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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
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Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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3–4 Chapter 3: Memory Blocks in Cyclone IV Devices
Overview
Figure 3–1 shows how the wren and byteena signals control the RAM operations.

When a byteena bit is deasserted during a write cycle, the old data in the memory 
appears in the corresponding data-byte output. When a byteena bit is asserted during 
a write cycle, the corresponding data-byte output depends on the setting chosen in 
the Quartus® II software. The setting can either be the newly written data or the old 
data at that location.

1 Byte enables are only supported for True Dual-Port memory configurations when 
both the PortA and PortB data widths of the individual M9K memory blocks are 
multiples of 8 or 9 bits.

Packed Mode Support
Cyclone IV devices M9K memory blocks support packed mode. You can implement 
two single-port memory blocks in a single block under the following conditions:

■ Each of the two independent block sizes is less than or equal to half of the M9K 
block size. The maximum data width for each independent block is 18 bits wide.

■ Each of the single-port memory blocks is configured in single-clock mode. For 
more information about packed mode support, refer to “Single-Port Mode” on 
page 3–8 and “Single-Clock Mode” on page 3–15.

Figure 3–1. Cyclone IV Devices byteena Functional Waveform (1)

Note to Figure 3–1:

(1) For this functional waveform, New Data mode is selected.
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–3
Clock Networks
PLL_3_C1 — — — — — — v — — v — — — — — — v — — v
PLL_3_C2 — — — — — v — v — — — — — — — v — v — —

PLL_3_C3 — — — — — — v — v — — — — — — — v — v —

PLL_3_C4 — — — — — — — v — v — — — — — — — v — v
PLL_4_C0 (3) — — — — — v — — v — v — — v — — — — — —

PLL_4_C1 (3) — — — — — — v — — v — v — — v — — — — —

PLL_4_C2 (3) — — — — — v — v — — v — v — — — — — — —

PLL_4_C3 (3) — — — — — — v — v — — v — v — — — — — —

PLL_4_C4 (3) — — — — — — — v — v — — v — v — — — — —

DPCLK2 — — — — — — — — — — — — — — — — v — — —

DPCLK3 (4) — — — — — — — — — — — — — — — — — — v —

DPCLK4 (4) — — — — — — — — — — — — — — — — — v — —

DPCLK5 — — — — — — — — — — — — — — — — — — — v
DPCLK6 (4) — — — — — — — — v — — — — — — — — — — —

DPCLK7 — — — — — — v — — — — — — — — — — — — —

DPCLK8 — — — — — — — — — v — — — — — — — — — —

DPCLK9 (4) — — — — — — — v — — — — — — — — — — — —

DPCLK10 — — — — — — — — — — — — — — v — — — — —

DPCLK11 (4) — — — — — — — — — — — — v — — — — — — —

DPCLK12 (4) — — — — — — — — — — — — — v — — — — — —

DPCLK13 — — — — — — — — — — — v — — — — — — — —

Notes to Table 5–1:

(1) EP4CGX30 information in this table refers to all EP4CGX30 packages except F484 package.
(2) PLL_1 and PLL_2 are multipurpose PLLs while PLL_3 and PLL_4 are general purpose PLLs.
(3) PLL_4 is only available in EP4CGX22 and EP4CGX30 devices in F324 package.
(4) This pin applies to EP4CGX22 and EP4CGX30 devices.

Table 5–1. GCLK Network Connections for EP4CGX15, EP4CGX22, and EP4CGX30 (1), (2) (Part 2 of 2)

GCLK Network Clock 
Sources

GCLK Networks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1





Chapter 6: I/O Features in Cyclone IV Devices 6–7
OCT Support
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Table 6–2 lists the I/O standards that support impedance matching and series 
termination.

Table 6–2. Cyclone IV Device I/O Features Support (Part 1 of 2)

I/O Standard

IOH/IOL Current Strength 
Setting (mA) (1), (9)

RS OCT with 
Calibration

Setting, Ohm ()

RS OCT Without 
Calibration

Setting, Ohm ()
Cyclone 
IV E I/O 
Banks 

Support

Cyclone 
IV GX I/O 

Banks 
Support

Slew
Rat

Optio
(6)

Column I/O Row I/O Column 
I/O

Row 
I/O (8)

Column 
I/O

Row 
I/O (8)

3.3-V LVTTL 4,8 4,8 — — — —

1,2,3,4,
5,6,7,8

3,4,5,6,
7,8,9

—

3.3-V LVCMOS 2 2 — — — — —

3.0-V LVTTL 4,8,12,16 4,8,12,16 50,25 50,25 50,25 50,25
0,1,

3.0-V LVCMOS 4,8,12,16 4,8,12,16 50,25 50,25 50,25 50,25

3.0-V PCI/PCI-X — — — — — — —

2.5-V 
LVTTL/LVCMOS 4,8,12,16 4,8,12,16 50,25 50,25 50,25 50,25

0,1,

1.8-V 
LVTTL/LVCMOS

2,4,6,8,10,12,1
6

2,4,6,8,10,12,1
6 50,25 50,25 50,25 50,25

1.5-V LVCMOS 2,4,6,8,10,12,1
6

2,4,6,8,10,12,1
6 50,25 50,25 50,25 50,25

1.2-V LVCMOS 2,4,6,8,10,12 2,4,6,8,10 50,25 50 50,25 50
4,5,6,7,
8

SSTL-2 Class I 8,12 8,12 50 50 50 50

3,4,5,6,
7,8,9

SSTL-2 Class II 16 16 25 25 25 25

SSTL-18 Class I 8,10,12 8,10,12 50 50 50 50

SSTL-18 Class II 12,16 12,16 25 25 25 25

HSTL-18 Class I 8,10,12 8,10,12 50 50 50 50

HSTL-18 Class II 16 16 25 25 25 25

HSTL-15 Class I 8,10,12 8,10,12 50 50 50 50

HSTL-15 Class II 16 16 25 25 25 25

HSTL-12 Class I 8,10,12 8,10 50 50 50 50
4,5,6,7,
8

HSTL-12 Class II 14 — 25 — 25 — 3,4,7,8 4,7,8

Differential SSTL-2 
Class I (2), (7) 8,12 8,12 50 50 50 50

1,2,3,4,
5,6,7,8

3,4,5,6,
7,8 0,1,

Differential SSTL-2 
Class II (2), (7) 16 16 25 25 25 25

Differential SSTL-
18 (2), (7) 8,10,12 — 50 — 50 —

Differential HSTL-
18 (2), (7) 8,10,12 — 50 — 50 —

Differential HSTL-
15 (2), (7) 8,10,12 — 50 — 50 —

Differential HSTL-
12 (2), (7) 8,10,12 — 50 — 50 — 3,4,7,8 4,7,8
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1



8–42 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
To ensure that DCLK and DATA[0] are not left floating at the end of the configuration, 
the MAX II device must drive them either high or low, whichever is convenient on 
your board. The DATA[0] pin is available as a user I/O pin after configuration. When 
you choose the FPP scheme in the Quartus II software, the DATA[0] pin is tri-stated by 
default in user mode and must be driven by the external host device. To change this 
default option in the Quartus II software, select the Dual-Purpose Pins tab of the 
Device and Pin Options dialog box.

The DCLK speed must be below the specified system frequency to ensure correct 
configuration. No maximum DCLK period exists, which means you can pause 
configuration by halting DCLK for an indefinite amount of time.

The external host device can also monitor the CONF_DONE and INIT_DONE pins to ensure 
successful configuration. The CONF_DONE pin must be monitored by the external device 
to detect errors and to determine when programming is complete. If all configuration 
data is sent, but CONF_DONE or INIT_DONE has not gone high, the external device must 
reconfigure the target device.

Figure 8–20 shows how to configure multiple devices with a MAX II device. This 
circuit is similar to the FPP configuration circuit for a single device, except the 
Cyclone IV devices are cascaded for multi-device configuration.

After the first device completes configuration in a multi-device configuration chain, 
its nCEO pin drives low to activate the nCE pin of the second device, which prompts the 
second device to begin configuration. The second device in the chain begins 
configuration in one clock cycle; therefore, the transfer of data destinations is 
transparent to the MAX II device. All other configuration pins (nCONFIG, nSTATUS, 

Figure 8–20. Multi-Device FPP Configuration Using an External Host

Notes to Figure 8–20:

(1) The pull-up resistor must be connected to a supply that provides an acceptable input signal for all devices in the 
chain. VCC must be high enough to meet the VIH specification of the I/O on the device and the external host.

(2) Connect the pull-up resistor to the VCCIO supply voltage of the I/O bank in which the nCE pin resides.
(3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, 

refer to Table 8–4 on page 8–8 and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND. 
(5) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA[7..0] and DCLK must fit the maximum overshoot 

outlined in Equation 8–1 on page 8–5.

External Host
(MAX II Device or
Microprocessor)

Memory

ADDR
Cyclone IV Device 1

nSTATUS
CONF_DONE

10 k

nCE nCEO

DATA[7..0]

GND

VCCIO (1) VCCIO (1)

10 k
MSEL[3..0] 

DATA[7..0] (5)
nCONFIG
DCLK (5)

nSTATUS
CONF_DONE

nCE nCEO N.C. (3)

DATA[7..0] (5)
nCONFIG
DCLK (5)

VCCIO (2)

10 k

     Cyclone IV Device 2

(4)
(4)

Buffers (5)

MSEL[3..0] 
Cyclone IV Device Handbook, May 2013 Altera Corporation
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8–44 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
FPP Configuration Timing
Figure 8–22 shows the timing waveform for the FPP configuration when using an 
external host.

Table 8–13 lists the FPP configuration timing parameters for Cyclone IV devices.

Figure 8–22. FPP Configuration Timing Waveform (1)

Notes to Figure 8–22:

(1) The beginning of this waveform shows the device in user mode. In user mode, nCONFIG, nSTATUS, and CONF_DONE 
are at logic-high levels. When nCONFIG is pulled low, a reconfiguration cycle begins.

(2) After power up, the Cyclone IV device holds nSTATUS low during POR delay.
(3) After power up, before and during configuration, CONF_DONE is low.
(4) Do not leave DCLK floating after configuration. It must be driven high or low, whichever is more convenient.
(5) DATA[7..0] is available as a user I/O pin after configuration; the state of the pin depends on the dual-purpose pin 

settings.

nCONFIG

nSTATUS (2)

CONF_DONE (3)

DCLK 

DATA[7..0]

User I/O

INIT_DONE

Byte 0 Byte 1 Byte 2 Byte 3 Byte n-1

tCD2UM

tCF2ST1

tCF2CD

tCFG

tCH tCL

tDH

tDSU

tCF2CK

tSTATUS

tCLK
tCF2ST0

tST2CK

User Mode

(5)

Tri-stated with internal pull-up resistor

(4)

User ModeByte n

User mode

Table 8–13. FPP Timing Parameters for Cyclone IV Devices (Part 1 of 2)

Symbol Parameter
Minimum Maximum

Unit
Cyclone IV (1) Cyclone IV E (2) Cyclone IV (1) Cyclone IV E (2)

tCF2CD
nCONFIG low to 
CONF_DONE low — 500 ns

tCF2ST0
nCONFIG low to 
nSTATUS low

— 500 ns

tCFG
nCONFIG low pulse 
width

500 — ns

tSTATUS
nSTATUS low pulse 
width

45 230 (3) µs

tCF2ST1
nCONFIG high to 
nSTATUS high

— 230 (4) µs

tCF2CK

nCONFIG high to 
first rising edge on 
DCLK

230 (3) — µs
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Configuration
To configure a single device in a JTAG chain, the programming software places all 
other devices in bypass mode. In bypass mode, devices pass programming data from 
the TDI pin to the TDO pin through a single bypass register without being affected 
internally. This scheme enables the programming software to program or verify the 
target device. Configuration data driven into the device appears on the TDO pin one 
clock cycle later.

The Quartus II software verifies successful JTAG configuration after completion. At 
the end of configuration, the software checks the state of CONF_DONE through the JTAG 
port. When Quartus II generates a .jam for a multi-device chain, it contains 
instructions so that all the devices in the chain are initialized at the same time. If 
CONF_DONE is not high, the Quartus II software indicates that configuration has failed. 
If CONF_DONE is high, the software indicates that configuration was successful. After 
the configuration bitstream is serially sent using the JTAG TDI port, the TCK port 
clocks an additional clock cycles to perform device initialization.

Figure 8–24. JTAG Configuration of a Single Device Using a Download Cable (1.5-V or 1.8-V VCCIO 
Powering the JTAG Pins)

Notes to Figure 8–24:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use JTAG 

configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] 
to either high or low, whichever is convenient on your board.

(3) In the USB-Blaster and ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming; 
otherwise it is a no connect.

(4) The nCE must be connected to GND or driven low for successful JTAG configuration.
(5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(6) Power up the VCC of the EthernetBlaster, ByteBlaster II or USB-Blaster cable with supply from VCCIO. The 

Ethernet-Blaster, ByteBlaster II, and USB-Blaster cables do not support a target supply voltage of 1.2 V. For the target 
supply voltage value, refer to the ByteBlaster II Download Cable User Guide, the USB-Blaster Download Cable User 
Guide, and the EthernetBlaster Communications Cable User Guide.

(7) Resistor value can vary from 1 k to 10 k.

nCE (4)

MSEL[ ]
nCONFIG
CONF_DONE

VCCIO

VCCIO (6)

GND

VCCIO (1)

GND

VCCIO (1)

(2)

VCCIO

10 kΩ

10 kΩ

(7)

(7)

nSTATUS

Pin 1

Download Cable 10-Pin Male
Header (Top View)

GND

TCK
TDO

TMS
TDI

GND
VIO (3)

Cyclone IV Device 

nCEON.C. (5)

DCLK
DATA[0](2)

(2)

(2)

1 kΩ
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Rate Match FIFO
In asynchronous systems, the upstream transmitter and local receiver can be clocked 
with independent reference clocks. Frequency differences in the order of a few 
hundred ppm can corrupt the data when latching from the recovered clock domain 
(the same clock domain as the upstream transmitter reference clock) to the local 
receiver reference clock domain. Figure 1–21 shows the rate match FIFO block 
diagram.

The rate match FIFO compensates for small clock frequency differences of up to 
±300 ppm (600 ppm total) between the upstream transmitter and the local receiver 
clocks by performing the following functions:

■ Insert skip symbols when the local receiver reference clock frequency is greater 
than the upstream transmitter reference clock frequency

■ Delete skip symbols when the local receiver reference clock frequency is less than 
the upstream transmitter reference clock frequency

The 20-word deep rate match FIFO and logics control insertion and deletion of skip 
symbols, depending on the ppm difference. The operation begins after the word 
aligner synchronization status (rx_syncstatus) is asserted. 

1 Rate match FIFO is only supported with 8B/10B encoded data and the word aligner 
in automatic synchronization state machine mode.

8B/10B Decoder
The 8B/10B decoder receives 10-bit data and decodes it into an 8-bit data and a 1-bit 
control identifier. The decoder is compliant with Clause 36 of the IEEE 802.3 
specification.

Figure 1–22 shows the 8B/10B decoder block diagram.

Figure 1–21. Rate Match FIFO Block Diagram
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Figure 1–22. 8B/10B Decoder Block Diagram
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Byte Deserializer
The byte deserializer halves the FPGA fabric-transceiver interface frequency while 
doubles the parallel data width to the FPGA fabric. 

For example, when operating an EP4CGX150 receiver channel at 3.125 Gbps with 
deserialization factor of 10, the receiver PCS datapath runs at 312.5 MHz. The byte 
deserializer converts the 10-bit data at 312.5 MHz into 20-bit data at 156.25 MHz 
before forwarding the data to the FPGA fabric.

Byte Ordering
In the 16- or 20-bit FPGA fabric-transceiver interface, the byte deserializer receives 
one data byte (8 or 10 bits) and deserializes it into two data bytes (16 or 20 bits). 
Depending on when the receiver PCS logic comes out of reset, the byte ordering at the 
output of the byte deserializer may not match the original byte ordering of the 
transmitted data. The byte misalignment resulting from byte deserialization is 
unpredictable because it depends on which byte is being received by the byte 
deserializer when it comes out of reset.

Figure 1–23 shows a scenario where the most significant byte and the least significant 
byte of the two-byte transmitter data appears straddled across two word boundaries 
after the data is deserialized at the receiver.

The byte ordering block restores the proper byte ordering by performing the 
following actions:

■ Look for the user-programmed byte ordering pattern in the byte-deserialized data

■ Inserts a user-programmed pad byte if the user-programmed byte ordering 
pattern is found in the most significant byte position

You must select a byte ordering pattern that you know appears at the least significant 
byte position of the parallel transmitter data.

The byte ordering block is supported in the following receiver configurations:

■ 16-bit FPGA fabric-transceiver interface, 8B/10B disabled, and the word aligner in 
manual alignment mode. Program a custom 8-bit byte ordering pattern and 8-bit 
pad byte.

■ 16-bit FPGA fabric-transceiver interface, 8B/10B enabled, and the word aligner in 
automatic synchronization state machine mode. Program a custom 9-bit byte 
ordering pattern and 9-bit pad byte. The MSB of the 9-bit byte ordering pattern 
and pad byte represents the control identifier of the 8B/10B decoded data.

Figure 1–23. Example of Byte Deserializer at the Receiver
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In the transmitter datapath, TX phase compensation FIFO forms the FPGA 
fabric-transmitter interface. Data and control signals for the transmitter are clocked 
with the FIFO write clock. The FIFO write clock supports automatic clock selection by 
the Quartus II software (depending on channel configuration), or user-specified clock 
from tx_coreclk port. Table 1–12 details the automatic TX phase compensation FIFO 
write clock selection by the Quartus II software.

1 The Quartus II software assumes automatic clock selection for TX phase 
compensation FIFO write clock if you do not enable the tx_coreclk port.

When using user-specified clock option, ensure that the clock feeding tx_coreclk port 
has 0 ppm difference with the TX phase compensation FIFO read clock.

In the receiver datapath, RX phase compensation FIFO forms the receiver-FPGA 
fabric interface. Data and status signals from the receiver are clocked with the FIFO 
read clock. The FIFO read clock supports automatic clock selection by the Quartus II 
software (depending on channel configuration), or user-specified clock from 
rx_coreclk port. Table 1–13 details the automatic RX phase compensation FIFO read 
clock selection by the Quartus II software.

1 The Quartus II software assumes automatic clock selection for RX phase 
compensation FIFO read clock if you do not enable the rx_coreclk port.

cal_blk_clk (2) Transceiver calibration block clock FPGA fabric to transceiver

Notes to Table 1–11:

(1) Offset cancellation process that is executed after power cycle requires reconfig_clk clock. The reconfig_clk must be driven with a 
free-running clock and not derived from the transceiver blocks. 

(2) For the supported clock frequency range, refer to the Cyclone IV Device Data Sheet.

Table 1–11. FPGA Fabric-Transceiver Interface Clocks (Part 2 of 2)

Clock Name Clock Description Interface Direction

Table 1–12. Automatic TX Phase Compensation FIFO Write Clock Selection 

Channel 
Configuration Quartus II Selection

Non-bonded tx_clkout clock feeds the FIFO write clock. tx_clkout is forwarded through the transmitter 
channel from low-speed clock, which also feeds the FIFO read clock. 

Bonded coreclkout clock feeds the FIFO write clock for the bonded channels. coreclkout clock is the 
common bonded low-speed clock, which also feeds the FIFO read clock in the bonded channels.

Table 1–13. Automatic RX Phase Compensation FIFO Read Clock Selection (Part 1 of 2)

Channel Configuration Quartus II Selection

Non-bonded

With rate match FIFO (1)
tx_clkout clock feeds the FIFO read clock. tx_clkout is forwarded through 
the receiver channel from low-speed clock, which also feeds the FIFO write 
clock and transmitter PCS.

Without rate match FIFO
rx_clkout clock feeds the FIFO read clock. rx_clkout is forwarded through 
the receiver channel from low-speed recovered clock, which also feeds the FIFO 
write clock.

http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
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■ transmitter in electrical idle

■ receiver signal detect

■ receiver spread spectrum clocking

Low-Latency PCS Operation

When configured in low-latency PCS operation, the following blocks in the 
transceiver PCS are bypassed, resulting in a lower latency PCS datapath:

■ 8B/10B encoder and decoder

■ word aligner

■ rate match FIFO

■ byte ordering

Figure 1–47 shows the transceiver channel datapath in Basic mode with low-latency 
PCS operation.
.

Transmitter in Electrical Idle

The transmitter buffer supports electrical idle state, where when enabled, the 
differential output buffer driver is tri-stated. During electrical idle, the output buffer 
assumes the common mode output voltage levels. For details about the electrical idle 
features, refer to “PCI Express (PIPE) Mode” on page 1–52. 

1 The transmitter in electrical idle feature is required for compliance to the version 2.00 
of PHY Interface for the PCI Express (PIPE) Architecture specification for PCIe 
protocol implementation.

Signal Detect at Receiver

Signal detect at receiver is only supported when 8B/10B encoder/decoder block is 
enabled.

Figure 1–47. Transceiver Channel Datapath in Basic Mode with Low-Latency PCS Operation
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converted within the XGMII extender sublayer into an 8B/10B encoded data stream. 
Each data stream is then transmitted across a single differential pair running at 3.125 
Gbps. At the XAUI receiver, the incoming data is decoded and mapped back to the 32-
bit XGMII format. This provides a transparent extension of the physical reach of the 
XGMII and also reduces the interface pin count.

XAUI functions as a self-managed interface because code group synchronization, 
channel deskew, and clock domain decoupling is handled with no upper layer 
support requirements. This functionality is based on the PCS code groups that are 
used during the inter-packet gap time and idle periods.

Figure 1–62. XAUI in 10 Gbps LAN Layers
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■ Channel alignment is acquired if three additional aligned ||A|| columns are 
observed at the output of the deskew FIFOs of the four channels after alignment of 
the first ||A|| column. 

■ Channel alignment is indicated by the assertion of rx_channelaligned signal. 

■ After acquiring channel alignment, if four misaligned ||A|| columns are seen at 
the output of the deskew FIFOs in all four channels with no aligned ||A|| 
columns in between, the rx_channelaligned signal is deasserted, indicating loss of 
channel alignment.

Figure 1–65 shows lane skew at the receiver input and how the deskew FIFO uses the 
/A/ code group to align the channels.

Lane Synchronization
In XAUI mode, the word aligner is configured in automatic synchronization state 
machine mode that is compliant to the PCS synchronization state diagram specified in 
clause 48 of the IEEE P802.3ae specification. Table 1–23 lists the synchronization state 
machine parameters that implements the lane synchronization in XAUI mode.

Figure 1–65. Deskew FIFO–Lane Skew at the Receiver Input
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Table 1–23. Synchronization State Machine Parameters (1)

Parameter Value

Number of valid synchronization (/K28.5/) code groups received to achieve 
synchronization 4

Number of erroneous code groups received to lose synchronization 4

Number of continuous good code groups received to reduce the error count by 
one 4

Note to Table 1–23:

(1) The word aligner supports 7-bit and 10-bit pattern lengths in XAUI mode.








