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Chapter 1: Cyclone IV FPGA Device Family Overview 1–11
Cyclone IV Device Family Architecture
Figure 1–1 shows the structure of the Cyclone IV GX transceiver.

f For more information, refer to the Cyclone IV Transceivers Architecture chapter.

Hard IP for PCI Express (Cyclone IV GX Devices Only)
Cyclone IV GX devices incorporate a single hard IP block for ×1, ×2, or ×4 PCIe (PIPE) 
in each device. This hard IP block is a complete PCIe (PIPE) protocol solution that 
implements the PHY-MAC layer, Data Link Layer, and Transaction Layer 
functionality. The hard IP for the PCIe (PIPE) block supports root-port and end-point 
configurations. This pre-verified hard IP block reduces risk, design time, timing 
closure, and verification. You can configure the block with the Quartus II software’s 
PCI Express Compiler, which guides you through the process step by step.

f For more information, refer to the PCI Express Compiler User Guide.

Figure 1–1. Transceiver Channel for the Cyclone IV GX Device
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2–2 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
Logic Elements
Figure 2–1 shows the LEs for Cyclone IV devices.

LE Features
You can configure the programmable register of each LE for D, T, JK, or SR flipflop 
operation. Each register has data, clock, clock enable, and clear inputs. Signals that 
use the global clock network, general-purpose I/O pins, or any internal logic can 
drive the clock and clear control signals of the register. Either general-purpose I/O 
pins or the internal logic can drive the clock enable. For combinational functions, the 
LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output independently drives these three outputs. Two LE outputs 
drive the column or row and direct link routing connections, while one LE drives the 
local interconnect resources. This allows the LUT to drive one output while the 
register drives another output. This feature, called register packing, improves device 
utilization because the device can use the register and the LUT for unrelated 
functions. The LAB-wide synchronous load control signal is not available when using 
register packing. For more information about the synchronous load control signal, 
refer to “LAB Control Signals” on page 2–6.

The register feedback mode allows the register output to feed back into the LUT of the 
same LE to ensure that the register is packed with its own fan-out LUT, providing 
another mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–1. Cyclone IV Device LEs 
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3–16 Chapter 3: Memory Blocks in Cyclone IV Devices
Design Considerations
Same-Port Read-During-Write Mode
This mode applies to a single-port RAM or the same port of a true dual-port RAM. In 
the same port read-during-write mode, there are two output choices: New Data mode 
(or flow-through) and Old Data mode. In New Data mode, new data is available on 
the rising edge of the same clock cycle on which it was written. In Old Data mode, the 
RAM outputs reflect the old data at that address before the write operation proceeds.

When using New Data mode together with byteena, you can control the output of the 
RAM. When byteena is high, the data written into the memory passes to the output 
(flow-through). When byteena is low, the masked-off data is not written into the 
memory and the old data in the memory appears on the outputs. Therefore, the 
output can be a combination of new and old data determined by byteena.

Figure 3–14 and Figure 3–15 show sample functional waveforms of same port 
read-during-write behavior with both New Data and Old Data modes, respectively.

Mixed-Port Read-During-Write Mode
This mode applies to a RAM in simple or true dual-port mode, which has one port 
reading and the other port writing to the same address location with the same clock.

Figure 3–14. Same Port Read-During Write: New Data Mode

Figure 3–15. Same Port Read-During-Write: Old Data Mode
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3–18 Chapter 3: Memory Blocks in Cyclone IV Devices
Document Revision History
Power-Up Conditions and Memory Initialization
The M9K memory block outputs of Cyclone IV devices power up to zero (cleared) 
regardless of whether the output registers are used or bypassed. All M9K memory 
blocks support initialization using a .mif. You can create .mifs in the Quartus II 
software and specify their use using the RAM MegaWizard Plug-In Manager when 
instantiating memory in your design. Even if memory is pre-initialized (for example, 
using a .mif), it still powers up with its outputs cleared. Only the subsequent read 
after power up outputs the pre-initialized values.

f For more information about .mifs, refer to the RAM Megafunction User Guide and the 
Quartus II Handbook.

Power Management
The M9K memory block clock enables of Cyclone IV devices allow you to control 
clocking of each M9K memory block to reduce AC power consumption. Use the rden 
signal to ensure that read operations only occur when necessary. If your design does 
not require read-during-write, reduce power consumption by deasserting the rden 
signal during write operations or any period when there are no memory operations. 
The Quartus II software automatically powers down any unused M9K memory 
blocks to save static power.

Document Revision History
Table 3–6 shows the revision history for this chapter.

Table 3–6. Document Revision History

Date Version Changes

November 2011 1.1 Updated the “Byte Enable Support” section.

November 2009 1.0 Initial release.
Cyclone IV Device Handbook, November 2011 Altera Corporation
Volume 1
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5–34 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLL Reconfiguration
PLL Reconfiguration
PLLs use several divide counters and different VCO phase taps to perform frequency 
synthesis and phase shifts. In PLLs of Cyclone IV devices, you can reconfigure both 
counter settings and phase shift the PLL output clock in real time. You can also change 
the charge pump and loop filter components, which dynamically affects PLL 
bandwidth. You can use these PLL components to update the output clock frequency, 
PLL bandwidth, and phase shift in real time, without reconfiguring the entire FPGA.

The ability to reconfigure the PLL in real time is useful in applications that might 
operate at multiple frequencies. It is also useful in prototyping environments, 
allowing you to sweep PLL output frequencies and adjust the output clock phase 
dynamically. For instance, a system generating test patterns is required to generate 
and send patterns at 75 or 150 MHz, depending on the requirements of the device 
under test. Reconfiguring PLL components in real time allows you to switch between 
two such output frequencies in a few microseconds.

You can also use this feature to adjust clock-to-out (tCO) delays in real time by 
changing the PLL output clock phase shift. This approach eliminates the need to 
regenerate a configuration file with the new PLL settings.

PLL Reconfiguration Hardware Implementation
The following PLL components are configurable in real time:

■ Pre-scale counter (N)

■ Feedback counter (M)

■ Post-scale output counters (C0–C4)

■ Dynamically adjust the charge pump current (ICP) and loop filter components 
(R, C) to facilitate on-the-fly reconfiguration of the PLL bandwidth
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1



Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–5
Configuration
Use the data in Table 8–2 to estimate the file size before design compilation. Different 
configuration file formats, such as Hexadecimal (.hex) or Tabular Text File (.ttf) 
formats, have different file sizes. However, for any specific version of the Quartus II 
software, any design targeted for the same device has the same uncompressed 
configuration file size. If you use compression, the file size varies after each 
compilation, because the compression ratio depends on the design.

f For more information about setting device configuration options or creating 
configuration files, refer to the Software Settings section in volume 2 of the 
Configuration Handbook.

Configuration and JTAG Pin I/O Requirements
Cyclone IV devices are manufactured using the TSMC 60-nm low-k dielectric process. 
Although Cyclone IV devices use TSMC 2.5-V transistor technology in the I/O 
buffers, the devices are compatible and able to interface with 2.5, 3.0, and 3.3-V 
configuration voltage standards by following specific requirements.

All I/O inputs must maintain a maximum AC voltage of 4.1 V. When using a serial 
configuration device in an AS configuration scheme, you must connect a 25- series 
resistor for the DATA[0] pin. When cascading the Cyclone IV device family in a 
multi-device configuration for AS, AP, FPP, and PS configuration schemes, you must 
connect the repeater buffers between the master and slave devices for the DATA and 
DCLK pins. When using the JTAG configuration scheme in a multi-device 
configuration, connect 25- resistors on both ends of the TDO-TDI path if the TDO 
output driver is a non-Cyclone IV device. 

The output resistance of the repeater buffers and the TDO path for all cases must fit the 
maximum overshoot equation shown in Equation 8–1.

Cyclone IV GX

EP4CGX15 3,805,568

EP4CGX22 7,600,040

EP4CGX30 
7,600,040

22,010,888 (1)

EP4CGX50 22,010,888

EP4CGX75 22,010,888

EP4CGX110 39,425,016

EP4CGX150 39,425,016

Note to Table 8–2:

(1) Only for the F484 package.

Table 8–2. Uncompressed Raw Binary File (.rbf) Sizes for Cyclone IV Devices (Part 2 of 2) 

Device Data Size (bits)

Equation 8–1. (1)

Note to Equation 8–1:
(1) ZO is the transmission line impedance and RE is the equivalent resistance of the output buffer.

0.8ZO RE 1.8ZO 
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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8–48 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
To configure a single device in a JTAG chain, the programming software places all 
other devices in bypass mode. In bypass mode, devices pass programming data from 
the TDI pin to the TDO pin through a single bypass register without being affected 
internally. This scheme enables the programming software to program or verify the 
target device. Configuration data driven into the device appears on the TDO pin one 
clock cycle later.

The Quartus II software verifies successful JTAG configuration after completion. At 
the end of configuration, the software checks the state of CONF_DONE through the JTAG 
port. When Quartus II generates a .jam for a multi-device chain, it contains 
instructions so that all the devices in the chain are initialized at the same time. If 
CONF_DONE is not high, the Quartus II software indicates that configuration has failed. 
If CONF_DONE is high, the software indicates that configuration was successful. After 
the configuration bitstream is serially sent using the JTAG TDI port, the TCK port 
clocks an additional clock cycles to perform device initialization.

Figure 8–24. JTAG Configuration of a Single Device Using a Download Cable (1.5-V or 1.8-V VCCIO 
Powering the JTAG Pins)

Notes to Figure 8–24:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use JTAG 

configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] 
to either high or low, whichever is convenient on your board.

(3) In the USB-Blaster and ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming; 
otherwise it is a no connect.

(4) The nCE must be connected to GND or driven low for successful JTAG configuration.
(5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(6) Power up the VCC of the EthernetBlaster, ByteBlaster II or USB-Blaster cable with supply from VCCIO. The 

Ethernet-Blaster, ByteBlaster II, and USB-Blaster cables do not support a target supply voltage of 1.2 V. For the target 
supply voltage value, refer to the ByteBlaster II Download Cable User Guide, the USB-Blaster Download Cable User 
Guide, and the EthernetBlaster Communications Cable User Guide.

(7) Resistor value can vary from 1 k to 10 k.
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Cyclone IV Device Handbook, May 2013 Altera Corporation
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–73
Remote System Upgrade
When Cyclone IV devices successfully load the application configuration, they enter 
user mode. In user mode, the soft logic (the Nios II processor or state machine and the 
remote communication interface) assists the Cyclone IV device in determining when a 
remote system update is arriving. When a remote system update arrives, the soft logic 
receives the incoming data, writes it to the configuration memory device and triggers 
the device to load the factory configuration. The factory configuration reads the 
remote system upgrade status register, determines the valid application configuration 
to load, writes the remote system upgrade control register accordingly, and starts 
system reconfiguration.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 10: JTAG Boundary-Scan Testing for Cyclone IV Devices 10–7
Document Revision History
Document Revision History
Table 10–3 lists the revision history for this chapter.

Table 10–3. Document Revision History

Date Version Changes

December 2013 1.3 ■ Updated the “EXTEST_PULSE” section.

November 2011 1.2
■ Updated the “BST Operation Control” section.

■ Updated Table 10–2.

February 2010 1.1

■ Added Cyclone IV E devices in Table 10–1 and Table 10–2 for the Quartus II 
software version 9.1 SP1 release.

■ Updated Figure 10–1 and Figure 10–2.

■ Minor text edits.

November 2009 1.0 Initial release.
December 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 1: Cyclone IV Transceivers Architecture 1–15
Receiver Channel Datapath

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Clock Data Recovery 
Each receiver channel has an independent CDR unit to recover the clock from the 
incoming serial data stream. The high-speed recovered clock is used to clock the 
deserializer for serial-to-parallel conversion of the received input data, and low-speed 
recovered clock to clock the receiver PCS blocks. Figure 1–15 illustrates the CDR unit 
block diagram.

Each CDR unit gets the reference clock from one of the two multipurpose 
phase-locked loops (PLLs) adjacent to the transceiver block. The CDR works by 
tracking the incoming data with a phase detector and finding the optimum sampling 
clock phase from the phase interpolator unit. The CDR operations are controlled by 
the LTR/LTD controller block, where the CDR may operate in the following states:

■ Lock-to-reference (LTR) state—phase detector disabled and CDR ignores incoming 
data

■ Lock-to-data (LTD) state—phase detector enabled and CDR tracks incoming data 
to find the optimum sampling clock phase

State transitions are supported with automatic lock mode and manual lock mode.

Automatic Lock Mode
Upon receiver power-up and reset cycle, the CDR is put into LTR state. Transition to 
the LTD state is performed automatically when both of the following conditions are 
met:

■ Signal detection circuitry indicates the presence of valid signal levels at the 
receiver input buffer. This condition is valid for PCI Express (PIPE) mode only. 
CDR transitions are not dependent on signal detection circuitry in other modes.

■ The recovered clock is within the configured part per million (ppm) frequency 
threshold setting with respect to the CDR clocks from multipurpose PLL.

Figure 1–15. CDR Unit Block Diagram

Notes to Figure 1–15:

(1) Optional RX local divider for CDR clocks from multipurpose PLL is only available in each CDR unit for EP4CGX30 
(F484 package), EP4CGX50, and EP4CGX75 devices. This block is used with the transceiver dynamic reconfiguration 
feature. For more information, refer to the Cyclone IV Dynamic Reconfiguration chapter and AN 609: Implementing 
Dynamic Reconfiguration in Cyclone IV GX Devices.

(2) CDR state transition in automatic lock mode is not dependent on rx_signaldetect signal, except when configured 
in PCI Express (PIPE) mode only.
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http://www.altera.com/literature/an/an609.pdf
http://www.altera.com/literature/an/an609.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-52003.pdf


Chapter 1: Cyclone IV Transceivers Architecture 1–41
Transceiver Clocking Architecture

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

For Transmitter and Receiver operation in bonded channel configuration, the receiver 
PCS supports configuration with rate match FIFO, and configuration without rate 
match FIFO. Figure 1–39 shows the datapath clocking in Transmitter and Receiver 
operation with rate match FIFO in ×2 and ×4 bonded channel configurations. For 
Transmitter and Receiver operation in bonded channel configuration without rate 
match FIFO, the datapath clocking is identical to Figure 1–38 for the bonded 
transmitter channels, and Figure 1–34 on page 1–35 for the receiver channels.



Chapter 1: Cyclone IV Transceivers Architecture 1–45
Calibration Block

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

When using user-specified clock option, ensure that the clock feeding rx_coreclk port 
has 0 ppm difference with the RX phase compensation FIFO write clock.

Calibration Block
This block calibrates the OCT resistors and the analog portions of the transceiver 
blocks to ensure that the functionality is independent of process, voltage, and 
temperature (PVT) variations. 

Figure 1–40 shows the location of the calibration block and how it is connected to the 
transceiver blocks.

Bonded

With rate match FIFO (1)
coreclkout clock feeds the FIFO read clock for the bonded channels. 
coreclkout clock is the common bonded low-speed clock, which also feeds 
the FIFO read clock and transmitter PCS in the bonded channels.

Without rate match FIFO
rx_clkout clock feeds the FIFO read clock. rx_clkout is forwarded through 
the receiver channel from low-speed recovered clock, which also feeds the FIFO 
write clock.

Note to Table 1–13:

(1) Configuration with rate match FIFO is supported in transmitter and receiver operation.

Table 1–13. Automatic RX Phase Compensation FIFO Read Clock Selection (Part 2 of 2)

Channel Configuration Quartus II Selection

Figure 1–40. Transceiver Calibration Blocks Location and Connection 

Note to Figure 1–40:

(1) Transceiver block GXBL1 is only available for devices in F484 and larger packages.

GXBL1 (1)

GXBL0

2KΩ
RREF

Calibration
Block

Cyclone IV GX
Device



Chapter 1: Cyclone IV Transceivers Architecture 1–61
Transceiver Functional Modes

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Figure 1–56 shows the transceiver configuration in GIGE mode.

When configured in GIGE mode, three encoded comma (/K28.5/) code groups are 
transmitted automatically after deassertion of tx_digitalreset and before 
transmitting user data on the tx_datain port. This could affect the synchronization 
state machine behavior at the receiver.

Depending on when you start transmitting the synchronization sequence, there could 
be an even or odd number of encoded data (/Dx.y/) code groups transmitted 
between the last of the three automatically sent /K28.5/ code groups and the first 
/K28.5/ code group of the synchronization sequence. If there is an even number of 
/Dx.y/ code groups received between these two /K28.5/ code groups, the first 
/K28.5/ code group of the synchronization sequence begins at an odd code group 
boundary. An IEEE802.3-compliant GIGE synchronization state machine treats this as 
an error condition and goes into the Loss-of-Sync state.

Figure 1–56. Transceiver Configuration in GIGE Mode
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Chapter 1: Cyclone IV Transceivers Architecture 1–85
Transceiver Top-Level Port Lists

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Transceiver Top-Level Port Lists
Table 1–26 through Table 1–29 provide descriptions of the ports available when 
instantiating a transceiver using the ALTGX megafunction. The ALTGX megafunction 
requires a relatively small number of signals. There are also a large number of 
optional signals that facilitate debugging by providing information about the state of 
the transceiver. 



3–36 Chapter 3: Cyclone IV Dynamic Reconfiguration
Error Indication During Dynamic Reconfiguration

Cyclone IV Device Handbook, November 2011 Altera Corporation
Volume 2

If you are reconfiguring the multipurpose PLL with a different M counter value, 
follow these steps:

1. During transceiver PLL reconfiguration, assert tx_digitalreset, 
rx_digitalreset, and rx_analogreset signals.

2. Perform PLL reconfiguration to update the multipurpose PLL with the PLL .mif 
files.

3. Perform channel reconfiguration and update the transceiver with the GXB 
reconfiguration .mif files. If you have multiple channel instantiations connected to 
the same multipurpose PLL, reconfigure each channel.

4. Deassert tx_digitalreset and rx_analogreset signals.

5. After the rx_freqlocked signal goes high, wait for at least 4 µs, and then deassert 
the rx_digitalreset signal.

Error Indication During Dynamic Reconfiguration
The ALTGX_RECONFIG MegaWizard Plug-In Manager provides an error status 
signal when you select the Enable illegal mode checking option or the Enable self 
recovery option in the Error checks/data rate switch screen. The conditions under 
which the error signal is asserted are: 

■ Enable illegal mode checking option—when you select this option, the dynamic 
reconfiguration controller checks whether an attempted operation falls under one 
of the conditions listed below. The dynamic reconfiguration controller detects 
these conditions within two reconfig_clk cycles, deasserts the busy signal, and 
asserts the error signal for two reconfig_clk cycles.

■ PMA controls, read operation—none of the output ports (rx_eqctrl_out, 
rx_eqdcgain_out, tx_vodctrl_out, and tx_preemp_out) are selected in the 
ALTGX_RECONFIG instance and the read signal is asserted.

■ PMA controls, write operation—none of the input ports (rx_eqctrl, 
rx_eqdcgain, tx_vodctrl, and tx_preemp) are selected in the 
ALTGX_RECONFIG instance and the write_all signal is asserted.

■ Channel reconfiguration and PMA reconfiguration mode select - read operation 
option:

■ The reconfig_mode_sel input port is set to 3’b001 (Channel reconfiguration 
mode) 

■ The read signal is asserted

■ Enable self recovery option—when you select this option, the 
ALTGX_RECONFIG MegaWizard Plug-In Manager provides the error output 
port. The dynamic reconfiguration controller quits an operation if it did not 
complete within the expected number of clock cycles. After recovering from the 
illegal operation, the dynamic reconfiguration controller deasserts the busy signal 
and asserts the error output port for two reconfig_clk cycles.

1 The error signal is not asserted when an illegal value is written to any of the PMA 
controls.
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Operating Conditions
The OCT resistance may vary with the variation of temperature and voltage after 
calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the 
final OCT resistance considering the variations after calibration at device power-up. 
Table 1–10 lists the change percentage of the OCT resistance with voltage and 
temperature.

Table 1–10. OCT Variation After Calibration at Device Power-Up for Cyclone IV Devices (1)

Nominal Voltage dR/dT (%/°C) dR/dV (%/mV)

3.0 0.262 –0.026

2.5 0.234 –0.039

1.8 0.219 –0.086

1.5 0.199 –0.136

1.2 0.161 –0.288

Note to Table 1–10:

(1) This specification is not applicable to EP4CGX15, EP4CGX22, and EP4CGX30 devices.

Equation 1–1. Final OCT Resistance (1), (2), (3), (4), (5), (6)

RV = (V2 – V1) × 1000 × dR/dV ––––– (7)

RT = (T2 – T1) × dR/dT ––––– (8)

For Rx < 0; MFx = 1/ (|Rx|/100 + 1) ––––– (9)

For Rx > 0; MFx = Rx/100 + 1 ––––– (10)

MF = MFV × MFT ––––– (11)

Rfinal = Rinitial × MF ––––– (12)

Notes to Equation 1–1: 

(1) T2 is the final temperature. 
(2) T1 is the initial temperature. 
(3) MF is multiplication factor. 
(4) Rfinal is final resistance. 
(5) Rinitial is initial resistance. 
(6) Subscript x refers to both V and T.
(7) RV is a variation of resistance with voltage. 
(8) RT is a variation of resistance with temperature. 
(9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up. 
(10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up. 
(11) V2 is final voltage. 
(12) V1 is the initial voltage. 
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3
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Glossary
J JTAG Waveform

K — —

L — —

M — —

N — —

O — —

P PLL Block

The following highlights the PLL specification parameters:

Q — —

Table 1–46. Glossary (Part 2 of 5)

Letter Term Definitions

TDO

TCK

tJPZX tJPCO

tJSCO tJSXZ

tJPH

tJSH

t JPXZ

 tJCP

 tJPSU_TMS t JCL tJCH

TDI

TMS

Signal 
to be 

Captured

Signal 
to be 

Driven

 tJPSU_TDI

tJSZX

tJSSU

 

Core Clock

Phase tap

Reconfigurable in User Mode

Key

CLK

N

M

PFD VCOCP LF

CLKOUT Pins

GCLK

fINPFDfIN

fVCO fOUT

fOUT _EXT

Switchover

Counters
C0..C4
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Document Revision History
February 2010 1.1
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