-transceiver applications. - (7) The POR time for Standard POR ranges between 50 and 200 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 50 ms. - (8) The POR time for Fast POR ranges between 3 and 9 ms. V_{CCINT}, V_{CCA}, and V_{CCIO} of I/O Banks 3, 8, and 9 must reach the recommended operating range within 3 ms. ## **ESD Performance** This section lists the electrostatic discharge (ESD) voltages using the human body model (HBM) and charged device model (CDM) for Cyclone IV devices general purpose I/Os (GPIOs) and high-speed serial interface (HSSI) I/Os. Table 1–5 lists the ESD for Cyclone IV devices GPIOs and HSSI I/Os. Table 1-5. ESD for Cyclone IV Devices GPIOs and HSSI I/Os | Symbol | Parameter | Passing Voltage | Unit | |---------|--|-----------------|------| | V | ESD voltage using the HBM (GPIOs) ⁽¹⁾ | ± 2000 | V | | VESDHBM | ESD using the HBM (HSSI I/Os) (2) | ± 1000 | V | | V | ESD using the CDM (GPIOs) | ± 500 | V | | VESDCDM | ESD using the CDM (HSSI I/Os) (2) | ± 250 | V | #### Notes to Table 1-5: - (1) The passing voltage for EP4CGX15 and EP4CGX30 row I/Os is ±1000V. - (2) This value is applicable only to Cyclone IV GX devices. The OCT resistance may vary with the variation of temperature and voltage after calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the final OCT resistance considering the variations after calibration at device power-up. Table 1–10 lists the change percentage of the OCT resistance with voltage and temperature. Table 1–10. OCT Variation After Calibration at Device Power-Up for Cyclone IV Devices (1) | Nominal Voltage | dR/dT (%/°C) | dR/dV (%/mV) | |-----------------|--------------|--------------| | 3.0 | 0.262 | -0.026 | | 2.5 | 0.234 | -0.039 | | 1.8 | 0.219 | -0.086 | | 1.5 | 0.199 | -0.136 | | 1.2 | 0.161 | -0.288 | #### Note to Table 1-10: (1) This specification is not applicable to EP4CGX15, EP4CGX22, and EP4CGX30 devices. ### Equation 1-1. Final OCT Resistance (1), (2), (3), (4), (5), (6) $$\begin{split} &\Delta R_V = (V_2 - V_1) \times 1000 \times dR/dV ------ (7) \\ &\Delta R_T = (T_2 - T_1) \times dR/dT ------ (8) \\ &\text{For } \Delta R_x < 0; \ MF_x = 1/\left(|\Delta R_x|/100 + 1\right) ------- (9) \\ &\text{For } \Delta R_x > 0; \ MF_x = \Delta R_x/100 + 1 ------ (10) \\ &MF = MF_V \times MF_T ------ (11) \\ &R_{final} = R_{initial} \times MF ------ (12) \end{split}$$ ### Notes to Equation 1-1: - (1) T_2 is the final temperature. - (2) T₁ is the initial temperature. - (3) MF is multiplication factor. - (4) R_{final} is final resistance. - (5) R_{initial} is initial resistance. - (6) Subscript $_{\text{X}}$ refers to both $_{\text{V}}$ and $_{\text{T}}$. - (7) ΔR_V is a variation of resistance with voltage. - (8) ΔR_T is a variation of resistance with temperature. - (9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up. - (10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up. - (11) V2 is final voltage. - (12) V_1 is the initial voltage. ## Internal Weak Pull-Up and Weak Pull-Down Resistor Table 1-12 lists the weak pull-up and pull-down resistor values for Cyclone IV devices. Table 1–12. Internal Weak Pull-Up and Weak Pull-Down Resistor Values for Cyclone IV Devices (1) | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |------------------|---|---|-----|-----|-----|------| | | | $V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (2), (3) | 7 | 25 | 41 | kΩ | | | Value of the I/O pin pull-up resistor | $V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (2), (3) | 7 | 28 | 47 | kΩ | | D | before and during configuration, as | $V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (2), (3) | 8 | 35 | 61 | kΩ | | R_ _{PU} | well as user mode if you enable the | $V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (2), (3) | 10 | 57 | 108 | kΩ | | | programmable pull-up resistor option | $V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (2), (3) | 13 | 82 | 163 | kΩ | | | | $V_{CCIO} = 1.2 \text{ V} \pm 5\%$ (2), (3) | 19 | 143 | 351 | kΩ | | | | $V_{CCIO} = 3.3 \text{ V} \pm 5\%$ (4) | 6 | 19 | 30 | kΩ | | | Value of the L/O min mult down we into | $V_{CCIO} = 3.0 \text{ V} \pm 5\%$ (4) | 6 | 22 | 36 | kΩ | | R_PD | Value of the I/O pin pull-down resistor before and during configuration | $V_{CCIO} = 2.5 \text{ V} \pm 5\%$ (4) | 6 | 25 | 43 | kΩ | | | soloto and daring configuration | $V_{CCIO} = 1.8 \text{ V} \pm 5\%$ (4) | 7 | 35 | 71 | kΩ | | | | $V_{CCIO} = 1.5 \text{ V} \pm 5\%$ (4) | 8 | 50 | 112 | kΩ | #### Notes to Table 1-12: - (1) All I/O pins have an option to enable weak pull-up except the configuration, test, and JTAG pins. The weak pull-down feature is only available for JTAG TCK. - (2) Pin pull-up resistance values may be lower if an external source drives the pin higher than V_{CCIO} . - (3) $R_{PU} = (V_{CC10} V_1)/I_{R_PU}$ Minimum condition: $-40^{\circ}C$; $V_{CC10} = V_{CC} + 5\%$, $V_1 = V_{CC} + 5\% 50$ mV; Typical condition: $25^{\circ}C$; $V_{CC10} = V_{CC}$, $V_1 = 0$ V; $V_2 = 0$ V; $V_3 = 0$ V; $V_4 = 0$ V is which $V_4 = 0$ - Maximum condition: 100° C; $V_{CCIO} = V_{CC} 5\%$, $V_I = 0$ V; in which V_I refers to the input voltage at the I/O pin. - (4) $R_{PD} = V_I/I_{RPD}$ - Minimum condition: -40°C; $V_{CCIO} = V_{CC} + 5\%$, $V_I = 50$ mV; - Typical condition: 25°C; $V_{CCIO} = V_{CC}$, $V_I = V_{CC} 5\%$; - Maximum condition: 100°C ; $V_{\text{CCIO}} = V_{\text{CC}} 5\%$, $V_{\text{I}} = V_{\text{CC}} 5\%$; in which V_{I} refers to the input voltage at the I/O pin. ### **Hot-Socketing** Table 1–13 lists the hot-socketing specifications for Cyclone IV devices. Table 1–13. Hot-Socketing Specifications for Cyclone IV Devices | Symbol | Parameter | Maximum | |-------------------------|-----------------------------------|----------| | I _{IOPIN(DC)} | DC current per I/O pin | 300 μΑ | | I _{IOPIN(AC)} | AC current per I/O pin | 8 mA (1) | | I _{XCVRTX(DC)} | DC current per transceiver TX pin | 100 mA | | I _{XCVRRX(DC)} | DC current per transceiver RX pin | 50 mA | #### Note to Table 1-13: (1) The I/O ramp rate is 10 ns or more. For ramp rates faster than 10 ns, $|IIOPIN| = C \frac{dv}{dt}$, in which C is the I/O pin capacitance and dv/dt is the slew rate. ## **Power Consumption** Use the following methods to estimate power for a design: - the Excel-based EPE - the Quartus® II PowerPlay power analyzer feature The interactive Excel-based EPE is used prior to designing the device to get a magnitude estimate of the device power. The Quartus II PowerPlay power analyzer provides better quality estimates based on the specifics of the design after place-and-route is complete. The PowerPlay power analyzer can apply a combination of user-entered, simulation-derived, and estimated signal activities that, combined with detailed circuit models, can yield very accurate power estimates. For more information about power estimation tools, refer to the *Early Power Estimator User Guide* and the *PowerPlay Power Analysis* chapter in volume 3 of the *Quartus II Handbook*. # **Switching Characteristics** This section provides performance characteristics of Cyclone IV core and periphery blocks for commercial grade devices. These characteristics can be designated as Preliminary or Final. - Preliminary characteristics are created using simulation results, process data, and other known parameters. The upper-right hand corner of these tables show the designation as "Preliminary". - Final numbers are based on actual silicon characterization and testing. The numbers reflect the actual performance of the device under worst-case silicon process, voltage, and junction temperature conditions. There are no designations on finalized tables. Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4) | Symbol/ | Conditions - | | C6 | | | C7, I7 | | | C8 | | Unit | |--|--------------|------------------------------------|-----|--------|-----|--------|--------|-----|-----|--------|-------| | Description | | Min | Тур | Max | Min | Тур | Max | Min | Тур | Max | VIIIL | | PLD-Transceiver Interface | | | | | | | | | | | | | Interface speed
(F324 and smaller
package) | _ | 25 | _ | 125 | 25 | _ | 125 | 25 | _ | 125 | MHz | | Interface speed
(F484 and larger
package) | _ | 25 | _ | 156.25 | 25 | _ | 156.25 | 25 | _ | 156.25 | MHz | | Digital reset pulse width | _ | Minimum is 2 parallel clock cycles | | | | | | | | | | #### Notes to Table 1-21: - (1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols. - (2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode. - (3) The device cannot tolerate prolonged operation at this absolute maximum. - (4) The rate matcher supports only up to ±300 parts per million (ppm). - (5) Supported for the F169 and F324 device packages only. - (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization. - (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode. - (8) Asynchronous spread-spectrum clocking is not supported. - (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm. - (10) Time taken until pll locked goes high after pll powerdown deasserts. - (11) Time that the CDR must be kept in lock-to-reference mode after rx analogreset deasserts and before rx locktodata is asserted in manual mode. - (12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes high in automatic mode (Figure 1–3). - (13) Time taken to recover valid data after the $rx_locktodata$ signal is asserted in manual mode. - (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode. - (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only. Figure 1–4 shows the differential receiver input waveform. Figure 1-4. Receiver Input Waveform Figure 1–5 shows the transmitter output waveform. Figure 1-5. Transmitter Output Waveform Table 1–22 lists the typical V_{OD} for Tx term that equals 100 Ω . Table 1–22. Typical V_{OD} Setting, Tx Term = 100 Ω | Cumbal | V _{OD} Setting (mV) | | | | | | | | | | | |---|------------------------------|---------------|-----|-----|------|------|--|--|--|--|--| | Symbol | 1 | 1 2 3 4 (1) 5 | | | | | | | | | | | V _{OD} differential peak
to peak typical (mV) | 400 | 600 | 800 | 900 | 1000 | 1200 | | | | | | #### Note to Table 1-22: (1) This setting is required for compliance with the PCle protocol. Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 2 of 2) | Symbol | Modes | C6 | | C7, I7 | | C8, A7 | | | C8L, I8L | | | C9L | | | Unit | | | |-----------------------|-------|-----|-----|--------|-----|--------|-----|-----|----------|-----|-----|-----|-----|-----|------|-----|-------| | Symbol | Mones | Min | Тур | Max | Ullit | | t _{LOCK} (2) | _ | _ | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | | 1 | _ | _ | 1 | ms | #### Notes to Table 1-32: - (1) Emulated RSDS_E_1R transmitter is supported at the output pin of all I/O Banks of Cyclone IV E devices and I/O Banks 3, 4, 5, 6, 7, 8, and 9 of Cyclone IV GX devices. - (2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration. - (3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades. Table 1–33. Mini-LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4) | Oh a l | Madaa | | C6 C | | | C7, I | 7 | | C8, A | 7 | | C8L, I | 8L | | 1114 | | | |------------------------------------|--|-----|------|-----|-----|-------|-------|-----|-------|-------|-----|--------|-------|-----|------|-------|------| | Symbol | Modes | Min | Тур | Max | Unit | | | ×10 | 5 | _ | 200 | 5 | _ | 155.5 | 5 | _ | 155.5 | 5 | _ | 155.5 | 5 | _ | 132.5 | MHz | | | ×8 | 5 | | 200 | 5 | _ | 155.5 | 5 | _ | 155.5 | 5 | _ | 155.5 | 5 | _ | 132.5 | MHz | | f _{HSCLK} (input
clock | ×7 | 5 | | 200 | 5 | | 155.5 | 5 | | 155.5 | 5 | _ | 155.5 | 5 | | 132.5 | MHz | | frequency) | ×4 | 5 | | 200 | 5 | | 155.5 | 5 | _ | 155.5 | 5 | | 155.5 | 5 | _ | 132.5 | MHz | | . 2, | ×2 | 5 | | 200 | 5 | | 155.5 | 5 | _ | 155.5 | 5 | | 155.5 | 5 | | 132.5 | MHz | | | ×1 | 5 | | 400 | 5 | | 311 | 5 | | 311 | 5 | _ | 311 | 5 | | 265 | MHz | | | ×10 | 100 | | 400 | 100 | _ | 311 | 100 | _ | 311 | 100 | _ | 311 | 100 | _ | 265 | Mbps | | | ×8 | 80 | | 400 | 80 | _ | 311 | 80 | | 311 | 80 | _ | 311 | 80 | | 265 | Mbps | | Device operation in | ×7 | 70 | | 400 | 70 | | 311 | 70 | | 311 | 70 | _ | 311 | 70 | | 265 | Mbps | | Mbps | ×4 | 40 | | 400 | 40 | _ | 311 | 40 | | 311 | 40 | _ | 311 | 40 | | 265 | Mbps | | | ×2 | 20 | | 400 | 20 | _ | 311 | 20 | | 311 | 20 | _ | 311 | 20 | | 265 | Mbps | | | ×1 | 10 | | 400 | 10 | _ | 311 | 10 | _ | 311 | 10 | _ | 311 | 10 | _ | 265 | Mbps | | t_{DUTY} | _ | 45 | | 55 | 45 | _ | 55 | 45 | | 55 | 45 | _ | 55 | 45 | | 55 | % | | TCCS | _ | | _ | 200 | _ | | 200 | _ | 1 | 200 | _ | _ | 200 | _ | | 200 | ps | | Output jitter
(peak to peak) | _ | _ | _ | 500 | _ | _ | 500 | _ | _ | 550 | _ | _ | 600 | _ | _ | 700 | ps | | t _{RISE} | 20 – 80%,
C _{LOAD} =
5 pF | _ | 500 | _ | _ | 500 | _ | _ | 500 | _ | _ | 500 | _ | _ | 500 | — | ps | | t _{FALL} | 20 – 80%,
C _{LOAD} =
5 pF | _ | 500 | _ | _ | 500 | _ | _ | 500 | _ | _ | 500 | _ | _ | 500 | _ | ps | | t _{LOCK} (3) | _ | _ | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | 1 | _ | _ | 1 | ms | #### Notes to Table 1-33: - (1) Applicable for true and emulated mini-LVDS transmitter. - (2) Cyclone IV E—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated mini-LVDS transmitter is supported at the output pin of all I/O banks. - Cyclone IV GX—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is supported at the output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9. - (3) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration. - (4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades. Table 1–42 and Table 1–43 list the IOE programmable delay for Cyclone IV E 1.2 V core voltage devices. Table 1-42. IOE Programmable Delay on Column Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2) | | | Numbor | | | | | Max (| Offset | | | | | |---|-----------------------------------|--------------|---------------|-------|-------------------------|-------|-------|------------|-------|-------|-------|----| | Parameter | Paths
Affected | Number
of | Min
Offset | Fa | Fast Corner Slow Corner | | | | | Unit | | | | | | Setting | | C6 | 17 | A7 | C6 | C 7 | C8 | 17 | A7 | | | Input delay from pin to internal cells | Pad to I/O
dataout to
core | 7 | 0 | 1.314 | 1.211 | 1.211 | 2.177 | 2.340 | 2.433 | 2.388 | 2.508 | ns | | Input delay from pin to input register | Pad to I/O input register | 8 | 0 | 1.307 | 1.203 | 1.203 | 2.19 | 2.387 | 2.540 | 2.430 | 2.545 | ns | | Delay from output register to output pin | I/O output
register to
pad | 2 | 0 | 0.437 | 0.402 | 0.402 | 0.747 | 0.820 | 0.880 | 0.834 | 0.873 | ns | | Input delay from
dual-purpose clock pin
to fan-out destinations | Pad to global
clock
network | 12 | 0 | 0.693 | 0.665 | 0.665 | 1.200 | 1.379 | 1.532 | 1.393 | 1.441 | ns | #### Notes to Table 1-42: - (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software. - (2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software. Table 1–43. IOE Programmable Delay on Row Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2) | | | Number | | Max Offset | | | | | | | | | | |---|-----------------------------------|---------|---------------|------------|----------|-------|-------|------------|---------|-------|-------|------|--| | Parameter | Paths
Affected | of | Min
Offset | Fa | ast Corn | er | | SI | ow Corn | er | | Unit | | | | | Setting | | C6 | 17 | A7 | C6 | C 7 | C8 | 17 | A7 | | | | Input delay from pin to internal cells | Pad to I/O
dataout to
core | 7 | 0 | 1.314 | 1.209 | 1.209 | 2.201 | 2.386 | 2.510 | 2.429 | 2.548 | ns | | | Input delay from pin to input register | Pad to I/O input register | 8 | 0 | 1.312 | 1.207 | 1.207 | 2.202 | 2.402 | 2.558 | 2.447 | 2.557 | ns | | | Delay from output register to output pin | I/O output
register to
pad | 2 | 0 | 0.458 | 0.419 | 0.419 | 0.783 | 0.861 | 0.924 | 0.875 | 0.915 | ns | | | Input delay from
dual-purpose clock pin
to fan-out destinations | Pad to global
clock
network | 12 | 0 | 0.686 | 0.657 | 0.657 | 1.185 | 1.360 | 1.506 | 1.376 | 1.422 | ns | | ### Notes to Table 1-43: - (1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software. - (2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software. Table 1-46. Glossary (Part 5 of 5) | Letter | Term | Definitions | |--------|-------------------------|--| | | V _{CM(DC)} | DC common mode input voltage. | | | V _{DIF(AC)} | AC differential input voltage: The minimum AC input differential voltage required for switching. | | | V _{DIF(DC)} | DC differential input voltage: The minimum DC input differential voltage required for switching. | | | V _{ICM} | Input common mode voltage: The common mode of the differential signal at the receiver. | | | V _{ID} | Input differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the receiver. | | | V _{IH} | Voltage input high: The minimum positive voltage applied to the input that is accepted by the device as a logic high. | | | V _{IH(AC)} | High-level AC input voltage. | | | V _{IH(DC)} | High-level DC input voltage. | | | V _{IL} | Voltage input low: The maximum positive voltage applied to the input that is accepted by the device as a logic low. | | | V _{IL (AC)} | Low-level AC input voltage. | | | V _{IL (DC)} | Low-level DC input voltage. | | | V _{IN} | DC input voltage. | | | V _{OCM} | Output common mode voltage: The common mode of the differential signal at the transmitter. | | V | V _{OD} | Output differential voltage swing: The difference in voltage between the positive and complementary conductors of a differential transmission at the transmitter. $V_{OD} = V_{OH} - V_{OL}$. | | | V _{OH} | Voltage output high: The maximum positive voltage from an output that the device considers is accepted as the minimum positive high level. | | | V _{OL} | Voltage output low: The maximum positive voltage from an output that the device considers is accepted as the maximum positive low level. | | | V _{OS} | Output offset voltage: $V_{OS} = (V_{OH} + V_{OL}) / 2$. | | | V _{OX (AC)} | AC differential output cross point voltage: the voltage at which the differential output signals must cross. | | | V _{REF} | Reference voltage for the SSTL and HSTL I/O standards. | | | V _{REF (AC)} | AC input reference voltage for the SSTL and HSTL I/O standards. $V_{REF(AC)} = V_{REF(DC)} + noise$. The peak-to-peak AC noise on V_{REF} must not exceed 2% of $V_{REF(DC)}$. | | | V _{REF (DC)} | DC input reference voltage for the SSTL and HSTL I/O standards. | | | V _{SWING (AC)} | AC differential input voltage: AC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms. | | | V _{SWING (DC)} | DC differential input voltage: DC input differential voltage required for switching. For the SSTL differential I/O standard, refer to Input Waveforms. | | | V _{TT} | Termination voltage for the SSTL and HSTL I/O standards. | | | V _{X (AC)} | AC differential input cross point voltage: The voltage at which the differential input signals must cross. | | W | | | | Х | _ | | | Υ | _ | _ | | Z | | _ |