
Intel - EP4CE15F17C8L Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.
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Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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1–4 Chapter 1: Cyclone IV FPGA Device Family Overview
Device Resources
Table 1–2 lists Cyclone IV GX device resources.

Table 1–2. Resources for the Cyclone IV GX Device Family
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Logic elements (LEs) 14,400 21,280 29,440 29,440 49,888 73,920 109,424 149,760

Embedded memory (Kbits) 540 756 1,080 1,080 2,502 4,158 5,490 6,480

Embedded 18 × 18 multipliers 0 40 80 80 140 198 280 360

General purpose PLLs 1 2 2 4 (4) 4 (4) 4 (4) 4 (4) 4 (4)

Multipurpose PLLs 2 (5) 2 (5) 2 (5) 2 (5) 4 (5) 4 (5) 4 (5) 4 (5)

Global clock networks 20 20 20 30 30 30 30 30

High-speed transceivers (6) 2 4 4 4 8 8 8 8

Transceiver maximum data rate 
(Gbps) 2.5 2.5 2.5 3.125 3.125 3.125 3.125 3.125

PCIe (PIPE) hard IP blocks 1 1 1 1 1 1 1 1

User I/O banks 9 (7) 9 (7) 9 (7) 11 (8) 11 (8) 11 (8) 11 (8) 11 (8)

Maximum user I/O (9) 72 150 150 290 310 310 475 475

Notes to Table 1–2:
(1) Applicable for the F169 and F324 packages.
(2) Applicable for the F484 package.
(3) Only two multipurpose PLLs for F484 package.
(4) Two of the general purpose PLLs are able to support transceiver clocking. For more information, refer to the Clock Networks and PLLs in 

Cyclone IV Devices chapter.
(5) You can use the multipurpose PLLs for general purpose clocking when they are not used to clock the transceivers. For more information, refer 

to the Clock Networks and PLLs in Cyclone IV Devices chapter.
(6) If PCIe 1, you can use the remaining transceivers in a quad for other protocols at the same or different data rates.
(7) Including one configuration I/O bank and two dedicated clock input I/O banks for HSSI reference clock input.
(8) Including one configuration I/O bank and four dedicated clock input I/O banks for HSSI reference clock input.
(9) The user I/Os count from pin-out files includes all general purpose I/O, dedicated clock pins, and dual purpose configuration pins. Transceiver 

pins and dedicated configuration pins are not included in the pin count.
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1
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Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices 2–7
Document Revision History
Each LAB can use two clocks and two clock enable signals. The clock and clock enable 
signals of each LAB are linked. For example, any LE in a particular LAB using the 
labclk1 signal also uses the labclkena1. If the LAB uses both the rising and falling 
edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock 
enable signal turns off the LAB-wide clock.

The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide 
control signals. The MultiTrack interconnect inherent low skew allows clock and 
control signal distribution in addition to data distribution.

Figure 2–6 shows the LAB control signal generation circuit.

LAB-wide signals control the logic for the clear signal of the register. The LE directly 
supports an asynchronous clear function. Each LAB supports up to two asynchronous 
clear signals (labclr1 and labclr2).

A LAB-wide asynchronous load signal to control the logic for the preset signal of the 
register is not available. The register preset is achieved with a NOT gate push-back 
technique. Cyclone IV devices only support either a preset or asynchronous clear 
signal.

In addition to the clear port, Cyclone IV devices provide a chip-wide reset pin 
(DEV_CLRn) that resets all registers in the device. An option set before compilation in 
the Quartus II software controls this pin. This chip-wide reset overrides all other 
control signals.

Document Revision History
Table 2–1 shows the revision history for this chapter.

Figure 2–6. Cyclone IV Device LAB-Wide Control Signals
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Table 2–1. Document Revision History

Date Version Changes

November 2009 1.0 Initial release.
November 2009 Altera Corporation Cyclone IV Device Handbook,
Volume 1



5–2 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Clock Networks
f For more information about the number of GCLK networks in each device density, 
refer to the Cyclone IV FPGA Device Family Overview chapter.

GCLK Network
GCLKs drive throughout the entire device, feeding all device quadrants. All resources 
in the device (I/O elements, logic array blocks (LABs), dedicated multiplier blocks, 
and M9K memory blocks) can use GCLKs as clock sources. Use these clock network 
resources for control signals, such as clock enables and clears fed by an external pin. 
Internal logic can also drive GCLKs for internally generated GCLKs and 
asynchronous clears, clock enables, or other control signals with high fan-out.

Table 5–1, Table 5–2 on page 5–4, and Table 5–3 on page 5–7 list the connectivity of the 
clock sources to the GCLK networks.

Table 5–1. GCLK Network Connections for EP4CGX15, EP4CGX22, and EP4CGX30 (1), (2) (Part 1 of 2)

GCLK Network Clock 
Sources

GCLK Networks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CLK4/DIFFCLK_2n — — — — — v — v — v — — — — — — — — — —

CLK5/DIFFCLK_2p — — — — — — v v — — — — — — — — — — — —

CLK6/DIFFCLK_3n — — — — — — v — v v — — — — — — — — — —

CLK7/DIFFCLK_3p — — — — — v — — v — — — — — — — — — — —

CLK8/DIFFCLK_5n — — — — — — — — — — v — v — v — — — — —

CLK9/DIFFCLK_5p — — — — — — — — — — — v v — — — — — — —

CLK10/DIFFCLK_4n/RE
FCLK1n 

— — — — — — — — — — — v — v v — — — — —

CLK11/DIFFCLK_4p/RE
FCLK1p 

— — — — — — — — — — v — — v — — — — — —

CLK12/DIFFCLK_7p/RE
FCLK0p 

— — — — — — — — — — — — — — — v — v — v
CLK13/DIFFCLK_7n/RE
FCLK0n 

— — — — — — — — — — — — — — — — v v — —

CLK14/DIFFCLK_6p — — — — — — — — — — — — — — — — v — v v
CLK15/DIFFCLK_6n — — — — — — — — — — — — — — — v — — v —

PLL_1_C0 v — — v — — — — — — — — — — — v — — v —

PLL_1_C1 — v — — v — — — — — — — — — — — v — — v
PLL_1_C2 v — v — — — — — — — — — — — — v — v — —

PLL_1_C3 — v — v — — — — — — — — — — — — v — v —

PLL_1_C4 — — v — v — — — — — — — — — — — — v — v
PLL_2_C0 v — — v — — — — — — v — — v — — — — — —

PLL_2_C1 — v — — v — — — — — — v — — v — — — — —

PLL_2_C2 v — v — — — — — — — v — v — — — — — — —

PLL_2_C3 — v — v — — — — — — — v — v — — — — — —

PLL_2_C4 — — v — v — — — — — — — v — v — — — — —

PLL_3_C0 — — — — — v — — v — — — — — — v — — v —
Cyclone IV Device Handbook, October 2012 Altera Corporation
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5–10 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Clock Networks
If you do not use dedicated clock pins to feed the GCLKs, you can use them as 
general-purpose input pins to feed the logic array. However, when using them as 
general-purpose input pins, they do not have support for an I/O register and must 
use LE-based registers in place of an I/O register.

f For more information about how to connect the clock and PLL pins, refer to the 
Cyclone IV Device Family Pin Connection Guidelines.

Clock Control Block
The clock control block drives the GCLKs. Clock control blocks are located on each 
side of the device, close to the dedicated clock input pins. GCLKs are optimized for 
minimum clock skew and delay. 

Table 5–4 lists the sources that can feed the clock control block, which in turn feeds the 
GCLKs.

In Cyclone IV devices, dedicated clock input pins, PLL counter outputs, dual-purpose 
clock I/O inputs, and internal logic can all feed the clock control block for each GCLK. 
The output from the clock control block in turn feeds the corresponding GCLK. The 
GCLK can drive the PLL input if the clock control block inputs are outputs of another 
PLL or dedicated clock input pins. There are five or six clock control blocks on each 
side of the device periphery—depending on device density; providing up to 30 clock 
control blocks in each Cyclone IV GX device. The maximum number of clock control 
blocks per Cyclone IV E device is 20. For the clock control block locations, refer to 
Figure 5–2 on page 5–12, Figure 5–3 on page 5–13, and Figure 5–4 on page 5–14.

1 The clock control blocks on the left side of the Cyclone IV GX device do not support 
any clock inputs.

The control block has two functions:

■ Dynamic GCLK clock source selection (not applicable for DPCLK, CDPCLK, and 
internal logic input)

■ GCLK network power down (dynamic enable and disable)

Table 5–4. Clock Control Block Inputs

Input Description

Dedicated clock inputs
Dedicated clock input pins can drive clocks or global signals, such as 
synchronous and asynchronous clears, presets, or clock enables onto 
given GCLKs.

Dual-purpose clock 
(DPCLK and CDPCLK) 
I/O input 

DPCLK and CDPCLK I/O pins are bidirectional dual function pins that 
are used for high fan-out control signals, such as protocol signals, 
TRDY and IRDY signals for PCI, via the GCLK. Clock control blocks 
that have inputs driven by dual-purpose clock I/O pins are not able to 
drive PLL inputs.

PLL outputs PLL counter outputs can drive the GCLK.

Internal logic

You can drive the GCLK through logic array routing to enable internal 
logic elements (LEs) to drive a high fan-out, low-skew signal path. 
Clock control blocks that have inputs driven by internal logic are not 
able to drive PLL inputs.
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–31
Hardware Features
■ When using manual clock switchover, the difference between inclk0 and inclk1 
can be more than 20%. However, differences between the two clock sources 
(frequency, phase, or both) can cause the PLL to lose lock. Resetting the PLL 
ensures that the correct phase relationships are maintained between the input and 
output clocks.

■ Both inclk0 and inclk1 must be running when the clkswitch signal goes high to 
start the manual clock switchover event. Failing to meet this requirement causes 
the clock switchover to malfunction.

■ Applications that require a clock switchover feature and a small frequency drift 
must use a low-bandwidth PLL. When referencing input clock changes, the 
low-bandwidth PLL reacts slower than a high-bandwidth PLL. When the 
switchover happens, the low-bandwidth PLL propagates the stopping of the clock 
to the output slower than the high-bandwidth PLL. The low-bandwidth PLL 
filters out jitter on the reference clock. However, the low-bandwidth PLL also 
increases lock time.

■ After a switchover occurs, there may be a finite resynchronization period for the 
PLL to lock onto a new clock. The exact amount of time it takes for the PLL to 
re-lock is dependent on the PLL configuration.

■ If the phase relationship between the input clock to the PLL and output clock from 
the PLL is important in your design, assert areset for 10 ns after performing a 
clock switchover. Wait for the locked signal (or gated lock) to go high before 
re-enabling the output clocks from the PLL.

■ Figure 5–20 shows how the VCO frequency gradually decreases when the primary 
clock is lost and then increases as the VCO locks on to the secondary clock. After 
the VCO locks on to the secondary clock, some overshoot can occur (an 
over-frequency condition) in the VCO frequency.

■ Disable the system during switchover if the system is not tolerant to frequency 
variations during the PLL resynchronization period. You can use the clkbad0 and 
clkbad1 status signals to turn off the PFD (pfdena = 0) so the VCO maintains its 
last frequency. You can also use the switchover state machine to switch over to the 
secondary clock. Upon enabling the PFD, output clock enable signals (clkena) can 
disable clock outputs during the switchover and resynchronization period. After 
the lock indication is stable, the system can re-enable the output clock or clocks.

Figure 5–20. VCO Switchover Operating Frequency
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–7
Configuration
You can begin reconfiguration by pulling the nCONFIG pin low. The nCONFIG pin must 
be low for at least 500 ns. When nCONFIG is pulled low, the Cyclone IV device is reset. 
The Cyclone IV device also pulls nSTATUS and CONF_DONE low and all I/O pins are 
tri-stated. When nCONFIG returns to a logic-high level and nSTATUS is released by the 
Cyclone IV device, reconfiguration begins.

Configuration Error
If an error occurs during configuration, Cyclone IV devices assert the nSTATUS signal 
low, indicating a data frame error and the CONF_DONE signal stays low. If the 
Auto-restart configuration after error option (available in the Quartus II software in 
the General tab of the Device and Pin Options dialog box) is turned on, the 
Cyclone IV device releases nSTATUS after a reset time-out period (a maximum of 
230 s), and retries configuration. If this option is turned off, the system must monitor 
nSTATUS for errors and then pulse nCONFIG low for at least 500 ns to restart 
configuration.

Initialization
In Cyclone IV devices, the initialization clock source is either the internal oscillator or 
the optional CLKUSR pin. By default, the internal oscillator is the clock source for 
initialization. If you use the internal oscillator, the device provides itself with enough 
clock cycles for proper initialization. When using the internal oscillator, you do not 
have to send additional clock cycles from an external source to the CLKUSR pin during 
the initialization stage. Additionally, you can use the CLKUSR pin as a user I/O pin.

You also have the flexibility to synchronize initialization of multiple devices or to 
delay initialization with the CLKUSR option. The CLKUSR pin allows you to control 
when your device enters user mode for an indefinite amount of time. You can turn on 
the Enable user-supplied start-up clock (CLKUSR) option in the Quartus II software 
in the General tab of the Device and Pin Options dialog box. When you turn on the 
Enable user supplied start-up clock option (CLKUSR) option, the CLKUSR pin is the 
initialization clock source. Supplying a clock on the CLKUSR pin does not affect the 
configuration process. After the configuration data is accepted and CONF_DONE goes 
high, Cyclone IV devices require 3,192 clock cycles to initialize properly and enter 
user mode.

1 If you use the optional CLKUSR pin and the nCONFIG pin is pulled low to restart 
configuration during device initialization, ensure that the CLKUSR pin continues to 
toggle when nSTATUS is low (a maximum of 230 s).

User Mode
An optional INIT_DONE pin is available, which signals the end of initialization and the 
start of user mode with a low-to-high transition. The Enable INIT_DONE Output 
option is available in the Quartus II software in the General tab of the Device and Pin 
Options dialog box. If you use the INIT_DONE pin, it is high due to an external 10-k 
pull-up resistor when nCONFIG is low and during the beginning of configuration. After 
the option bit to enable INIT_DONE is programmed into the device (during the first 
frame of configuration data), the INIT_DONE pin goes low. When initialization is 
complete, the INIT_DONE pin is released and pulled high. This low-to-high transition 
signals that the device has entered user mode. In user mode, the user I/O pins 
function as assigned in your design and no longer have weak pull-up resistors.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–23
Configuration
f For more information about the operation of the Micron P30 Parallel NOR and P33 
Parallel NOR flash memories, search for the keyword “P30” or “P33” on the Micron 
website (www.micron.com) to obtain the P30 or P33 family datasheet.

Single-Device AP Configuration
The following groups of interface pins are supported in Micron P30 and P33 flash 
memories:

■ Control pins

■ Address pins

■ Data pins

The following control signals are from the supported parallel flash memories:

■ CLK

■ active-low reset (RST#)

■ active-low chip enable (CE#)

■ active-low output enable (OE#)

■ active-low address valid (ADV#)

■ active-low write enable (WE#)

The supported parallel flash memories output a control signal (WAIT) to Cyclone IV E 
devices to indicate when synchronous data is ready on the data bus. Cyclone IV E 
devices have a 24-bit address bus connecting to the address bus (A[24:1]) of the flash 
memory. A 16-bit bidirectional data bus (DATA[15..0]) provides data transfer between 
the Cyclone IV E device and the flash memory.

The following control signals are from the Cyclone IV E device to flash memory:

■ DCLK

■ active-low hard rest (nRESET)

■ active-low chip enable (FLASH_nCE)

■ active-low output enable for the DATA[15..0] bus and WAIT pin (nOE) 

■ active-low address valid signal and is used to write data into the flash (nAVD) 

■ active-low write enable and is used to write data into the flash (nWE)
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Chapter 9: SEU Mitigation in Cyclone IV Devices 9–5
Error Detection Timing
Table 9–4 defines the registers shown in Figure 9–1.

Error Detection Timing
When the error detection CRC feature is enabled through the Quartus II software, the 
device automatically activates the CRC process upon entering user mode after 
configuration and initialization is complete. 

The CRC_ERROR pin is driven low until the error detection circuitry detects a corrupted 
bit in the previous CRC calculation. After the pin goes high, it remains high during 
the next CRC calculation. This pin does not log the previous CRC calculation. If the 
new CRC calculation does not contain any corrupted bits, the CRC_ERROR pin is driven 
low. The error detection runs until the device is reset.

The error detection circuitry runs off an internal configuration oscillator with a divisor 
that sets the maximum frequency.

Table 9–5 lists the minimum and maximum error detection frequencies.

You can set a lower clock frequency by specifying a division factor in the Quartus II 
software (for more information, refer to “Software Support”). The divisor is a power 
of two (2), where n is between 0 and 8. The divisor ranges from one through 256. Refer 
to Equation 9–1.

CRC calculation time depends on the device and the error detection clock frequency.

Table 9–4. Error Detection Registers

Register Function

32-bit signature 
register

This register contains the CRC signature. The signature register contains the result of the user 
mode calculated CRC value compared against the pre-calculated CRC value. If no errors are 
detected, the signature register is all zeros. A non-zero signature register indicates an error in the 
configuration CRAM contents.

The CRC_ERROR signal is derived from the contents of this register.

32-bit storage register

This register is loaded with the 32-bit pre-computed CRC signature at the end of the configuration 
stage. The signature is then loaded into the 32-bit CRC circuit (called the Compute and Compare 
CRC block, as shown in Figure 9–1) during user mode to calculate the CRC error. This register 
forms a 32-bit scan chain during execution of the CHANGE_EDREG JTAG instruction. The 
CHANGE_EDREG JTAG instruction can change the content of the storage register. Therefore, the 
functionality of the error detection CRC circuitry is checked in-system by executing the instruction 
to inject an error during the operation. The operation of the device is not halted when issuing the 
CHANGE_EDREG instruction.

Table 9–5. Minimum and Maximum Error Detection Frequencies for Cyclone IV Devices

 Error Detection 
Frequency

Maximum Error 
Detection Frequency

Minimum Error 
Detection Frequency Valid Divisors (2n)

80 MHz/2n 80 MHz 312.5 kHz 0, 1, 2, 3, 4, 5, 6, 7, 8

Equation 9–1.

rror detection frequency  80 MH

2n
-------------------=
May 2013 Altera Corporation Cyclone IV Device Handbook,
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9–8 Chapter 9: SEU Mitigation in Cyclone IV Devices
Software Support
Figure 9–3 shows the error detection block diagram in FPGA devices and shows the 
interface that the WYSIWYG atom enables in your design.

1 The user logic is affected by the soft error failure, so reading out the 32-bit CRC 
signature through the regout should not be relied upon to detect a soft error. You 
should rely on the CRC_ERROR output signal itself, because this CRC_ERROR output 
signal cannot be affected by a soft error.

To enable the cycloneiv_crcblock WYSIWYG atom, you must name the atom for 
each Cyclone IV device accordingly.

Example 9–1 shows an example of how to define the input and output ports of a 
WYSIWYG atom in a Cyclone IV device.

Figure 9–3. Error Detection Block Diagram
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Example 9–1. Error Detection Block Diagram

cycloneiv_crcblock<crcblock_name>

(

.clk(<clock source>),

.shiftnld(<shiftnld source>),

.ldsrc(<ldsrc source>),

.crcerror(<crcerror out destination>),

.regout(<output destination>),

);
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



10–4 Chapter 10: JTAG Boundary-Scan Testing for Cyclone IV Devices
BST Operation Control
Table 10–2 lists the IDCODE information for Cyclone IV devices.

IEEE Std.1149.6 mandates the addition of two new instructions: EXTEST_PULSE and 
EXTEST_TRAIN. These two instructions enable edge-detecting behavior on the signal 
path containing the AC pins.

EP4CGX75 1006

EP4CGX110 1495

EP4CGX150 1495

Note to Table 10–1:

(1) For the F484 package of the EP4CGX30 device, the boundary-scan register length is 1006.

Table 10–1. Boundary-Scan Register Length for Cyclone IV Devices (Part 2 of 2)

Device Boundary-Scan Register Length

Table 10–2. IDCODE Information for 32-Bit Cyclone IV Devices

Device

IDCODE (32 Bits) (1)

Version
(4 Bits)

Part Number
(16 Bits)

Manufacturer Identity 
(11 Bits)

LSB 
(1 Bit) (2)

EP4CE6 0000 0010 0000 1111 0001 000 0110 1110 1

EP4CE10 0000 0010 0000 1111 0001 000 0110 1110 1

EP4CE15 0000 0010 0000 1111 0010 000 0110 1110 1

EP4CE22 0000 0010 0000 1111 0011 000 0110 1110 1

EP4CE30 0000 0010 0000 1111 0100 000 0110 1110 1

EP4CE40 0000 0010 0000 1111 0100 000 0110 1110 1

EP4CE55 0000 0010 0000 1111 0101 000 0110 1110 1

EP4CE75 0000 0010 0000 1111 0110 000 0110 1110 1

EP4CE115 0000 0010 0000 1111 0111 000 0110 1110 1

EP4CGX15 0000 0010 1000 0000 0001 000 0110 1110 1

EP4CGX22 0000 0010 1000 0001 0010 000 0110 1110 1

EP4CGX30 (3) 0000 0010 1000 0000 0010 000 0110 1110 1

EP4CGX30 (4) 0000 0010 1000 0010 0011 000 0110 1110 1

EP4CGX50 0000 0010 1000 0001 0011 000 0110 1110 1

EP4CGX75 0000 0010 1000 0000 0011 000 0110 1110 1

EP4CGX110 0000 0010 1000 0001 0100 000 0110 1110 1

EP4CGX150 0000 0010 1000 0000 0100 000 0110 1110 1

Notes to Table 10–2:

(1) The MSB is on the left.
(2) The IDCODE LSB is always 1.
(3) The IDCODE is applicable for all packages except for the F484 package.
(4) The IDCODE is applicable for the F484 package only.
Cyclone IV Device Handbook, December 2013 Altera Corporation
Volume 1



1–20 Chapter 1: Cyclone IV Transceivers Architecture
Receiver Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Table 1–4 lists the synchronization state machine parameters for the word aligner in 
this mode.

After deassertion of the rx_digitalreset signal in automatic synchronization state 
machine mode, the word aligner starts looking for the synchronization code groups, 
word alignment pattern or its complement in the received data stream. When the 
programmed number of valid synchronization code groups or ordered sets are 
received, the rx_syncstatus signal is driven high to indicate that synchronization is 
acquired. The rx_syncstatus signal is constantly driven high until the programmed 
number of erroneous code groups are received without receiving intermediate good 
groups; after which the rx_syncstatus signal is driven low. The word aligner 
indicates loss of synchronization (rx_syncstatus signal remains low) until the 
programmed number of valid synchronization code groups are received again.

In addition to restoring word boundaries, the word aligner supports the following 
features:

■ Programmable run length violation detection—detects consecutive 1s or 0s in the 
data stream, and asserts run length violation signal (rx_rlv) when a preset run 
length threshold (maximum number of consecutive 1s or 0s) is detected. The 
rx_rlv signal in each channel is clocked by its parallel recovered clock and is 
asserted for a minimum of two recovered clock cycles to ensure that the FPGA 
fabric clock can latch the rx_rlv signal reliably because the FPGA fabric clock 
might have phase differences, ppm differences (in asynchronous systems), or both, 
with the recovered clock. Table 1–5 lists the run length violation circuit detection 
capabilities.

Table 1–4. Synchronization State Machine Parameters 

Parameter Allowed Values

Number of erroneous code groups received to lose synchronization 1–64

Number of continuous good code groups received to reduce the 
error count by one 1–256

Table 1–5. Run Length Violation Circuit Detection Capabilities

Supported Data Width
Detector Range Increment Step 

SettingsMinimum Maximum

8-bit 4 128 4

10-bit 5 160 5



1–34 Chapter 1: Cyclone IV Transceivers Architecture
Transceiver Clocking Architecture

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

The transceiver datapath clocking varies in non-bonded channel configuration 
depending on the PCS configuration.

Figure 1–33 shows the datapath clocking in transmitter only operation. In this mode, 
each channel selects the high- and low-speed clock from one of the supported PLLs. 
The high-speed clock feeds to the serializer for parallel to serial operation. The 
low-speed clock feeds to the following blocks in the transmitter PCS:

■ 8B/10B encoder

■ read clock of the byte serializer

■ read clock of the TX phase compensation FIFO

Figure 1–32. Clock Distribution in Non-Bonded Channel Configuration for Transceivers in F484 
and Larger Packages

Notes to Figure 1–32:

(1) High-speed clock.
(2) Low-speed clock.
(3) These PLLs have restricted clock driving capability and may not reach all connected channels. For details, refer to 

Table 1–9.
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PCI-Express Hard IP Block
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The calibration block internally generates a constant internal reference voltage, 
independent of PVT variations and uses this voltage and the external reference 
resistor on the RREF pin to generate constant reference currents. The OCT calibration 
circuit calibrates the OCT resistors present in the transceiver channels. Figure 1–41 
shows the calibration block diagram.

PCI-Express Hard IP Block
Figure 1–42 shows the block diagram of the PCIe hard IP block implementing the 
PHY MAC, Data Link Layer, and Transaction Layer for PCIe interfaces. The PIPE 
interface is used as the interface between the transceiver and the hard IP block. 

Figure 1–41. Input Signals to the Calibration Blocks (1)

Notes to Figure 1–41:

(1) All transceiver channels use the same calibration block clock and power down signals.
(2) Connect a 2 k (tolerance max ± 1%) external resistor to the RREF pin to ground. The RREF resistor connection in 

the board must be free from any external noise.
(3) Supports up to 125 MHz clock frequency. Use either dedicated global clock or divide-down logic from the FPGA fabric 

to generate a slow clock on the local clock routing.
(4) The calibration block restarts the calibration process following deassertion of the cal_blk_powerdown signal.
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cal_blk_clk (3)

cal_blk_powerdown (4)
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Figure 1–42. PCI Express Hard IP High-Level Block Diagram 
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Loopback
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Reverse Parallel Loopback
The reverse parallel loopback option is only available for PIPE mode. In this mode, 
the received serial data passes through the receiver CDR, deserializer, word aligner, 
and rate match FIFO before looping back to the transmitter serializer and transmitted 
out through the TX buffer, as shown in Figure 1–70. The received data is also available 
to the FPGA fabric. This loopback mode is compliant with version 2.00 of the PHY 
Interface for the PCI Express Architecture specification.

To enable the reverse parallel loopback mode, assert the tx_detectrxloopback port in 
P0 power state.

Serial Loopback
The serial loopback option is available for all functional modes except PIPE mode. In 
this mode, the data from the FPGA fabric passes through the transmitter channel and 
looped back to the receiver channel, bypassing the receiver buffer, as shown in 
Figure 1–71. The received data is available to the FPGA logic for verification. The 
receiver input buffer is not active in this mode. With this option, you can check the 
operation of all enabled PCS and PMA functional blocks in the transmitter and 
receiver channels. 

The transmitter channel sends the data to both the serial output port and the receiver 
channel. The differential output voltage on the serial ports is based on the selected 
VOD settings. The data is looped back to the receiver CDR and is retimed through 
different clock domains. You must provide an alignment pattern for the word aligner 
to enable the receiver channel to retrieve the byte boundary.

Figure 1–70.  PIPE Reverse Parallel Loopback Path (1)

Note to Figure 1–70:

(1) Grayed-Out Blocks are Not Active in this mode.
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Dynamic Reconfiguration Reset Sequences
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2. After the PLL is reset, wait for the pll_locked signal to go high (marker 4) 
indicating that the PLL is locked to the input reference clock. After the assertion of 
the pll_locked signal, deassert the tx_digitalreset signal (marker 5).

3. Wait at least five parallel clock cycles after the pll_locked signal is asserted to 
deassert the rx_analogreset signal (marker 6).

4. When the rx_freqlocked signal goes high (marker 7), from that point onwards, 
wait for at least tLTD_Auto time, then deassert the rx_digitalreset signal 
(marker 8). At this point, the receiver is ready for data traffic.

Reset Sequence in Channel Reconfiguration Mode
Use the example reset sequence shown in Figure 2–12 when you are using the 
dynamic reconfiguration controller to change the PCS settings of the transceiver 
channel. In this example, the dynamic reconfiguration is used to dynamically 
reconfigure the transceiver channel configured in Basic ×1 mode with receiver CDR in 
automatic lock mode.

Figure 2–12. Reset Sequence When Using the Dynamic Reconfiguration Controller to Change the 
PCS Settings of the Transceiver Channel

Notes to Figure 2–12:

(1) For tLTD_Auto duration, refer to the Cyclone IV Device Datasheet chapter.
(2) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In 

subsequent reset sequences, the busy signal is asserted and deasserted only if there is a read or write operation to 
the ALTGX_RECONFIG megafunction.

Reset and Control Signals

4

Output Status Signals

7

8

busy (2)

2
Five parallel clock cycles 

1

New value

3

6

1

1

1

5

tx_digitalreset

rx_analogreset

rx_digitalreset

reconfig_mode_sel[2..0]

write_all

channel_reconfig_done

rx_freqlocked

tLTD_Auto (1)

http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf


Info�2

Cyclone IV Device Handbook,
Volume 3

Indi
tdi

Visual Cue
Additional Information
Typographic Conventions

Meaning
cates signal, port, register, bit, block, and primitive names. For example, data1 , 
, and input . The suffix n denotes an active-low signal. For example, resetn .

s it 

rts of 

rtant, 

. 

on. 

r 

 

ents.
Courier type
Indicates command line commands and anything that must be typed exactly a
appears. For example, c:\qdesigns\tutorial\chiptrip.gdf . 

Also indicates sections of an actual file, such as a Report File, references to pa
files (for example, the AHDL keyword SUBDESIGN), and logic function names (for 
example, TRI ). 

r An angled arrow instructs you to press the Enter key.

1., 2., 3., and
a., b., c., and so on

Numbered steps indicate a list of items when the sequence of the items is impo
such as the steps listed in a procedure. 

� � � Bullets indicate a list of items when the sequence of the items is not important

1 The hand points to information that requires special attention. 

h The question mark directs you to a software help system with related informati

f The feet direct you to another document or website with related information. 

m The multimedia icon directs you to a related multimedia presentation. 

c A caution calls attention to a condition or possible situation that can damage o
destroy the product or your work.

w  A warning calls attention to a condition or possible situation that can cause you
injury.

The envelope links to the Email Subscription Management Center page of the Altera 
website, where you can sign up to receive update notifications for Altera docum
December 2016 Altera Corporation


