Intel - EP4CE15F17C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	963
Number of Logic Elements/Cells	15408
Total RAM Bits	516096
Number of I/O	165
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce15f17c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Up to 532 user I/Os
 - LVDS interfaces up to 840 Mbps transmitter (Tx), 875 Mbps Rx
 - Support for DDR2 SDRAM interfaces up to 200 MHz
 - Support for QDRII SRAM and DDR SDRAM up to 167 MHz
- Up to eight phase-locked loops (PLLs) per device
- Offered in commercial and industrial temperature grades

Device Resources

Table 1–1 lists Cyclone IV E device resources.

Table 1–1. Resources for the Cyclone IV E Device Family

Resources	EP4CE6	EP4CE10	EP4CE15	EP4CE22	EP4CE30	EP4CE40	EP4CE55	EP4CE75	EP4CE115
Logic elements (LEs)	6,272	10,320	15,408	22,320	28,848	39,600	55,856	75,408	114,480
Embedded memory (Kbits)	270	414	504	594	594	1,134	2,340	2,745	3,888
Embedded 18 × 18 multipliers	15	23	56	66	66	116	154	200	266
General-purpose PLLs	2	2	4	4	4	4	4	4	4
Global Clock Networks	10	10	20	20	20	20	20	20	20
User I/O Banks	8	8	8	8	8	8	8	8	8
Maximum user I/O ⁽¹⁾	179	179	343	153	532	532	374	426	528

Note to Table 1-1:

(1) The user I/Os count from pin-out files includes all general purpose I/O, dedicated clock pins, and dual purpose configuration pins. Transceiver pins and dedicated configuration pins are not included in the pin count.

Table 4–2 lists the sign of the multiplication results for the various operand sign representations. The results of the multiplication are signed if any one of the operands is a signed value.

Da	ta A	Dat	ta B	Deput
signa Value	Logic Level	signb Value	Logic Level	nesuit
Unsigned	Low	Unsigned	Low	Unsigned
Unsigned	Low	Signed	High	Signed
Signed	High	Unsigned	Low	Signed
Signed	High	Signed	High	Signed

Table 4–2. Multiplier Sign Representation

Each embedded multiplier block has only one signa and one signb signal to control the sign representation of the input data to the block. If the embedded multiplier block has two 9 × 9 multipliers, the Data A input of both multipliers share the same signa signal, and the Data B input of both multipliers share the same signb signal. You can dynamically change the signa and signb signals to modify the sign representation of the input operands at run time. You can send the signa and signb signals through a dedicated input register. The multiplier offers full precision, regardless of the sign representation.

When the signa and signb signals are unused, the Quartus II software sets the multiplier to perform unsigned multiplication by default.

Output Registers

You can register the embedded multiplier output with output registers in either 18- or 36-bit sections, depending on the operational mode of the multiplier. The following control signals are available for each output register in the embedded multiplier:

- clock
- clock enable
- asynchronous clear

All input and output registers in a single embedded multiplier are fed by the same clock, clock enable, and asynchronous clear signals.

Operational Modes

You can use an embedded multiplier block in one of two operational modes, depending on the application needs:

- One 18 × 18 multiplier
- Up to two 9 × 9 independent multipliers

You can also use embedded multipliers of Cyclone IV devices to implement multiplier adder and multiplier accumulator functions, in which the multiplier portion of the function is implemented with embedded multipliers, and the adder or accumulator function is implemented in logic elements (LEs).

GCLK Network Clock		GCLK Networks																		
Sources	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
PLL_3_C1	—	—	—	—	—	_	\checkmark	—	—	\checkmark	—	—	—		_	—	\checkmark	_	—	\checkmark
PLL_3_C2	-	—		—	-	~		\checkmark	—	—		-				~	—	~	—	—
PLL_3_C3	—				_		~		\checkmark			_					>		>	—
PLL_3_C4	—				_			>		>		_						\checkmark		\checkmark
PLL_4_C0 (3)	—				_	\checkmark			>		\checkmark	_	_	\checkmark						—
PLL_4_C1 (3)	—		_		_	_	\checkmark			>	_	\checkmark			\checkmark			_		—
PLL_4_C2 (3)	—				_	\checkmark		>			\checkmark	_	\checkmark							—
PLL_4_C3 (3)	—		_		—	_	\checkmark		>			~		\checkmark	_	-		_		—
PLL_4_C4 (3)	—		_		_	_	_	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		>	_	_	\checkmark		\checkmark			_		—
DPCLK2	—				_							_					>			—
DPCLK3 (4)	—				_							_							>	—
DPCLK4 (4)	—				-							-						>		—
DPCLK5	-		_		-	_	_				—	-	_	_	_			_		\checkmark
DPCLK6 (4)	—	_		—				—	\checkmark	_							_		—	—
DPCLK7	—	_		_	—	_	\checkmark	_	_	_	_	—		_	_	—	_	_	_	—
DPCLK8	—	_		_	—	_	_	_	_	\checkmark	_	—		_	_	—	_	_	_	—
DPCLK9 (4)	—	—		—	—	—	—	\checkmark	—	—	—	—		—	—	—	—	—	_	—
DPCLK10	—	—		—	—	—	—		—		—	—		—	\checkmark	—	—	—	_	—
DPCLK11 (4)	—	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	—	—	—	—	—	—
DPCLK12 (4)	—	—		—	—				—		—	—		\checkmark		—	—		—	—
DPCLK13	—			—	—		—					\checkmark			—			—		—

Table 5–1. GCLK Network Connections for EP4CGX15, EP4CGX22, and EP4CGX30^{(1), (2)} (Part 2 of 2)

Notes to Table 5-1:

(1) EP4CGX30 information in this table refers to all EP4CGX30 packages except F484 package.

(2) PLL_1 and PLL_2 are multipurpose PLLs while PLL_3 and PLL_4 are general purpose PLLs.

(3) PLL_4 is only available in EP4CGX22 and EP4CGX30 devices in F324 package.

(4) This pin applies to EP4CGX22 and EP4CGX30 devices.

Power-On Reset (POR) Circuit

The POR circuit keeps the device in reset state until the power supply voltage levels have stabilized during device power up. After device power up, the device does not release nSTATUS until V_{CCINT}, V_{CCA}, and V_{CCIO} (for I/O banks in which the configuration and JTAG pins reside) are above the POR trip point of the device. V_{CCINT} and V_{CCA} are monitored for brown-out conditions after device power up.

 V_{CCA} is the analog power to the phase-locked loop (PLL).

In some applications, it is necessary for a device to wake up very quickly to begin operation. Cyclone IV devices offer the fast POR time option to support fast wake-up time applications. The fast POR time option has stricter power-up requirements when compared with the standard POR time option. You can select either the fast option or the standard POR option with the MSEL pin settings.

- IF your system exceeds the fast or standard POR time, you must hold nCONFIG low until all the power supplies are stable.
 - For more information about the POR specifications, refer to the *Cyclone IV Device Datasheet*.
- **To** For more information about the wake-up time and POR circuit, refer to the *Power Requirements for Cyclone IV Devices* chapter.

Configuration File Size

Table 8–2 lists the approximate uncompressed configuration file sizes for Cyclone IV devices. To calculate the amount of storage space required for multiple device configurations, add the file size of each device together.

	Device	Data Size (bits)			
	EP4CE6	2,944,088			
	EP4CE10	2,944,088			
	EP4CE15	4,086,848			
	EP4CE22	5,748,552			
Cyclone IV E	EP4CE30	9,534,304			
	EP4CE40	9,534,304			
	EP4CE55	14,889,560			
	EP4CE75	19,965,752			
	EP4CE115	28,571,696			

Table 8–2. Uncompressed Raw Binary File (.rbf) Sizes for Cyclone IV Devices (Part 1 of 2)

The programming hardware or download cable then places the configuration data one bit at a time on the DATA [0] pin of the device. The configuration data is clocked into the target device until CONF_DONE goes high. The CONF_DONE pin must have an external $10-k\Omega$ pull-up resistor for the device to initialize.

When you use a download cable, setting the **Auto-restart configuration after error** option does not affect the configuration cycle because you must manually restart configuration in the Quartus II software if an error occurs. Additionally, the **Enable user-supplied start-up clock (CLKUSR)** option has no effect on device initialization, because this option is disabled in the **.sof** when programming the device with the Quartus II Programmer and download cable. Therefore, if you turn on the **CLKUSR** option, you do not have to provide a clock on CLKUSR when you configure the device with the Quartus II Programmer and a download cable.

Figure 8–17 shows PS configuration for Cyclone IV devices with a download cable.

Figure 8–17. PS Configuration Using a Download Cable

Notes to Figure 8-17:

- (1) You must connect the pull-up resistor to the same supply voltage as the V_{CCA} supply.
- (2) The pull-up resistors on DATA[0] and DCLK are only required if the download cable is the only configuration scheme used on your board. This is to ensure that DATA[0] and DCLK are not left floating after configuration. For example, if you also use a configuration device, the pull-up resistors on DATA[0] and DCLK are not required.
- (3) Pin 6 of the header is a V₁₀ reference voltage for the MasterBlaster output driver. V₁₀ must match the V_{CCA} of the device. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*. With the USB-Blaster, ByteBlaster II, ByteBlaster MV, and EthernetBlaster, this pin is a no connect.
- (4) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (5) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9 for PS configuration schemes. Connect the MSEL pins directly to V_{CCA} or GND.
- (6) Power up the V_{CC} of the ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V supply from V_{CCA}. Third-party programmers must switch to 2.5 V. Pin 4 of the header is a V_{CC} power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*.

- The **.rbf** used by the JRunner software driver cannot be a compressed **.rbf** because the JRunner software driver uses JTAG-based configuration. During JTAG-based configuration, the real-time decompression feature is not available.
- **C** For more information about the JRunner software driver, refer to *AN* 414: JRunner *Software Driver: An Embedded Solution for PLD JTAG Configuration* and the source files on the Altera website at (www.altera.com).

Combining JTAG and AS Configuration Schemes

You can combine the AS configuration scheme with the JTAG-based configuration (Figure 8–28). This setup uses two 10-pin download cable headers on the board. One download cable is used in JTAG mode to configure the Cyclone IV device directly through the JTAG interface. The other download cable is used in AS mode to program the serial configuration device in-system through the AS programming interface. If you try configuring the device using both schemes simultaneously, JTAG configuration takes precedence and AS configuration terminates.

Use the ACTIVE_DISENGAGE instruction with the CONFIG_IO instruction to interrupt configuration. Table 8–16 lists the sequence of instructions to use for various CONFIG_IO usage scenarios.

	Configuration Scheme and Current State of the Cyclone IV Device											
JTAG Instruction	Prior to User Mode (Interrupting Configuration)					User	Mode		Power Up			
	PS	FPP	AS	AP	PS	FPP	AS	AP	PS	FPP	AS	AP
ACTIVE_DISENGAGE	0	0	0	0	0	0	0	0	—	—	—	
CONFIG_IO	R	R	R	R	R	R	R	R	NA	NA	NA	NA
JTAG Boundary Scan Instructions (no JTAG_PROGRAM)	0	0	0	0	0	0	0	0	_	_	_	_
ACTIVE_ENGAGE			R (2)	R (2)			R (2)	R (2)			—	
PULSE_NCONFIG	Α	Α	A (3)	A (3)	А	Α	0	0				
Pulse nCONFIG pin			A (3)	A (3)			0	0	_			
JTAG TAP Reset	R	R	R	R	R	R	R	R	_		_	

Table 8–16. JTAG CONFIG_IO (without JTAG_PROGRAM) Instruction Flows (1)

Notes to Table 8-16:

(1) You must execute "R" indicates that the instruction before the next instruction, "O" indicates the optional instruction, "A" indicates that the instruction must be executed, and "NA" indicates that the instruction is not allowed in this mode.

(2) Required if you use ACTIVE_DISENGAGE.

(3) Neither of the instruction is required if you use ACTIVE ENGAGE.

The CONFIG_IO instruction does not hold nSTATUS low until reconfiguration. You must disengage the AS or AP configuration controller by issuing the ACTIVE_DISENGAGE and ACTIVE_ENGAGE instructions when active configuration is interrupted. You must issue the ACTIVE_DISENGAGE instruction alone or prior to the CONFIG_IO instruction if the JTAG_PROGRAM instruction is to be issued later (Table 8–17). This puts the active configuration controllers into the idle state. The active configuration controller is reengaged after user mode is reached through JTAG programming (Table 8–17).

While executing the CONFIG IO instruction, all user I/Os are tri-stated.

If reconfiguration after interruption is performed using configuration modes (rather than using JTAG_PROGRAM), it is not necessary to issue the ACTIVE_DISENGAGE instruction prior to CONFIG_IO. You can start reconfiguration by either pulling nCONFIG low for at least 500 ns or issuing the PULSE_NCONFIG instruction. If the ACTIVE_DISENGAGE instruction was issued and the JTAG_PROGRAM instruction fails to enter user mode, you must issue the ACTIVE_ENGAGE instruction to reactivate the active configuration controller. Issuing the ACTIVE_ENGAGE instruction also triggers reconfiguration in configuration modes; therefore, it is not necessary to pull nCONFIG low or issue the PULSE_NCONFIG instruction.

Cyclone IV Device Handbook,

Volume 2

101 Innovation Drive San Jose, CA 95134 www.altera.com

CYIV-5V2-1.9

Signal Detect at Receiver	1–56
Lane Synchronization	1–56
Clock Rate Compensation	1–56
Low-Latency Synchronous PCIe	1–57
Fast Recovery from P0s State	1–57
Electrical Idle Inference	1–57
Compliance Pattern Transmission	1–58
Reset Requirement	1–58
GIGE Mode	1–59
Running Disparity Preservation with Idle Ordered Set	1-62
Lane Synchronization	1–62
Clock Frequency Compensation	1–63
Serial RapidIO Mode	1–64
Lane Synchronization	1–66
Clock Frequency Compensation	1–67
XAUI Mode	1–67
XGMII and PCS Code Conversions	1 - 70
Channel Deskewing	1 - 71
Lane Synchronization	1–72
Clock Rate Compensation	1–73
Deterministic Latency Mode	1–73
Registered Mode Phase Compensation FIFO	1 - 75
Receive Bit-Slip Indication	1–76
Transmit Bit-Slip Control	1–76
PLL PFD feedback	1–76
SDI Mode	1–76
Loopback	1 - 78
Reverse Parallel Loopback	1–79
Serial Loopback	1–79
Reverse Serial Loopback	1–80
Self Test Modes	1 - 81
BIST	1–82
PRBS	1–83
Transceiver Top-Level Port Lists	1 - 85
Document Revision History	1–93

Chapter 2. Cyclone IV Reset Control and Power Down

User Reset and Power-Down Signals	
Blocks Affected by the Reset and Power-Down Signals	
Transceiver Reset Sequences	
All Supported Functional Modes Except the PCIe Functional Mode	
Bonded Channel Configuration	
Non-Bonded Channel Configuration	
Reset Sequence in Loss of Link Conditions	
PCIe Functional Mode	
PCIe Reset Sequence	
PCIe Initialization/Compliance Phase	
PCIe Normal Phase	
Dynamic Reconfiguration Reset Sequences	
Reset Sequence in PLL Reconfiguration Mode	
Reset Sequence in Channel Reconfiguration Mode	
Power Down	
Simulation Requirements	
Reference Information	

The high-speed serial link can be AC- or DC-coupled, depending on the serial protocol implementation. In an AC-coupled link, the AC-coupling capacitor blocks the transmitter DC common mode voltage as shown in Figure 1–12. Receiver OCT and on-chip biasing circuitry automatically restores the common mode voltage. The biasing circuitry is also enabled by enabling OCT. If you disable the OCT, then you must externally terminate and bias the receiver. AC-coupled links are required for PCIe, GbE, Serial RapidIO, SDI, XAUI, SATA, V-by-One and Display Port protocols.

Figure 1–12. AC-Coupled Link with OCT

Table 1–4 lists the synchronization state machine parameters for the word aligner in this mode.

Parameter	Allowed Values
Number of erroneous code groups received to lose synchronization	1–64
Number of continuous good code groups received to reduce the error count by one	1–256

 Table 1–4.
 Synchronization State Machine Parameters

After deassertion of the rx_digitalreset signal in automatic synchronization state machine mode, the word aligner starts looking for the synchronization code groups, word alignment pattern or its complement in the received data stream. When the programmed number of valid synchronization code groups or ordered sets are received, the rx_syncstatus signal is driven high to indicate that synchronization is acquired. The rx_syncstatus signal is constantly driven high until the programmed number of erroneous code groups are received without receiving intermediate good groups; after which the rx_syncstatus signal is driven low. The word aligner indicates loss of synchronization (rx_syncstatus signal remains low) until the programmed number of valid synchronization code groups are received again.

In addition to restoring word boundaries, the word aligner supports the following features:

Programmable run length violation detection—detects consecutive 1s or 0s in the data stream, and asserts run length violation signal (rx_rlv) when a preset run length threshold (maximum number of consecutive 1s or 0s) is detected. The rx_rlv signal in each channel is clocked by its parallel recovered clock and is asserted for a minimum of two recovered clock cycles to ensure that the FPGA fabric clock can latch the rx_rlv signal reliably because the FPGA fabric clock might have phase differences, ppm differences (in asynchronous systems), or both, with the recovered clock. Table 1–5 lists the run length violation circuit detection capabilities.

Supported Data Width	Detecto	Increment Step			
Supported Data Wittin	Minimum	Maximum	Settings		
8-bit	4	128	4		
10-bit	5	160	5		

Table 1–5. Run Length Violation Circuit Detection Capabilities

Figure 1–50 and Figure 1–51 show the detection mechanism example for a successful and unsuccessful receiver detection scenarios respectively. The tx_forceelecidle port must be asserted at least 10 parallel clock cycles prior to assertion of tx_detectrxloop port to ensure the transmitter buffer is properly tri-stated. Detection completion is indicated by pipephydonestatus assertion, with detection successful indicated by 3'b011 on pipestatus[2..0] port, or detection unsuccessful by 3'b000 on pipestatus[2..0] port.

Figure 1–51. Example of Unsuccessful Receiver Detect Operation

powerdown[10]	2'b10(P1)
tx_detectrxloopback	
pipephydonestatus	
pipestatus[20]	Х З'ю000

Electrical Idle Control

The Cyclone IV GX transceivers support transmitter buffer in electrical idle state using the tx_forceelecidle port. During electrical idle, the transmitter buffer differential and common mode output voltage levels are compliant to the PCIe Base Specification 2.0 for Gen1 signaling rate.

Figure 1–52 shows the relationship between assertion of the $tx_forceelecidle$ port and the transmitter buffer output on the $tx_dataout$ port.

Figure 1–52. Transmitter Buffer Electrical Idle State

Notes to Figure 1-52:

- (1) The protocol requires the transmitter buffer to transition to a valid electrical idle after sending an electrical idle ordered set within 8 ns.
- (2) The protocol requires transmitter buffer to stay in electrical idle for a minimum of 20 ns for Gen1 signaling rate.

Figure 1–61 shows the transceiver configuration in Serial RapidIO mode.

Figure 1–61. Transceiver Configuration in Serial RapidIO Mode

Lane Synchronization

In Serial RapidIO mode, the word aligner is compliant to the SRIO Specification 1.3 and is configured in automatic synchronization state machine mode with the parameter settings as listed in Table 1–20.

Table 1–20. Synchronization State Machine Parameters ⁽¹⁾

Parameter	Value
Number of valid synchronization (/K28.5/) code groups received to achieve synchronization	127
Number of erroneous code groups received to lose synchronization	3
Number of continuous good code groups received to reduce the error count by one	255

Note to Table 1-20:

(1) The word aligner supports 10-bit pattern lengths in SRIO mode.

- The busy signal remains low for the first reconfig_clk clock cycle. It then gets asserted from the second reconfig_clk clock cycle. Subsequent deassertion of the busy signal indicates the completion of the offset cancellation process. This busy signal is required in transceiver reset sequences except for transmitter only channel configurations. Refer to the reset sequences shown in Figure 2–2 and the associated references listed in the notes for the figure.
- Altera strongly recommends adhering to these reset sequences for proper operation of the Cyclone IV GX transceiver.

Figure 2–2 shows the transceiver reset sequences for Cyclone IV GX devices.

Notes to Figure 2-2:

- (1) Refer to the Timing Diagram in Figure 2-10.
- (2) Refer to the Timing Diagram in Figure 2–3.
- (3) Refer to the Timing Diagram in Figure 2–4.
- (4) Refer to the Timing Diagram in Figure 2–5.
- (5) Refer to the Timing Diagram in Figure 2–6.
- (6) Refer to the Timing Diagram in Figure 2–7.
- (7) Refer to the Timing Diagram in Figure 2–8.
- (8) Refer to the Timing Diagram in Figure 2–9.

Figure 3–9 shows the connection for PMA reconfiguration mode.

(1) This block can be reconfigured in PMA reconfiguration mode.

Transceiver Channel Reconfiguration Mode

You can dynamically reconfigure the transceiver channel from an existing functional mode to a different functional mode by selecting the **Channel Reconfiguration** option in ALTGX and ALTGX_RECONFIG MegaWizards. The blocks that are reconfigured by channel reconfiguration mode are the PCS and RX PMA blocks of a transceiver channel.

For more information about reconfiguring the RX PMA blocks of the transceiver channel using channel reconfiguration mode, you can refer to "Data Rate Reconfiguration Mode Using RX Local Divider" on page 3–26.

In channel reconfiguration, only a write transaction can occur; no read transactions are allowed. You can optionally choose to trigger write_all once by selecting the continuous write operation in the ALTGX_RECONFIG MegaWizard Plug-In Manager. The Quartus II software then continuously writes all the words required for reconfiguration.

For channel reconfiguration, **.mif** files are required to dynamically reconfigure the transceivers channels in channel reconfiguration modes. The **.mif** carries the reconfiguration information that will be used to reconfigure the transceivers channel dynamically on-the-fly. The **.mif** contents is generated automatically when you select the **Generate GXB Reconfig MIF** option in the Quartus II software setting. For different **.mif** settings, you need to later reconfigure and recompile the ALTGX MegaWizard to generate the **.mif** based on the required reconfiguration settings.

The dynamic reconfiguration controller can optionally perform a continuos write operation or a regular write operation of the **.mif** contents in terms of word size (16-bit data) to the transceivers channel that is selected for reconfiguration.

Figure 3–9. ALTGX and ALTGX_RECONFIG Connection for PMA Reconfiguration Mode

Table 3–4 describes the tx_datainfull[21..0] FPGA fabric-transceiver channel interface signals.

FPGA Fabric-Transceiver Channel Interface Description	Transmit Signal Description (Based on Cyclone IV GX Supported FPGA Fabric-Transceiver Channel Interface Widths)			
	<pre>tx_datainfull[7:0]: 8-bit data (tx_datain)</pre>			
	The following signals are used only in 8B/10B modes:			
	<pre>tx_datainfull[8]: Control bit (tx_ctrlenable)</pre>			
	tx_datainfull[9]			
8-bit FPGA fabric-Transceiver Channel Interface	Transmitter force disparity Compliance (PCI Express [PIPE]) (tx_forcedisp) in all modes except PCI Express (PIPE) functional mode. For PCI Express (PIPE) functional mode, (tx_forcedispcompliance) is used.			
	For non-PIPE:			
	<pre>tx_datainfull[10]: Forced disparity value (tx_dispval)</pre>			
	■ For PCIe:			
	<pre>tx_datainfull[10]: Forced electrical idle (tx_forceelecidle)</pre>			
10-bit FPGA fabric-Transceiver Channel Interface tx_datainfull[9:0]: 10-bit data (tx_datain)				
	Two 8-bit Data (tx_datain)			
	<pre>tx_datainfull[7:0] - tx_datain (LSByte) and tx_datainfull[18:11] - tx_datain (MSByte)</pre>			
	The following signals are used only in 8B/10B modes:			
	<pre>tx_datainfull[8] - tx_ctrlenable (LSB) and tx_datainfull[19] - tx_ctrlenable (MSB)</pre>			
	Force Disparity Enable			
	■ For non-PIPE:			
16-bit FPGA fabric-Transceiver Channel Interface with PCS-PMA set	<pre>tx_datainfull[9] - tx_forcedisp (LSB) and tx_datainfull[20] - tx_forcedisp (MSB)</pre>			
to 8/10 bits	■ For PCIe:			
	<code>tx_datainfull[9]</code> - <code>tx_forcedispcompliance</code> and <code>tx_datainfull[20]</code> - 0			
	Force Disparity Value			
	■ For non-PIPE:			
	<pre>tx_datainfull[10] - tx_dispval (LSB) and tx_datainfull[21] - tx_dispval (MSB)</pre>			
	■ For PCIe:			
	<pre>tx_datainfull[10] - tx_forceelecidle and tx_datainfull[21] - tx_forceelecidle</pre>			
20-bit FPGA fabric-Transceiver	Two 10-bit Data (tx_datain)			
Channel Interface with PCS-PMA set to 10 bits	<pre>tx_datainfull[9:0] - tx_datain (LSByte) and tx_datainfull[20:11] - tx_datain (MSByte)</pre>			

Table 3–4. tx_datainfull[21..0] FPGA Fabric-Transceiver Channel Interface Signal Descriptions ⁽¹⁾

Note to Table 3-4:

(1) For all transceiver-related ports, refer to the "Transceiver Port Lists" section in the Cyclone IV GX Transceiver Architecture chapter.

Option 2: Use the Respective Channel Transmitter Core Clocks

- Enable this option if you want the individual transmitter channel tx_clkout signals to provide the write clock to their respective Transmit Phase Compensation FIFOs.
- This option is typically enabled when each transceiver channel is reconfigured to a different functional mode using channel reconfiguration.

Figure 3–12 shows how each transmitter channel's tx_clkout signal provides a clock to the Transmit Phase Compensation FIFOs of the respective transceiver channels.

Figure 3–12. Option 2 for Transmitter Core Clocking (Channel Reconfiguration Mode)

Receiver core clocking refers to the clock that is used to read the parallel data from the Receiver Phase Compensation FIFO into the FPGA fabric. You can use one of the following clocks to read from the Receive Phase Compensation FIFO:

- rx_coreclk—you can use a clock of the same frequency as rx_clkout from the FPGA fabric to provide the read clock to the Receive Phase Compensation FIFO. If you use rx_coreclk, it overrides the rx_clkout options in the ALTGX MegaWizard Plug-In Manager.
- rx_clkout—the Quartus II software automatically routes rx_clkout to the FPGA fabric and back into the Receive Phase Compensation FIFO.

Device	Performance								
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	I8L ⁽¹⁾	A7	Unit
EP4CE55	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE75	500	437.5	402	362	265	437.5	362	—	MHz
EP4CE115	—	437.5	402	362	265	437.5	362	—	MHz
EP4CGX15	500	437.5	402			437.5	—	—	MHz
EP4CGX22	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX30	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX50	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX75	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX110	500	437.5	402	—	—	437.5	—	—	MHz
EP4CGX150	500	437.5	402	—	—	437.5	—	—	MHz

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Note to Table 1-24:

(1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (–40°C to 100°C), the extended industrial junction temperature range (–40°C to 125°C), and the automotive junction temperature range (–40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

Table 1–25. PLL Specifications for Cyclone IV Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)		—	472.5	MHz
f _{IN} (3)	Input clock frequency (-8L speed grade)		_	362	MHz
	Input clock frequency (–9L speed grade)	5	_	265	MHz
f _{INPFD}	PFD input frequency	5	_	325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
t _{injitter_CCJ} (5)	Input clock cycle-to-cycle jitter $F_{REF} \ge 100 \mbox{ MHz}$		_	0.15	UI
	F _{REF} < 100 MHz	_	_	±750	ps
f _{OUT_EXT} (external clock output) ⁽³⁾	PLL output frequency	_	_	472.5	MHz
f _{OUT} (to global clock)	PLL output frequency (-6 speed grade)	_	_	472.5	MHz
	PLL output frequency (-7 speed grade)	_	_	450	MHz
	PLL output frequency (-8 speed grade)	_	_	402.5	MHz
	PLL output frequency (-8L speed grade)		_	362	MHz
	PLL output frequency (-9L speed grade)	—	—	265	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)		50	55	%
t _{LOCK}	Time required to lock from end of device configuration			1	ms

Table 1-47. Document Revision History

Date	Version	Changes
February 2010	1.1	 Updated Table 1–3 through Table 1–44 to include information for Cyclone IV E devices and Cyclone IV GX devices for Quartus II software version 9.1 SP1 release. Minor text edits.
November 2009	1.0	Initial release.