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1–2 Chapter 1: Cyclone IV FPGA Device Family Overview
Cyclone IV Device Family Features
■ Cyclone IV GX devices offer up to eight high-speed transceivers that provide:

■ Data rates up to 3.125 Gbps

■ 8B/10B encoder/decoder

■ 8-bit or 10-bit physical media attachment (PMA) to physical coding sublayer 
(PCS) interface

■ Byte serializer/deserializer (SERDES)

■ Word aligner

■ Rate matching FIFO

■ TX bit slipper for Common Public Radio Interface (CPRI)

■ Electrical idle

■ Dynamic channel reconfiguration allowing you to change data rates and 
protocols on-the-fly

■ Static equalization and pre-emphasis for superior signal integrity

■ 150 mW per channel power consumption

■ Flexible clocking structure to support multiple protocols in a single transceiver 
block

■ Cyclone IV GX devices offer dedicated hard IP for PCI Express (PIPE) (PCIe) 
Gen 1:

■ ×1, ×2, and ×4 lane configurations

■ End-point and root-port configurations

■ Up to 256-byte payload

■ One virtual channel

■ 2 KB retry buffer

■ 4 KB receiver (Rx) buffer

■ Cyclone IV GX devices offer a wide range of protocol support:

■ PCIe (PIPE) Gen 1 ×1, ×2, and ×4 (2.5 Gbps)

■ Gigabit Ethernet (1.25 Gbps)

■ CPRI (up to 3.072 Gbps)

■ XAUI (3.125 Gbps)

■ Triple rate serial digital interface (SDI) (up to 2.97 Gbps)

■ Serial RapidIO (3.125 Gbps)

■ Basic mode (up to 3.125 Gbps)

■ V-by-One (up to 3.0 Gbps)

■ DisplayPort (2.7 Gbps)

■ Serial Advanced Technology Attachment (SATA) (up to 3.0 Gbps)

■ OBSAI (up to 3.072 Gbps)
Cyclone IV Device Handbook, March 2016 Altera Corporation
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5–2 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Clock Networks
f For more information about the number of GCLK networks in each device density, 
refer to the Cyclone IV FPGA Device Family Overview chapter.

GCLK Network
GCLKs drive throughout the entire device, feeding all device quadrants. All resources 
in the device (I/O elements, logic array blocks (LABs), dedicated multiplier blocks, 
and M9K memory blocks) can use GCLKs as clock sources. Use these clock network 
resources for control signals, such as clock enables and clears fed by an external pin. 
Internal logic can also drive GCLKs for internally generated GCLKs and 
asynchronous clears, clock enables, or other control signals with high fan-out.

Table 5–1, Table 5–2 on page 5–4, and Table 5–3 on page 5–7 list the connectivity of the 
clock sources to the GCLK networks.

Table 5–1. GCLK Network Connections for EP4CGX15, EP4CGX22, and EP4CGX30 (1), (2) (Part 1 of 2)

GCLK Network Clock 
Sources

GCLK Networks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CLK4/DIFFCLK_2n — — — — — v — v — v — — — — — — — — — —

CLK5/DIFFCLK_2p — — — — — — v v — — — — — — — — — — — —

CLK6/DIFFCLK_3n — — — — — — v — v v — — — — — — — — — —

CLK7/DIFFCLK_3p — — — — — v — — v — — — — — — — — — — —

CLK8/DIFFCLK_5n — — — — — — — — — — v — v — v — — — — —

CLK9/DIFFCLK_5p — — — — — — — — — — — v v — — — — — — —

CLK10/DIFFCLK_4n/RE
FCLK1n 

— — — — — — — — — — — v — v v — — — — —

CLK11/DIFFCLK_4p/RE
FCLK1p 

— — — — — — — — — — v — — v — — — — — —

CLK12/DIFFCLK_7p/RE
FCLK0p 

— — — — — — — — — — — — — — — v — v — v
CLK13/DIFFCLK_7n/RE
FCLK0n 

— — — — — — — — — — — — — — — — v v — —

CLK14/DIFFCLK_6p — — — — — — — — — — — — — — — — v — v v
CLK15/DIFFCLK_6n — — — — — — — — — — — — — — — v — — v —

PLL_1_C0 v — — v — — — — — — — — — — — v — — v —

PLL_1_C1 — v — — v — — — — — — — — — — — v — — v
PLL_1_C2 v — v — — — — — — — — — — — — v — v — —

PLL_1_C3 — v — v — — — — — — — — — — — — v — v —

PLL_1_C4 — — v — v — — — — — — — — — — — — v — v
PLL_2_C0 v — — v — — — — — — v — — v — — — — — —

PLL_2_C1 — v — — v — — — — — — v — — v — — — — —

PLL_2_C2 v — v — — — — — — — v — v — — — — — — —

PLL_2_C3 — v — v — — — — — — — v — v — — — — — —

PLL_2_C4 — — v — v — — — — — — — v — v — — — — —

PLL_3_C0 — — — — — v — — v — — — — — — v — — v —
Cyclone IV Device Handbook, October 2012 Altera Corporation
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–17
Clock Networks
Figure 5–7 shows how to implement the clkena signal with a single register.

1 The clkena circuitry controlling the output C0 of the PLL to an output pin is 
implemented with two registers instead of a single register, as shown in Figure 5–7.

Figure 5–8 shows the waveform example for a clock output enable. The clkena signal 
is sampled on the falling edge of the clock (clkin).

1 This feature is useful for applications that require low power or sleep mode.

The clkena signal can also disable clock outputs if the system is not tolerant to 
frequency overshoot during PLL resynchronization.

Altera recommends using the clkena signals when switching the clock source to the 
PLLs or the GCLK. The recommended sequence is:

1. Disable the primary output clock by de-asserting the clkena signal.

2. Switch to the secondary clock using the dynamic select signals of the clock control 
block.

3. Allow some clock cycles of the secondary clock to pass before reasserting the 
clkena signal. The exact number of clock cycles you must wait before enabling the 
secondary clock is design-dependent. You can build custom logic to ensure 
glitch-free transition when switching between different clock sources.

Figure 5–7. clkena Implementation
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Figure 5–8. clkena Implementation: Output Enable
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5–28 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Hardware Features
Clock Switchover
The clock switchover feature allows the PLL to switch between two reference input 
clocks. Use this feature for clock redundancy or for a dual-clock domain application, 
such as a system that turns on the redundant clock if the previous clock stops running. 
Your design can automatically perform clock switchover when the clock is no longer 
toggling, or based on the user control signal, clkswitch.

Automatic Clock Switchover
PLLs of Cyclone IV devices support a fully configurable clock switchover capability. 

When the current reference clock is not present, the clock-sense block automatically 
switches to the backup clock for PLL reference. The clock switchover circuit also sends 
out three status signals—clkbad0, clkbad1, and activeclock—from the PLL to 
implement a custom switchover circuit. You can select a clock source at the backup 
clock by connecting it to the inclk1 port of the PLL in your design. 

Figure 5–17 shows the block diagram of the switchover circuit built into the PLL.

There are two ways to use the clock switchover feature:

■ Use the switchover circuitry for switching from inclk0 to inclk1 running at the 
same frequency. For example, in applications that require a redundant clock with 
the same frequency as the reference clock, the switchover state machine generates 
a signal that controls the multiplexer select input shown in Figure 5–17. In this 
case, inclk1 becomes the reference clock for the PLL. This automatic switchover 
can switch back and forth between the inclk0 and inclk1 clocks any number of 
times, when one of the two clocks fails and the other clock is available.

■ Use the clkswitch input for user- or system-controlled switch conditions. This is 
possible for same-frequency switchover or to switch between inputs of different 
frequencies. For example, if inclk0 is 66 MHz and inclk1 is 200 MHz, you must 
control the switchover because the automatic clock-sense circuitry cannot monitor 
primary and secondary clock frequencies with a frequency difference of more than 

Figure 5–17. Automatic Clock Switchover Circuit
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5–30 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Hardware Features
In this mode, the activeclock signal mirrors the clkswitch signal. As both blocks are 
still functional during the manual switch, neither clkbad signals go high. Because the 
switchover circuit is positive edge-sensitive, the falling edge of the clkswitch signal 
does not cause the circuit to switch back from inclk1 to inclk0. When the clkswitch 
signal goes high again, the process repeats. The clkswitch signal and the automatic 
switch only works depending on the availability of the clock that is switched to. If the 
clock is unavailable, the state machine waits until the clock is available.

1 When CLKSWITCH = 1, it overrides the automatic switch-over function. As long as 
clkswitch signal is high, further switch-over action is blocked.

Manual Clock Switchover
PLLs of Cyclone IV devices support manual switchover, in which the clkswitch 
signal controls whether inclk0 or inclk1 is the input clock to the PLL. The 
characteristics of a manual switchover are similar to the manual override feature in an 
automatic clock switchover, in which the switchover circuit is edge-sensitive. When 
the clkswitch signal goes high, the switchover sequence starts. The falling edge of the 
clkswitch signal does not cause the circuit to switch back to the previous input clock. 

f For more information about PLL software support in the Quartus II software, refer to 
the ALTPLL Megafunction User Guide.

Guidelines
Use the following guidelines to design with clock switchover in PLLs:

■ Clock loss detection and automatic clock switchover require the inclk0 and 
inclk1 frequencies be within 20% of each other. Failing to meet this requirement 
causes the clkbad0 and clkbad1 signals to function improperly.

Figure 5–19. Clock Switchover Using the clkswitch Control (1)

Note to Figure 5–19:

(1) Both inclk0 and inclk1 must be running when the clkswitch signal goes high to start a manual clock switchover 
event.
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activeclock
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–43
Configuration
DCLK, DATA[7..0], and CONF_DONE) are connected to every device in the chain. 
Configuration signals may require buffering to ensure signal integrity and prevent 
clock skew problems. Ensure that the DCLK and DATA lines are buffered. All devices 
initialize and enter user mode at the same time, because all device CONF_DONE pins are 
tied together.

All nSTATUS and CONF_DONE pins are tied together and if any device detects an error, 
configuration stops for the entire chain and the entire chain must be reconfigured. For 
example, if the first device flags an error on nSTATUS, it resets the chain by pulling its 
nSTATUS pin low. This behavior is similar to a single device detecting an error.

Figure 8–21 shows multi-device FPP configuration when both Cyclone IV devices are 
receiving the same configuration data. Configuration pins (nCONFIG, nSTATUS, DCLK, 
DATA[7..0], and CONF_DONE) are connected to every device in the chain. Configuration 
signals may require buffering to ensure signal integrity and prevent clock skew 
problems. Ensure that the DCLK and DATA lines are buffered. Devices must be of the 
same density and package. All devices start and complete configuration at the same 
time. 

You can use a single configuration chain to configure Cyclone IV devices with other 
Altera devices that support FPP configuration. To ensure that all devices in the chain 
complete configuration at the same time or that an error flagged by one device starts 
reconfiguration in all devices, tie all the CONF_DONE and nSTATUS pins together.

f For more information about configuring multiple Altera devices in the same 
configuration chain, refer to Configuring Mixed Altera FPGA Chains in volume 2 of the 
Configuration Handbook.

Figure 8–21. Multi-Device FPP Configuration Using an External Host When Both Devices Receive 
the Same Data

Notes to Figure 8–21:

(1) You must connect the pull-up resistor to a supply that provides an acceptable input signal for all devices in the chain. 
VCC must be high enough to meet the VIH specification of the I/O on the device and the external host.

(2) The nCEO pins of both devices are left unconnected or used as user I/O pins when configuring the same configuration 
data into multiple devices.

(3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, 
refer to Table 8–4 on page 8–8 and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND. 

(4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA[7..0] and DCLK must fit the maximum overshoot 
outlined in Equation 8–1 on page 8–5.
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–53
Configuration
1 The .rbf used by the JRunner software driver cannot be a compressed .rbf because the 
JRunner software driver uses JTAG-based configuration. During JTAG-based 
configuration, the real-time decompression feature is not available.

f For more information about the JRunner software driver, refer to AN 414: JRunner 
Software Driver: An Embedded Solution for PLD JTAG Configuration and the source files 
on the Altera website at (www.altera.com).

Combining JTAG and AS Configuration Schemes
You can combine the AS configuration scheme with the JTAG-based configuration 
(Figure 8–28). This setup uses two 10-pin download cable headers on the board. One 
download cable is used in JTAG mode to configure the Cyclone IV device directly 
through the JTAG interface. The other download cable is used in AS mode to program 
the serial configuration device in-system through the AS programming interface. If 
you try configuring the device using both schemes simultaneously, JTAG 
configuration takes precedence and AS configuration terminates.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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10–6 Chapter 10: JTAG Boundary-Scan Testing for Cyclone IV Devices
Boundary-Scan Description Language Support
Figure 10–3 shows the JTAG chain of mixed voltages and how a level shifter is 
inserted in the chain.

Boundary-Scan Description Language Support 
The boundary-scan description language (BSDL), a subset of VHDL, provides a 
syntax that allows you to describe the features of an IEEE Std. 1149.1/IEEE Std. 1149.6 
BST-capable device that can be tested. 

f For more information about how to download BSDL files for IEEE Std. 
1149.1-compliant Cyclone IV E devices, refer to IEEE Std. 1149.1 BSDL Files.

f For more information about how to download BSDL files for IEEE Std. 
1149.6-compliant Cyclone IV GX devices, refer to IEEE Std. 1149.6 BSDL Files.

f You can also generate BSDL files (pre-configuration and post-configuration) for 
IEEE Std. 1149.1/IEEE Std. 1149.6-compliant Cyclone IV devices with the Quartus® II 
software version 9.1 SP1 and later. For more information about the procedure to 
generate BSDL files using the Quartus II software, refer to BSDL Files Generation in 
Quartus II.

Figure 10–3. JTAG Chain of Mixed Voltages
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Chapter 1: Cyclone IV Transceivers Architecture 1–5
Transmitter Channel Datapath

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Transmitter Channel Datapath
The following sections describe the Cyclone IV GX transmitter channel datapath 
architecture as shown in Figure 1–3:

■ TX Phase Compensation FIFO

■ Byte Serializer

■ 8B/10B Encoder

■ Serializer

■ Transmitter Output Buffer

TX Phase Compensation FIFO
The TX phase compensation FIFO compensates for the phase difference between the 
low-speed parallel clock and the FPGA fabric interface clock, when interfacing the 
transmitter channel to the FPGA fabric (directly or through the PIPE and 
PCIe hard IP). The FIFO is four words deep, with latency between two to three 
parallel clock cycles. Figure 1–4 shows the TX phase compensation FIFO block 
diagram.

1 The FIFO can operate in registered mode, contributing to only one parallel clock cycle 
of latency in Deterministic Latency functional mode. For more information, refer to 
“Deterministic Latency Mode” on page 1–73.

f For more information about FIFO clocking, refer to “FPGA Fabric-Transceiver 
Interface Clocking” on page 1–43.

Byte Serializer
The byte serializer divides the input datapath width by two to allow transmitter 
channel operation at higher data rates while meeting the maximum FPGA fabric 
frequency limit. This module is required in configurations that exceed the maximum 
FPGA fabric-transceiver interface clock frequency limit and optional in configurations 
that do not. 

f For the FPGA fabric-transceiver interface frequency specifications, refer to the Cyclone 
IV Device Data Sheet.

Figure 1–4. TX Phase Compensation FIFO Block Diagram

Note to Figure 1–4:

(1) The x refers to the supported 8-, 10-, 16-, or 20-bits transceiver channel width.

tx_phase_comp_fifo_errorTX Phase
Compensation

FIFO

wr_clk rd_clk

tx_datain[x..0] (1) Data output to
the byte serializer

or the 8B/10B encoder 
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Chapter 1: Cyclone IV Transceivers Architecture 1–13
Receiver Channel Datapath

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

In a DC-coupled link, the transmitter DC common mode voltage is seen unblocked at 
the receiver input buffer as shown in Figure 1–13. The link common mode voltage 
depends on the transmitter common mode voltage and the receiver common mode 
voltage. When using the receiver OCT and on-chip biasing circuitry in a DC coupled 
link, you must ensure the transmitter common mode voltage is compatible with the 
receiver common mode requirements. If you disable the OCT, you must terminate and 
bias the receiver externally and ensure compatibility between the transmitter and the 
receiver common mode voltage. 

Figure 1–14 shows the receiver input buffer block diagram.

The receiver input buffers support the following features:

Figure 1–13. DC-Coupled Link with OCT

Figure 1–14. Receiver Input Buffer Block Diagram
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Receiver Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
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Actual lock time depends on the transition density of the incoming data and the ppm 
difference between the receiver input reference clock and the upstream transmitter 
reference clock.

Transition from the LTD state to the LTR state occurs when either of the following 
conditions is met:

■ Signal detection circuitry indicates the absence of valid signal levels at the receiver 
input buffer. This condition is valid for PCI Express (PIPE) mode only. CDR 
transitions are not dependent on signal detection circuitry in other modes.

■ The recovered clock is not within the configured ppm frequency threshold setting 
with respect to CDR clocks from multipurpose PLLs.

In automatic lock mode, the switch from LTR to LTD states is indicated by the 
assertion of the rx_freqlocked signal and the switch from LTD to LTR states indicated 
by the de-assertion of the rx_freqlocked signal.

Manual Lock Mode
State transitions are controlled manually by using rx_locktorefclk and 
rx_locktodata ports. The LTR/LTD controller sets the CDR state depending on the 
logic level on the rx_locktorefclk and rx_locktodata ports. This mode provides the 
flexibility to control the CDR for a reduced lock time compared to the automatic lock 
mode. In automatic lock mode, the LTR/LTD controller relies on the ppm detector 
and the phase relationship detector to set the CDR in LTR or LTD mode. The ppm 
detector and phase relationship detector reaction times can be too long for some 
applications that require faster CDR lock time.

In manual lock mode, the rx_freqlocked signal is asserted when the CDR is in LTD 
state and de-asserted when CDR is in LTR state. For descriptions of rx_locktorefclk 
and rx_locktodata port controls, refer to Table 1–27 on page 1–87.

1 If you do not enable the optional rx_locktorefclk and rx_locktodata ports, the 
Quartus II software automatically configures the LTR/LTD controller in automatic 
lock mode.

f The recommended transceiver reset sequence varies depending on the CDR lock 
mode. For more information about the reset sequence recommendations, refer to the 
Reset Control and Power Down for Cyclone IV GX Devices chapter.

Deserializer
The deserializer converts received serial data from the receiver input buffer to parallel 
8- or 10-bit data. Serial data is assumed to be received from the LSB to the MSB. The 
deserializer operates with the high-speed recovered clock from the CDR with the 
frequency at half of the serial data rate. 

http://www.altera.com/literature/hb/cyclone-iv/cyiv-52002.pdf
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Receiver Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Byte Deserializer
The byte deserializer halves the FPGA fabric-transceiver interface frequency while 
doubles the parallel data width to the FPGA fabric. 

For example, when operating an EP4CGX150 receiver channel at 3.125 Gbps with 
deserialization factor of 10, the receiver PCS datapath runs at 312.5 MHz. The byte 
deserializer converts the 10-bit data at 312.5 MHz into 20-bit data at 156.25 MHz 
before forwarding the data to the FPGA fabric.

Byte Ordering
In the 16- or 20-bit FPGA fabric-transceiver interface, the byte deserializer receives 
one data byte (8 or 10 bits) and deserializes it into two data bytes (16 or 20 bits). 
Depending on when the receiver PCS logic comes out of reset, the byte ordering at the 
output of the byte deserializer may not match the original byte ordering of the 
transmitted data. The byte misalignment resulting from byte deserialization is 
unpredictable because it depends on which byte is being received by the byte 
deserializer when it comes out of reset.

Figure 1–23 shows a scenario where the most significant byte and the least significant 
byte of the two-byte transmitter data appears straddled across two word boundaries 
after the data is deserialized at the receiver.

The byte ordering block restores the proper byte ordering by performing the 
following actions:

■ Look for the user-programmed byte ordering pattern in the byte-deserialized data

■ Inserts a user-programmed pad byte if the user-programmed byte ordering 
pattern is found in the most significant byte position

You must select a byte ordering pattern that you know appears at the least significant 
byte position of the parallel transmitter data.

The byte ordering block is supported in the following receiver configurations:

■ 16-bit FPGA fabric-transceiver interface, 8B/10B disabled, and the word aligner in 
manual alignment mode. Program a custom 8-bit byte ordering pattern and 8-bit 
pad byte.

■ 16-bit FPGA fabric-transceiver interface, 8B/10B enabled, and the word aligner in 
automatic synchronization state machine mode. Program a custom 9-bit byte 
ordering pattern and 9-bit pad byte. The MSB of the 9-bit byte ordering pattern 
and pad byte represents the control identifier of the 8B/10B decoded data.

Figure 1–23. Example of Byte Deserializer at the Receiver
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Figure 1–31 and Figure 1–32 show the high- and low-speed clock distribution for 
transceivers in F324 and smaller packages, and in F484 and larger packages in 
non-bonded channel configuration.

Figure 1–31. Clock Distribution in Non-Bonded Channel Configuration for Transceivers in F324 
and Smaller Packages

Notes to Figure 1–31:

(1) Transceiver channels 2 and 3 are not available for devices in F169 and smaller packages.
(2) High-speed clock.
(3) Low-speed clock.
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The calibration block internally generates a constant internal reference voltage, 
independent of PVT variations and uses this voltage and the external reference 
resistor on the RREF pin to generate constant reference currents. The OCT calibration 
circuit calibrates the OCT resistors present in the transceiver channels. Figure 1–41 
shows the calibration block diagram.

PCI-Express Hard IP Block
Figure 1–42 shows the block diagram of the PCIe hard IP block implementing the 
PHY MAC, Data Link Layer, and Transaction Layer for PCIe interfaces. The PIPE 
interface is used as the interface between the transceiver and the hard IP block. 

Figure 1–41. Input Signals to the Calibration Blocks (1)

Notes to Figure 1–41:

(1) All transceiver channels use the same calibration block clock and power down signals.
(2) Connect a 2 k (tolerance max ± 1%) external resistor to the RREF pin to ground. The RREF resistor connection in 

the board must be free from any external noise.
(3) Supports up to 125 MHz clock frequency. Use either dedicated global clock or divide-down logic from the FPGA fabric 

to generate a slow clock on the local clock routing.
(4) The calibration block restarts the calibration process following deassertion of the cal_blk_powerdown signal.
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Figure 1–42. PCI Express Hard IP High-Level Block Diagram 
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Figure 1–55 shows the transceiver channel datapath and clocking when configured in 
GIGE mode.

Figure 1–55. Transceiver Channel Datapath and Clocking when Configured in GIGE Mode

Notes to Figure 1–55:

(1) Low-speed recovered clock.
(2) High-speed recovered clock.
(3) Optional rx_recovclkout port from CDR low-speed recovered clock is available for applications such as Synchronous Ethernet.
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Table 1–28. PIPE Interface Ports in ALTGX Megafunction for Cyclone IV GX (1) (Part 1 of 2)

Port Name Input/
Output Clock Domain Description

fixedclk Input Clock signal 125-MHz clock for receiver detect and offset cancellation only in PIPE 
mode.

tx_detectrxloop Input Asynchronous signal

Receiver detect or reverse parallel loopback control. 

■ A high level in the P1 power state and tx_forceelecidle 
signal asserted begins the receiver detection operation to determine 
if there is a valid receiver downstream. This signal must be 
deasserted when the pipephydonestatus signal indicates 
receiver detect completion. 

■ A high level in the P0 power state with the tx_forceelecidle 
signal deasserted dynamically configures the channel to support 
reverse parallel loopback mode.

tx_forcedisp
compliance Input Asynchronous signal

Force the 8B/10B encoder to encode with negative running disparity. 

■ Assert only when transmitting the first byte of the PIPE-compliance 
pattern to force the 8B/10B encoder with a negative running 
disparity.

pipe8b10binvpolarity Input Asynchronous signal Invert the polarity of every bit of the 10-bit input to the 8B/10B decoder

powerdn Input Asynchronous signal

PIPE power state control. 

■ Signal is 2 bits wide and is encoded as follows:

■ 2'b00: P0 (Normal operation) 

■ 2'b01: P0s (Low recovery time latency, low power state)

■ 2'b10: P1 (Longer recovery time latency, lower power state)

■ 2'b11: P2 (Lowest power state)

pipedatavalid Output N/A Valid data and control on the rx_dataout and rx_ctrldetect 
ports indicator.

pipephydone
status Output Asynchronous signal

PHY function completion indicator. 

■ Asserted for one clock cycle to communicate completion of several 
PHY functions, such as power state transition and receiver 
detection.

pipeelecidle Output Asynchronous signal

Electrical idle detected or inferred at the receiver indicator.

■ When electrical idle inference is used, this signal is driven high 
when it infers an electrical idle condition

■ When electrical idle inference is not used, the 
rx_signaldetect signal is inverted and driven on this port.
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Table 1–8 lists the variation of OCT without calibration across process, temperature, 
and voltage (PVT).

OCT calibration is automatically performed at device power-up for OCT-enabled 
I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up. 

Bus hold trip 
point — 0.3 0.9 0.375 1.125 0.68 1.07 0.7 1.7 0.8 2 0.8 2 V

Note to Table 1–7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

Table 1–7.  Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2) (1)

Parameter Condition

VCCIO (V)

Unit1.2 1.5 1.8 2.5 3.0 3.3

Min Max Min Max Min Max Min Max Min Max Min Max

Table 1–8. Series OCT Without Calibration Specifications for Cyclone IV Devices

Description VCCIO (V)

Resistance Tolerance

Unit
Commercial Maximum

Industrial, Extended 
industrial, and 

Automotive Maximum

Series OCT without 
calibration

3.0 ±30 ±40 %

2.5 ±30 ±40 %

1.8 ±40 ±50 %

1.5 ±50 ±50 %

1.2 ±50 ±50 %

Table 1–9. Series OCT with Calibration at Device Power-Up Specifications for Cyclone IV 
Devices (1)

Description VCCIO (V)

Calibration Accuracy

Unit
Commercial Maximum

Industrial, Extended 
industrial, and 

Automotive Maximum

Series OCT with 
calibration at device 
power-up

3.0 ±10 ±10 %

2.5 ±10 ±10 %

1.8 ±10 ±10 %

1.5 ±10 ±10 %

1.2 ±10 ±10 %

Note to Table 1–9:

(1) This specification is not applicable to EP4CGX15, EP4CGX22, and EP4CGX30 devices.
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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J JTAG Waveform

K — —

L — —

M — —

N — —

O — —

P PLL Block

The following highlights the PLL specification parameters:

Q — —

Table 1–46. Glossary (Part 2 of 5)

Letter Term Definitions

TDO

TCK

tJPZX tJPCO

tJSCO tJSXZ

tJPH

tJSH

t JPXZ

 tJCP

 tJPSU_TMS t JCL tJCH

TDI

TMS

Signal 
to be 

Captured

Signal 
to be 

Driven

 tJPSU_TDI

tJSZX

tJSSU

 

Core Clock
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