E·XFL

Intel - EP4CE15E22C9LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	963
Number of Logic Elements/Cells	15408
Total RAM Bits	516096
Number of I/O	81
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	144-EQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce15e22c9ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 11. Power Requirements for Cyclone IV Devices

External Power Supply Requirements	11–1
Hot-Socketing Specifications	
Devices Driven Before Power-Up	
I/O Pins Remain Tri-stated During Power-Up	
Hot-socketing Feature Implementation	11–3
Power-On Reset Circuitry	
Document Revision History	

3. Memory Blocks in Cyclone IV Devices

Cyclone[®] IV devices feature embedded memory structures to address the on-chip memory needs of Altera[®] Cyclone IV device designs. The embedded memory structure consists of columns of M9K memory blocks that you can configure to provide various memory functions, such as RAM, shift registers, ROM, and FIFO buffers.

This chapter contains the following sections:

- "Memory Modes" on page 3–7
- "Clocking Modes" on page 3–14
- "Design Considerations" on page 3–15

Overview

M9K blocks support the following features:

- 8,192 memory bits per block (9,216 bits per block including parity)
- Independent read-enable (rden) and write-enable (wren) signals for each port
- Packed mode in which the M9K memory block is split into two 4.5 K single-port RAMs
- Variable port configurations
- Single-port and simple dual-port modes support for all port widths
- True dual-port (one read and one write, two reads, or two writes) operation
- Byte enables for data input masking during writes
- Two clock-enable control signals for each port (port A and port B)
- Initialization file to pre-load memory content in RAM and ROM modes

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and sumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

In true dual-port mode, you can access any memory location at any time from either port A or port B. However, when accessing the same memory location from both ports, you must avoid possible write conflicts. When you attempt to write to the same address location from both ports at the same time, a write conflict happens. This results in unknown data being stored to that address location. There is no conflict resolution circuitry built into the Cyclone IV devices M9K memory blocks. You must handle address conflicts external to the RAM block.

Figure 3–11 shows true dual-port timing waveforms for the write operation at port A and read operation at port B. Registering the outputs of the RAM simply delays the q outputs by one clock cycle.

Figure 3–11. Cyclone IV Devices True Dual-Port Timing Waveform

Shift Register Mode

Cyclone IV devices M9K memory blocks can implement shift registers for digital signal processing (DSP) applications, such as finite impulse response (FIR) filters, pseudo-random number generators, multi-channel filtering, and auto-correlation and cross-correlation functions. These and other DSP applications require local data storage, traditionally implemented with standard flipflops that quickly exhaust many logic cells for large shift registers. A more efficient alternative is to use embedded memory as a shift register block, which saves logic cell and routing resources.

The size of a $(w \times m \times n)$ shift register is determined by the input data width (w), the length of the taps (m), and the number of taps (n), and must be less than or equal to the maximum number of memory bits, which is 9,216 bits. In addition, the size of $(w \times n)$ must be less than or equal to the maximum width of the block, which is 36 bits. If you need a larger shift register, you can cascade the M9K memory blocks.

			V _{ccio} Level (in V)		Column I/O Pins			Row I/O Pins ⁽¹⁾	
I/O Standard	Туре	Standard Support	Input	Output	CLK, DQS	PLL_OUT	User I/O Pins	CLK, DQS	User I/O Pins
LVPECL (7)	Differential	_	2.5	_	\checkmark	—	_	\checkmark	—

Table 6–3. Cyclone IV Devices Supported I/O Standards and Constraints (Part 3 of 3)

Notes to Table 6-3:

(1) Cyclone IV GX devices only support right I/O pins.

(2) The PCI-clamp diode must be enabled for 3.3-V/3.0-V LVTTL/LVCMOS.

(3) The Cyclone IV architecture supports the MultiVolt I/O interface feature that allows Cyclone IV devices in all packages to interface with I/O systems that have different supply voltages.

(4) Cyclone IV GX devices do not support 1.2-V V_{CCIO} in banks 3 and 9. I/O pins in bank 9 are dual-purpose I/O pins that are used as configuration or GPIO pins. Configuration scheme is not support at 1.2 V, therefore bank 9 can not be powered up at 1.2-V V_{CCIO}.

(5) Differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed as inverted. Differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and SSTL inputs and only decode one of them. Differential HSTL and SSTL are only supported on CLK pins.

(6) PPDS, mini-LVDS, and RSDS are only supported on output pins.

- (7) LVPECL is only supported on clock inputs.
- (8) Bus LVDS (BLVDS) output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses LVDS input buffer.
- (9) 1.2-V HSTL input is supported at both column and row I/Os regardless of Class I or Class II.
- (10) True LVDS, RSDS, and mini-LVDS I/O standards are supported in left and right I/O pins, while emulated LVDS, RSDS, and mini-LVDS I/O standards are supported in the top, bottom, and right I/O pins.

Cyclone IV devices support PCI and PCI-X I/O standards at 3.0-V V_{CCIO}. The 3.0-V PCI and PCI-X I/O are fully compatible for direct interfacing with 3.3-V PCI systems without requiring any additional components. The 3.0-V PCI and PCI-X outputs meet the V_{IH} and V_{IL} requirements of 3.3-V PCI and PCI-X inputs with sufficient noise margin.

For more information about the 3.3/3.0/2.5-V LVTTL & LVCMOS multivolt I/O support, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

Termination Scheme for I/O Standards

This section describes recommended termination schemes for voltage-referenced and differential I/O standards.

The 3.3-V LVTTL, 3.0-V LVTTL and LVCMOS, 2.5-V LVTTL and LVCMOS, 1.8-V LVTTL and LVCMOS, 1.5-V LVCMOS, 1.2-V LVCMOS, 3.0-V PCI, and PCI-X I/O standards do not specify a recommended termination scheme per the JEDEC standard

Figure 7–5 shows the location and numbering of the DQS, DQ, or CQ# pins in the Cyclone IV E device I/O banks.

Figure 7–5. DQS, CQ, or CQ# Pins in Cyclone IV E I/O Banks ⁽¹⁾

Note to Figure 7–5:

(1) The DQS, CQ, or CQ# pin locations in this diagram apply to all packages in Cyclone IV E devices except devices in 144-pin EQFP.

devices. The internal oscillator is designed to ensure that its maximum frequency is guaranteed to meet EPCS device specifications. Cyclone IV devices offer the option to select CLKUSR as the external clock source for DCLK. You can change the clock source option in the Quartus II software in the **Configuration** tab of the **Device and Pin Options** dialog box.

P

EPCS1 does not support Cyclone IV devices because of its insufficient memory capacity.

Table 8-6. AS DCLK Output Frequency

Oscillator	Minimum	Typical	Maximum	Unit
40 MHz	20	30	40	MHz

In configuration mode, the Cyclone IV device enables the serial configuration device by driving the nCSO output pin low, which connects to the nCS pin of the configuration device. The Cyclone IV device uses the DCLK and DATA[1] pins to send operation commands and read address signals to the serial configuration device. The configuration device provides data on its DATA pin, which connects to the DATA[0] input of the Cyclone IV device.

All AS configuration pins (DATA[0], DCLK, nCSO, and DATA[1]) have weak internal pullup resistors that are always active. After configuration, these pins are set as input tristated and are driven high by the weak internal pull-up resistors.

The timing parameters for AS mode are not listed here because the t_{CF2CD} , t_{CF2ST0} , t_{CFG} , t_{STATUS} , t_{CF2ST1} , and t_{CD2UM} timing parameters are identical to the timing parameters for PS mode shown in Table 8–12 on page 8–36.

Figure 8–7 shows the interface for the Micron P30 flash memory and P33 flash memory to the Cyclone IV E device pins.

Notes to Figure 8-7:

- (1) Connect the pull-up resistors to the $V_{\mbox{CCIO}}$ supply of the bank in which the pin resides.
- (2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect MSEL [3..0], refer to Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (4) AP configuration ignores the WAIT signal during configuration mode. However, if you are accessing flash during user mode with user logic, you can optionally use normal I/O to monitor the WAIT signal from the Micron P30 or P33 flash.
 - To tri-state the configuration bus for AP configuration schemes, you must tie nCE high and nCONFIG low.
 - In a single-device AP configuration, the maximum board loading and board trace length between supported parallel flash and Cyclone IV E devices must follow the recommendations listed in Table 8–11 on page 8–28.
 - If you use the AP configuration scheme for Cyclone IV E devices, the V_{CCIO} of I/O banks 1, 6, 7, and 8 must be 3.3, 3.0, 2.5, or 1.8 V. Altera does not recommend using the level shifter between the Micron P30 or P33 flash and the Cyclone IV E device in the AP configuration scheme.

The user watchdog timer is disabled in factory configurations and during the configuration cycle of the application configuration. It is enabled after the application configuration enters user mode.

Quartus II Software Support

Implementation in your design requires a remote system upgrade interface between the Cyclone IV device logic array and remote system upgrade circuitry. You must also generate configuration files for production and remote programming of the system configuration memory. The Quartus II software provides these features.

The two implementation options, ALTREMOTE_UPDATE megafunction and remote system upgrade atom, are for the interface between the remote system upgrade circuitry and the device logic array interface. Using the megafunction block instead of creating your own logic saves design time and offers more efficient logic synthesis and device implementation.

• For more information about the ALTREMOTE_UPDATE megafunction, refer to the *Remote Update Circuitry (ALTREMOTE_UPDATE) Megafunction User Guide*.

Document Revision History

Table 8–28 lists the revision history for this chapter.

abie 0-20. Ducui	nent nevision n	
Date	Version	Changes
		■ Added Table 8–6.
		 Updated Table 8–9 to add new device options and packages.
May 2013	1.7	■ Updated Figure 8–16 and Figure 8–22 to include user mode.
		Updated the "Dedicated" column for DATA[0] and DCLK in Table 8–19.
		 Updated the "User Mode" and "Pin Type" columns for DCLK in Table 8–20.
ebruary 2013	1.6	Updated Table 8–9 to add new device options and packages.
October 2012	1.5	 Updated "AP Configuration Supported Flash Memories", "Configuration Data Decompression", and "Overriding the Internal Oscillator" sections.
		 Updated Figure 8–3, Figure 8–4, Figure 8–5, Figure 8–7, Figure 8–8, Figure 8–9, Figure 8–10, and Figure 8–11.
		■ Updated Table 8–2, Table 8–8, Table 8–12, Table 8–13, Table 8–18, and Table 8–
		 Added information about how to gain control of EPCS pins.
	1.4	 Updated "Reset", "Single-Device AS Configuration", "Single-Device AP Configuration", and "Overriding the Internal Oscillator" sections.
November 2011		■ Added Table 8–7.
		■ Updated Table 8–6 and Table 8–19.
		■ Updated Figure 8–3, Figure 8–4, and Figure 8–5.
		 Updated for the Quartus II software version 10.1 release.
De e e e e e e e e e e e e e e e e e e	1.2	 Added Cyclone IV E new device package information.
	1.3	■ Updated Table 8–7, Table 8–10, and Table 8–11.
		 Minor text edits.

Table 8–28. Document Revision History (Part 1 of 2)

8-19.

^{••••}

1. Cyclone IV Transceivers Architecture

Cyclone[®] IV GX devices include up to eight full-duplex transceivers at serial data rates between 600 Mbps and 3.125 Gbps in a low-cost FPGA. Table 1–1 lists the supported Cyclone IV GX transceiver channel serial protocols.

Protocol	Data Rate (Gbps)	F324 and smaller packages	F484 and larger packages
PCI Express® (PCIe [®]) ⁽¹⁾	2.5	\checkmark	\checkmark
Gbps Ethernet (GbE)	1.25	~	\checkmark
Common Public Radio Interface (CPRI)	0.6144, 1.2288, 2.4576, and 3.072	 (2) 	\checkmark
OBSAI	0.768, 1.536, and 3.072	✓ (2)	\checkmark
XAUI	3.125	—	\checkmark
Sorial digital interface (SDI)	HD-SDI at 1.485 and 1.4835	~	
Senar digitar internace (SDI)	3G-SDI at 2.97 and 2.967	—	v
Serial RapidIO [®] (SRIO)	1.25, 2.5, and 3.125	—	\checkmark
Serial Advanced Technology Attachment (SATA)	1.5 and 3.0	_	\checkmark
V-by-one	3.125		\checkmark
Display Port	1.62 and 2.7	—	\checkmark

Table 1-1.	Serial	Protocols	Supported	by the	Cyclone I	V GX	Transceiver	Channels
------------	--------	-----------	-----------	--------	------------------	------	-------------	----------

Notes to Table 1-1:

(1) Provides the physical interface for PCI Express (PIPE)-compliant interface that supports Gen1 ×1, ×2, and ×4 initial lane width configurations. When implementing ×1 or ×2 interface, remaining channels in the transceiver block are available to implement other protocols.

(2) Supports data rates up to 2.5 Gbps only.

You can implement these protocols through the ALTGX MegaWizard[™] Plug-In Manager, which also offers the highly flexible Basic functional mode to implement proprietary serial protocols at the following serial data rates:

- 600 Mbps to 2.5 Gbps for devices in F324 and smaller packages
- 600 Mbps to 3.125 Gbps for devices in F484 and larger packages

For descriptions of the ports available when instantiating a transceiver using the ALTGX megafunction, refer to "Transceiver Top-Level Port Lists" on page 1–85.

For more information about Cyclone IV transceivers that run at ≥2.97 Gbps data rate, refer to the *Cyclone IV Device Family Pin Connection Guidelines*.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Transmitter Channel Datapath

The following sections describe the Cyclone IV GX transmitter channel datapath architecture as shown in Figure 1–3:

- TX Phase Compensation FIFO
- Byte Serializer
- 8B/10B Encoder
- Serializer
- Transmitter Output Buffer

TX Phase Compensation FIFO

The TX phase compensation FIFO compensates for the phase difference between the low-speed parallel clock and the FPGA fabric interface clock, when interfacing the transmitter channel to the FPGA fabric (directly or through the PIPE and PCIe hard IP). The FIFO is four words deep, with latency between two to three parallel clock cycles. Figure 1–4 shows the TX phase compensation FIFO block diagram.

Figure 1–4. TX Phase Compensation FIFO Block Diagram

Note to Figure 1-4:

(1) The x refers to the supported 8-, 10-, 16-, or 20-bits transceiver channel width.

- The FIFO can operate in registered mode, contributing to only one parallel clock cycle of latency in Deterministic Latency functional mode. For more information, refer to "Deterministic Latency Mode" on page 1–73.
- **To** For more information about FIFO clocking, refer to "FPGA Fabric-Transceiver Interface Clocking" on page 1–43.

Byte Serializer

The byte serializer divides the input datapath width by two to allow transmitter channel operation at higher data rates while meeting the maximum FPGA fabric frequency limit. This module is required in configurations that exceed the maximum FPGA fabric-transceiver interface clock frequency limit and optional in configurations that do not.

To For the FPGA fabric-transceiver interface frequency specifications, refer to the *Cyclone IV Device Data Sheet*.

Bit-Slip Mode

In bit-slip mode, the rx_bitslip port controls the word aligner operation. At every rising edge of the rx_bitslip signal, the bit-slip circuitry slips one bit into the received data stream, effectively shifting the word boundary by one bit. When the received data after bit-slipping matches the programmed word alignment pattern, the rx_patterndetect signal is driven high for one parallel clock cycle.

You can implement a bit-slip controller in the user logic that monitors either the rx_patterndetect signal or the receiver data output (rx_dataout), and controls the rx bitslip port to achieve word alignment.

Figure 1–18 shows an example of the word aligner configured in bit-slip mode. For this example, consider that 8'b1110000 is received back-to-back and 16'b0000111100011110 is specified as the word alignment pattern. A rising edge on the rx_bitslip signal at time n + 1 slips a single bit 0 at the MSB position, forcing the rx_dataout to 8'b01111000. Another rising edge on the rx_bitslip signal at time n + 5 forces rx_dataout to 8'b00111100. Another rising edge on the rx_bitslip signal at time n + 9 forces rx_dataout to 8'b0011110. Another rising edge on the rx_bitslip signal at time n + 9 forces rx_dataout to 8'b00011110. Another rising edge on the rx_bitslip signal at time n + 13 forces the rx_dataout to 8'b0001111. At this instance, rx_dataout in cycles n + 12 and n + 13 is 8'b00011110 and 8'b00001111, respectively, which matches the specified 16-bit alignment pattern 16'b0000111100011110. This results in the assertion of the rx_patterndetect signal.

Automatic Synchronization State Machine Mode

In automatic synchronization state machine mode, the word aligner achieves synchronization after receiving a specific number of synchronization code groups, and falls out of synchronization after receiving a specific number of erroneous code groups. This mode provides hysteresis during link synchronization, which is required by protocols such as PCIe, GbE, XAUI, and Serial RapidIO.

This mode is only supported using the 8B/10B encoded data with 10-bit input to the word aligner.

Figure 1–26. PLL Input Reference Clocks in Transceiver Operation for F484 and Larger Packages $^{(1)}$, $^{(2)}$, $^{(3)}$

Notes to Figure 1-26:

- (1) The REFCLK2 and REFCLK3 pins are dual-purpose CLKIO, REFCLK, or DIFFCLK pins that reside in banks 3A and 8A respectively.
- (2) The REFCLK[1..0] and REFCLK[5..4] pins are dual-purpose differential REFCLK or DIFFCLK pins that reside in banks 3B and 8B respectively. These clock input pins do not have access to the clock control blocks and GCLK networks. For more details, refer to the *Clock Networks and PLLs in Cyclone IV Devices* chapter.
- (3) Using any clock input pins other than the designated REFCLK pins as shown here to drive the MPLLs and GPLLs may have reduced jitter performance.

The input reference clocks reside in banks 3A, 3B, 8A, and 8B have dedicated $V_{CC_CLKIN3A}$, $V_{CC_CLKIN3B}$, $V_{CC_CLKIN8A}$, and $V_{CC_CLKIN8B}$ power supplies separately in their respective I/O banks to avoid the different power level requirements in the same bank for general purpose I/Os (GPIOs). Table 1–6 lists the supported I/O standard for the REFCLK pins.

	UCCI		Torminatio		VCC_CLKIN Level		I/O Pin Type		
I/O Standard	Protocol	Coupling	n	Input	Output	Column I/O	Row I/O	Supported Banks	
LVDS	ALL	Differential	Off-chip	2.5 V	Not Supported	Yes	No	3A, 3B, 8A, 8B	
LVPECL	ALL	AC (Needs off-chip resistor to	Off-chip	2.5 V	Not Supported	Yes	No	3A, 3B, 8A, 8B	
4 0 1 4 5 1	ALL		Off-chip	2.5 V	Not Supported	Yes	No	3A, 3B, 8A, 8B	
1.2 V, 1.5 V, 3.3 V PCMI	ALL	restore	Off-chip	2.5 V	Not Supported	Yes	No	3A, 3B, 8A, 8B	
	ALL	V _{CM})	Off-chip	2.5 V	Not Supported	Yes	No	3A, 3B, 8A, 8B	
HCSL	PCle	Differential DC	Off-chip	2.5 V	Not Supported	Yes	No	3A, 3B, 8A, 8B	

Table 1–6. REFCLK I/O Standard Support

- transmitter in electrical idle
- receiver signal detect
- receiver spread spectrum clocking

Low-Latency PCS Operation

When configured in low-latency PCS operation, the following blocks in the transceiver PCS are bypassed, resulting in a lower latency PCS datapath:

- 8B/10B encoder and decoder
- word aligner
- rate match FIFO
- byte ordering

Figure 1–47 shows the transceiver channel datapath in Basic mode with low-latency PCS operation.

Figure 1–47. Transceiver Channel Datapath in Basic Mode with Low-Latency PCS Operation

Transmitter in Electrical Idle

The transmitter buffer supports electrical idle state, where when enabled, the differential output buffer driver is tri-stated. During electrical idle, the output buffer assumes the common mode output voltage levels. For details about the electrical idle features, refer to "PCI Express (PIPE) Mode" on page 1–52.

P

² The transmitter in electrical idle feature is required for compliance to the version 2.00 of PHY Interface for the PCI Express (PIPE) Architecture specification for PCIe protocol implementation.

Signal Detect at Receiver

Signal detect at receiver is only supported when 8B/10B encoder/decoder block is enabled.

The compliance pattern is a repeating sequence of the four code groups: /K28.5/; /D21.5/; /K28.5/; /D10.2/. Figure 1–53 shows the compliance pattern transmission where the tx_forcedispcompliance port must be asserted in the same parallel clock cycle as /K28.5/D21.5/ of the compliance pattern on tx_datain[15..0] port.

Figure 1–53. Compliance Pattern Transmission Support in PCI Express (PIPE) Mode

Reset Requirement

Cyclone IV GX devices meets the PCIe reset time requirement from device power up to the link active state with the configuration schemes listed in Table 1–17.

Table 1–18. Electrical Idle Inference Conditions

Device	Configuration Scheme	Configuration Time (ms)
EP4CGX15	Passive serial (PS)	51
EP4CGX22	PS	92
EP4CGX30 ⁽¹⁾	PS	92
EP4CGX50	Fast passive parallel (FPP)	41
EP4CGX75	FPP	41
EP4CGX110	FPP	70
EP4CGX150	FPP	70

Note to Table 1–18:

(1) EP4CGX30 device in F484 package fulfills the PCIe reset time requirement using FPP configuration scheme with configuration time of 41 ms.

GIGE Mode

GIGE mode provides the transceiver channel datapath configuration for GbE (specifically the 1000 Base-X physical layer device (PHY) standard) protocol implementation. The Cyclone IV GX transceiver provides the PMA and the following PCS functions as defined in the IEEE 802.3 specification for 1000 Base-X PHY:

- 8B/10B encoding and decoding
- synchronization

If you enabled the auto-negotiation state machine in the FPGA core with the rate match FIFO, refer to "Clock Frequency Compensation" on page 1–63.

Block	Port Name	Input/ Output	Clock Domain	Description
				Rate match FIFO full status indicator.
	rx_rmfifofull Ou		Synchronous to tx clkout	A high level indicates the rate match FIFO is full.
		Output	(non-bonded modes) or coreclkout (bonded modes)	 Driven for a minimum of two serial clock cycles in configurations without a byte serializer and a minimum of three recovered clock cycles in configurations with a byte serializer.
				Rate match FIFO empty status indicator.
			Synchronous to tx clkout	A high level indicates the rate match FIFO is empty.
	rx_rmfifoempty	Output	(non-bonded modes) or coreclkout (bonded modes)	Driven for a minimum of two serial clock cycles in configurations without a byte serializer and a minimum of three recovered clock cycles in configurations with a byte serializer.
				8B/10B decoder control or data identifier.
	rx_ctrldetect	Output	Synchronous to tx_clkout (non-bonded modes) or	 A high level indicates received code group is a /Kx.y/ control code group.
			coreclkout (bonded modes)	 A low level indicates received code group is a /Dx.y/ data code group.
				8B/10B code group violation or disparity error indicator.
	rx_errdetect		Synchronous to tx_clkout (non-bonded modes) or coreclkout (bonded modes)	 A high level indicates that a code group violation or disparity error was detected on the associated received code group.
		Output		 Use with the rx_disperr signal to differentiate between a code group violation or a disparity error as follows: [rx_errdetect:rx_disperr]
RX PCS				 2'b00—no error
				 2'b10—code group violation
				 2'b11—disparity error or both
			Synchronous to tx_clkout	8B/10B disparity error indicator.
	rx_disperr	Output	(non-bonded modes) or coreclkout (bonded modes)	 A high level indicates that a disparity error was detected on the associated received code group.
				8B/10B current running disparity indicator.
	rx_runningdisp	Output	Synchronous to tx_clkout (non-bonded modes) or	 A high level indicates a positive current running disparity at the end of the decoded byte
			coreclkout (bonded modes)	 A low level indicates a negative current running disparity at the end of the decoded byte
				Enable byte ordering control
	rx_enabyteord	Input	Asynchronous signal	 A low-to-high transition triggers the byte ordering block to restart byte ordering operation.
				Byte ordering status indicator.
	rx_byteorder alignstatus	Output	Synchronous to tx_clkout (non-bonded modes) or coreclkout (bonded modes)	A high level indicates that the byte ordering block has detected the programmed byte ordering pattern in the least significant byte of the received data from the byte deserializer.
			Synchronous to tx_clkout	Parallel data output from the receiver to the FPGA fabric.
	rx_dataout	Output	(non-bonded modes) or coreclkout (bonded modes)	 Bus width depends on channel width multiplied by number of channels per instance.

Table 1–27. Receiver Ports in ALTGX Megafunction for Cyclone IV GX (Part 2 of 3)

Table 3–4 describes the tx_datainfull[21..0] FPGA fabric-transceiver channel interface signals.

FPGA Fabric-Transceiver Channel Interface Description	Transmit Signal Description (Based on Cyclone IV GX Supported FPGA Fabric-Transceiver Channel Interface Widths)
	<pre>tx_datainfull[7:0]: 8-bit data (tx_datain)</pre>
	The following signals are used only in 8B/10B modes:
	<pre>tx_datainfull[8]: Control bit (tx_ctrlenable)</pre>
	tx_datainfull[9]
8-bit FPGA fabric-Transceiver Channel Interface	Transmitter force disparity Compliance (PCI Express [PIPE]) (tx_forcedisp) in all modes except PCI Express (PIPE) functional mode. For PCI Express (PIPE) functional mode, (tx_forcedispcompliance) is used.
	For non-PIPE:
	<pre>tx_datainfull[10]: Forced disparity value (tx_dispval)</pre>
	■ For PCIe:
	<pre>tx_datainfull[10]: Forced electrical idle (tx_forceelecidle)</pre>
10-bit FPGA fabric-Transceiver Channel Interface	tx_datainfull[9:0]:10-bit data(tx_datain)
	Two 8-bit Data (tx_datain)
	<pre>tx_datainfull[7:0] - tx_datain (LSByte) and tx_datainfull[18:11] - tx_datain (MSByte)</pre>
	The following signals are used only in 8B/10B modes:
	<pre>tx_datainfull[8] - tx_ctrlenable (LSB) and tx_datainfull[19] - tx_ctrlenable (MSB)</pre>
	Force Disparity Enable
	■ For non-PIPE:
16-bit FPGA fabric-Transceiver Channel Interface with PCS-PMA set	<pre>tx_datainfull[9] - tx_forcedisp (LSB) and tx_datainfull[20] - tx_forcedisp (MSB)</pre>
to 8/10 bits	■ For PCIe:
	<code>tx_datainfull[9]</code> - <code>tx_forcedispcompliance</code> and <code>tx_datainfull[20]</code> - 0
	Force Disparity Value
	■ For non-PIPE:
	tx_datainfull[10] - tx_dispval (LSB) and tx_datainfull[21] - tx_dispval (MSB)
	■ For PCIe:
	<pre>tx_datainfull[10] - tx_forceelecidle and tx_datainfull[21] - tx_forceelecidle</pre>
20-bit FPGA fabric-Transceiver	Two 10-bit Data (tx_datain)
Channel Interface with PCS-PMA set to 10 bits	<pre>tx_datainfull[9:0] - tx_datain (LSByte) and tx_datainfull[20:11] - tx_datain (MSByte)</pre>

Table 3–4. tx_datainfull[21..0] FPGA Fabric-Transceiver Channel Interface Signal Descriptions ⁽¹⁾

Note to Table 3-4:

(1) For all transceiver-related ports, refer to the "Transceiver Port Lists" section in the Cyclone IV GX Transceiver Architecture chapter.

Visual Cue	Meaning
	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn.
Courier type	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).
4	An angled arrow instructs you to press the Enter key.
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.
	Bullets indicate a list of items when the sequence of the items is not important.
LP	The hand points to information that requires special attention.
(?)	The question mark directs you to a software help system with related information.
	The feet direct you to another document or website with related information.
[], , , , , , , , , , , , , , , , , , ,	The multimedia icon directs you to a related multimedia presentation.
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.
WARNING	A warning calls attention to a condition or possible situation that can cause you injury.
	The envelope links to the Email Subscription Management Center page of the Altera website, where you can sign up to receive update notifications for Altera documents.

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		V _{CCI0} = 3.3	200	mV
V	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
V SCHMITT	input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard		V _{ccio} (V)	V	_{IL} (V)	V _{IH} (V)		V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
i/u Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Max Min		(IIIA) (4)	(IIIA) (4)
3.3-V LVTTL (3)	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	$V_{CCI0} - 0.2$	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	$V_{CCIO} + 0.3$	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	$V_{CCIO} + 0.3$	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15		0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and IoH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and IoH specifications in the handbook.

Embedded Multiplier Specifications

Table 1–26 lists the embedded multiplier specifications for Cyclone IV devices.

Table 1–26. Embedded Multiplier Specifications for Cyclone IV Devices

Mada	Resources Used	Performance					
Mode	Number of Multipliers	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
9 × 9-bit multiplier	1	340	300	260	240	175	MHz
18 × 18-bit multiplier	1	287	250	200	185	135	MHz

Memory Block Specifications

Table 1–27 lists the M9K memory block specifications for Cyclone IV devices.

Table 1-27.	Memory Block	Performance S	pecifications t	for C	yclone IV Devices
-------------	---------------------	----------------------	-----------------	-------	-------------------

		Resou	rces Used	Performance					
Memory	Mode	LEs	M9K Memory	C6	C7, I7, A7	C8	C8L, 18L	C9L	Unit
M9K Block	FIFO 256 × 36	47	1	315	274	238	200	157	MHz
	Single-port 256 × 36	0	1	315	274	238	200	157	MHz
	Simple dual-port 256 × 36 CLK	0	1	315	274	238	200	157	MHz
	True dual port 512 × 18 single CLK	0	1	315	274	238	200	157	MHz

Configuration and JTAG Specifications

Table 1–28 lists the configuration mode specifications for Cyclone IV devices.

Table 1–28. Passive Configuration Mode Specifications for Cyclone IV Devices (1)

Programming Mode	V _{CCINT} Voltage Level (V)	DCLK f _{max}	Unit
Passivo Sorial (PS)	1.0 <i>(3)</i>	66	MHz
rassive Serial (rS)	V _{CCINT} Voltage Level (V) DCLK f _{MAX} 1.0 ⁽³⁾ 66 1.2 133 1.0 ⁽³⁾ 66 1.2 ⁽⁴⁾ 100	MHz	
East Passivo Parallol (EDD) (2)	1.0 <i>(3)</i>	66	MHz
TASL FASSIVE FAIAIIEI (FFF) (-)	1.2 (4)	100	MHz

Notes to Table 1-28:

- (1) For more information about PS and FPP configuration timing parameters, refer to the *Configuration and Remote System Upgrades in Cyclone IV Devices* chapter.
- (2) FPP configuration mode supports all Cyclone IV E devices (except for E144 package devices) and EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 only.
- (3) V_{CCINT} = 1.0 V is only supported for Cyclone IV E 1.0 V core voltage devices.
- (4) Cyclone IV E devices support 1.2 V V_{CCINT}. Cyclone IV E 1.2 V core voltage devices support 133 MHz DCLK f_{MAX} for EP4CE6, EP4CE10, EP4CE15, EP4CE22, EP4CE30, and EP4CE40 only.