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2–2 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
Logic Elements
Figure 2–1 shows the LEs for Cyclone IV devices.

LE Features
You can configure the programmable register of each LE for D, T, JK, or SR flipflop 
operation. Each register has data, clock, clock enable, and clear inputs. Signals that 
use the global clock network, general-purpose I/O pins, or any internal logic can 
drive the clock and clear control signals of the register. Either general-purpose I/O 
pins or the internal logic can drive the clock enable. For combinational functions, the 
LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output independently drives these three outputs. Two LE outputs 
drive the column or row and direct link routing connections, while one LE drives the 
local interconnect resources. This allows the LUT to drive one output while the 
register drives another output. This feature, called register packing, improves device 
utilization because the device can use the register and the LUT for unrelated 
functions. The LAB-wide synchronous load control signal is not available when using 
register packing. For more information about the synchronous load control signal, 
refer to “LAB Control Signals” on page 2–6.

The register feedback mode allows the register output to feed back into the LUT of the 
same LE to ensure that the register is packed with its own fan-out LUT, providing 
another mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–1. Cyclone IV Device LEs 
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Chapter 4: Embedded Multipliers in Cyclone IV Devices 4–3
Architecture
Figure 4–2 shows the multiplier block architecture.

Input Registers
You can send each multiplier input signal into an input register or directly into the 
multiplier in 9- or 18-bit sections, depending on the operational mode of the 
multiplier. You can send each multiplier input signal through a register independently 
of other input signals. For example, you can send the multiplier Data A signal through 
a register and send the Data B signal directly to the multiplier.

The following control signals are available for each input register in the embedded 
multiplier:

■ clock

■ clock enable

■ asynchronous clear

All input and output registers in a single embedded multiplier are fed by the same 
clock, clock enable, and asynchronous clear signals.

Multiplier Stage
The multiplier stage of an embedded multiplier block supports 9 × 9 or 18 × 18 
multipliers, as well as other multipliers between these configurations. Depending on 
the data width or operational mode of the multiplier, a single embedded multiplier 
can perform one or two multiplications in parallel. For multiplier information, refer to 
“Operational Modes” on page 4–4.

Each multiplier operand is a unique signed or unsigned number. The signa and signb 
signals control an input of a multiplier and determine if the value is signed or 
unsigned. If the signa signal is high, the Data A operand is a signed number. If the 
signa signal is low, the Data A operand is an unsigned number. 

Figure 4–2. Multiplier Block Architecture
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7–8 Chapter 7: External Memory Interfaces in Cyclone IV Devices
Cyclone IV Devices Memory Interfaces Pin Support
Figure 7–2 shows the location and numbering of the DQS, DQ, or CQ# pins in the 
Cyclone IV GX I/O banks.

Figure 7–2. DQS, CQ, or CQ# Pins in Cyclone IV GX I/O Banks (1)

Note to Figure 7–2:

(1) The DQS, CQ, or CQ# pin locations in this diagram apply to all packages in Cyclone IV GX devices except devices in 
169-pin FBGA and 324-pin FBGA.
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–27
Configuration
1 In a multi-device AP configuration, the board trace length between the parallel flash 
and the master device must follow the recommendations listed in Table 8–11. 

Figure 8–9. Word-Wide Multi-Device AP Configuration 

Notes to Figure 8–9: 
(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the pull-up resistor to the VCCIO supply voltage of the I/O bank in which the nCE pin resides.
(3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. You must set the master device in AP mode and the slave 

devices in FPP mode. To connect MSEL[3..0] for the master device in AP mode and the slave devices in FPP mode, refer to Table 8–5 on 
page 8–9. Connect the MSEL pins directly to VCCA or GND.

(5) The AP configuration ignores the WAIT signal during configuration mode. However, if you are accessing flash during user mode with user logic, 
you can optionally use the normal I/O pin to monitor the WAIT signal from the Micron P30 or P33 flash. 

(6) Connect the repeater buffers between the Cyclone IV E master device and slave devices for DATA[15..0] and DCLK. All I/O inputs must maintain 
a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in “Configuration 
and JTAG Pin I/O Requirements” on page 8–5.
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–53
Configuration
1 The .rbf used by the JRunner software driver cannot be a compressed .rbf because the 
JRunner software driver uses JTAG-based configuration. During JTAG-based 
configuration, the real-time decompression feature is not available.

f For more information about the JRunner software driver, refer to AN 414: JRunner 
Software Driver: An Embedded Solution for PLD JTAG Configuration and the source files 
on the Altera website at (www.altera.com).

Combining JTAG and AS Configuration Schemes
You can combine the AS configuration scheme with the JTAG-based configuration 
(Figure 8–28). This setup uses two 10-pin download cable headers on the board. One 
download cable is used in JTAG mode to configure the Cyclone IV device directly 
through the JTAG interface. The other download cable is used in AS mode to program 
the serial configuration device in-system through the AS programming interface. If 
you try configuring the device using both schemes simultaneously, JTAG 
configuration takes precedence and AS configuration terminates.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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9–8 Chapter 9: SEU Mitigation in Cyclone IV Devices
Software Support
Figure 9–3 shows the error detection block diagram in FPGA devices and shows the 
interface that the WYSIWYG atom enables in your design.

1 The user logic is affected by the soft error failure, so reading out the 32-bit CRC 
signature through the regout should not be relied upon to detect a soft error. You 
should rely on the CRC_ERROR output signal itself, because this CRC_ERROR output 
signal cannot be affected by a soft error.

To enable the cycloneiv_crcblock WYSIWYG atom, you must name the atom for 
each Cyclone IV device accordingly.

Example 9–1 shows an example of how to define the input and output ports of a 
WYSIWYG atom in a Cyclone IV device.

Figure 9–3. Error Detection Block Diagram
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Example 9–1. Error Detection Block Diagram

cycloneiv_crcblock<crcblock_name>

(

.clk(<clock source>),

.shiftnld(<shiftnld source>),

.ldsrc(<ldsrc source>),

.crcerror(<crcerror out destination>),

.regout(<output destination>),

);
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Chapter 1: Cyclone IV Transceivers Architecture 1–5
Transmitter Channel Datapath

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Transmitter Channel Datapath
The following sections describe the Cyclone IV GX transmitter channel datapath 
architecture as shown in Figure 1–3:

■ TX Phase Compensation FIFO

■ Byte Serializer

■ 8B/10B Encoder

■ Serializer

■ Transmitter Output Buffer

TX Phase Compensation FIFO
The TX phase compensation FIFO compensates for the phase difference between the 
low-speed parallel clock and the FPGA fabric interface clock, when interfacing the 
transmitter channel to the FPGA fabric (directly or through the PIPE and 
PCIe hard IP). The FIFO is four words deep, with latency between two to three 
parallel clock cycles. Figure 1–4 shows the TX phase compensation FIFO block 
diagram.

1 The FIFO can operate in registered mode, contributing to only one parallel clock cycle 
of latency in Deterministic Latency functional mode. For more information, refer to 
“Deterministic Latency Mode” on page 1–73.

f For more information about FIFO clocking, refer to “FPGA Fabric-Transceiver 
Interface Clocking” on page 1–43.

Byte Serializer
The byte serializer divides the input datapath width by two to allow transmitter 
channel operation at higher data rates while meeting the maximum FPGA fabric 
frequency limit. This module is required in configurations that exceed the maximum 
FPGA fabric-transceiver interface clock frequency limit and optional in configurations 
that do not. 

f For the FPGA fabric-transceiver interface frequency specifications, refer to the Cyclone 
IV Device Data Sheet.

Figure 1–4. TX Phase Compensation FIFO Block Diagram

Note to Figure 1–4:

(1) The x refers to the supported 8-, 10-, 16-, or 20-bits transceiver channel width.

tx_phase_comp_fifo_errorTX Phase
Compensation

FIFO

wr_clk rd_clk

tx_datain[x..0] (1) Data output to
the byte serializer

or the 8B/10B encoder 

http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf


1–8 Chapter 1: Cyclone IV Transceivers Architecture
Transmitter Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

at time n + 2 is encoded as a positive disparity code group. In the same example, the 
current running disparity at time n + 5 indicates that the K28.5 in time n + 6 should be 
encoded with a positive disparity. Because tx_forcedisp is high at time n + 6, and 
tx_dispval is high, the K28.5 at time n + 6 is encoded as a negative disparity code 
group.

Miscellaneous Transmitter PCS Features
The transmitter PCS supports the following additional features:

■ Polarity inversion—corrects accidentally swapped positive and negative signals 
from the serial differential link during board layout by inverting the polarity of 
each bit. An optional tx_invpolarity port is available to dynamically invert the 
polarity of every bit of the 8-bit or 10-bit input data to the serializer in the 
transmitter datapath. Figure 1–9 shows the transmitter polarity inversion feature.

1 tx_invpolarity is a dynamic signal and might cause initial disparity errors 
at the receiver of an 8B/10B encoded link. The downstream system must be 
able to tolerate these disparity errors.

Figure 1–9. Transmitter Polarity Inversion
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Receiver Channel Datapath
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Word Aligner
Figure 1–16 shows the word aligner block diagram. The word aligner receives parallel 
data from the deserializer and restores the word boundary based on a pre-defined 
alignment pattern that must be received during link synchronization. The word 
aligner supports three operational modes as listed in Table 1–3.

Manual Alignment Mode

In manual alignment mode, the rx_enapatternalign port controls the word aligner 
with either an 8- or 10-bit data width setting.

The 8-bit word aligner is edge-sensitive to the rx_enapatternalign signal. A rising 
edge on rx_enapatternalign signal after deassertion of the rx_digitalreset signal 
triggers the word aligner to look for the word alignment pattern in the received data 
stream. It updates the word boundary if it finds the word alignment pattern in a new 
word boundary. Any word alignment pattern received thereafter in a different word 
boundary causes the word aligner to re-align to the new word boundary only if there 
is a rising edge in the rx_enapatternalign signal.

The 10-bit word aligner is level-sensitive to the rx_enapatternalign signal. The word 
aligner looks for the programmed 7-bit or 10-bit word alignment pattern or its 
complement in the received data stream, if the rx_enapatternalign signal is held 
high. It updates the word boundary if it finds the word alignment pattern in a new 
word boundary. If the rx_enapatternalign signal is deasserted, the word aligner 
maintains the current word boundary even when it receives the word alignment 
pattern in a new word boundary.

Figure 1–16. Word Aligner Block Diagram
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Table 1–3. Word Aligner Modes

Modes PMA-PCS Interface Widths Allowed Word Alignment 
Pattern Lengths

Manual Alignment
8-bit 16 bits

10-bit 7 or 10 bits

Bit-Slip
8-bit 16 bits

10-bit 7 or 10 bits

Automatic Synchronization State 
Machine 10-bit 7 or 10 bits
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After updating the word boundary, word aligner status signals (rx_syncstatus and 
rx_patterndetect) are driven high for one parallel clock cycle synchronous to the 
most significant byte of the word alignment pattern. The rx_syncstatus and 
rx_patterndetect signals have the same latency as the datapath and are forwarded to 
the FPGA fabric to indicate the word aligner status. Any word alignment pattern 
received thereafter in the same word boundary causes only the rx_patterndetect 
signal to go high for one clock cycle.

Figure 1–17 shows the manual alignment mode word aligner operation in 10-bit data 
width mode. In this example, a /K28.5/ (10'b0101111100) is specified as the word 
alignment pattern. 

The word aligner aligns to the /K28.5/ alignment pattern (red) in cycle n because the 
rx_enapatternalign signal is asserted high. The rx_syncstatus signal goes high for 
one clock cycle indicating alignment to a new word boundary. The rx_patterndetect 
signal also goes high for one clock cycle to indicate initial word alignment. 

At time n + 1, the rx_enapatternalign signal is deasserted to instruct the word 
aligner to lock the current word boundary. 

The alignment pattern is detected again (green) in a new word boundary across cycles 
n + 2 and n + 3. The word aligner does not align to this new word boundary because 
the rx_enapatternalign signal is held low.

The /K28.5/ word alignment pattern is detected again (blue) in the current word 
boundary during cycle n + 5 causing the rx_patterndetect signal to go high for one 
parallel clock cycle.

1 If the word alignment pattern is known to be unique and does not appear between 
word boundaries, you can hold the rx_enapatternalign signal constantly high 
because there is no possibility of false word alignment. If there is a possibility of the 
word alignment pattern occurring across word boundaries, you must control the 
rx_enapatternalign signal to lock the word boundary after the desired word 
alignment is achieved to avoid re-alignment to an incorrect word boundary.

Figure 1–17. Word Aligner in 10-bit Manual Alignment Mode
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Rate Match FIFO
In asynchronous systems, the upstream transmitter and local receiver can be clocked 
with independent reference clocks. Frequency differences in the order of a few 
hundred ppm can corrupt the data when latching from the recovered clock domain 
(the same clock domain as the upstream transmitter reference clock) to the local 
receiver reference clock domain. Figure 1–21 shows the rate match FIFO block 
diagram.

The rate match FIFO compensates for small clock frequency differences of up to 
±300 ppm (600 ppm total) between the upstream transmitter and the local receiver 
clocks by performing the following functions:

■ Insert skip symbols when the local receiver reference clock frequency is greater 
than the upstream transmitter reference clock frequency

■ Delete skip symbols when the local receiver reference clock frequency is less than 
the upstream transmitter reference clock frequency

The 20-word deep rate match FIFO and logics control insertion and deletion of skip 
symbols, depending on the ppm difference. The operation begins after the word 
aligner synchronization status (rx_syncstatus) is asserted. 

1 Rate match FIFO is only supported with 8B/10B encoded data and the word aligner 
in automatic synchronization state machine mode.

8B/10B Decoder
The 8B/10B decoder receives 10-bit data and decodes it into an 8-bit data and a 1-bit 
control identifier. The decoder is compliant with Clause 36 of the IEEE 802.3 
specification.

Figure 1–22 shows the 8B/10B decoder block diagram.

Figure 1–21. Rate Match FIFO Block Diagram
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Figure 1–22. 8B/10B Decoder Block Diagram
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When the byte serializer is enabled, the low-speed clock frequency is halved before 
feeding into the read clock of TX phase compensation FIFO. The low-speed clock is 
available in the FPGA fabric as tx_clkout port, which can be used in the FPGA fabric 
to send transmitter data and control signals.

Figure 1–34 shows the datapath clocking in receiver only operation. In this mode, the 
receiver PCS supports configuration without the rate match FIFO. The CDR unit in 
the channel recovers the clock from the received serial data and generates the high-
speed recovered clock for the deserializer, and low-speed recovered clock for 
forwarding to the receiver PCS. The low-speed recovered clock feeds to the following 
blocks in the receiver PCS:

■ word aligner

■ 8B/10B decoder

■ write clock of byte deserializer

■ byte ordering

■ write clock of RX phase compensation FIFO

When the byte deserializer is enabled, the low-speed recovered clock frequency is 
halved before feeding into the write clock of the RX phase compensation FIFO. The 
low-speed recovered clock is available in the FPGA fabric as rx_clkout port, which 
can be used in the FPGA fabric to capture receiver data and status signals.

When the transceiver is configured for transmitter and receiver operation in 
non-bonded channel configuration, the receiver PCS supports configuration with and 
without the rate match FIFO. The difference is only at the receiver datapath clocking. 
The transmitter datapath clocking is identical to transmitter only operation mode as 
shown in Figure 1–33. 

Figure 1–33. Transmitter Only Datapath Clocking in Non-Bonded Channel Configuration
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Figure 1–34. Receiver Only Datapath Clocking without Rate Match FIFO in Non-Bonded Channel Configuration

Note to Figure 1–34:

(1) High-speed recovered clock.
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Receiver Spread Spectrum Clocking

Asynchronous SSC is not supported in Cyclone IV devices. You can implement only 
synchronous SSC for SATA, V-by-One, and Display Port protocols in Basic mode.

PCI Express (PIPE) Mode
PIPE mode provides the transceiver channel datapath configuration that supports ×1, 
×2, and ×4 initial lane width for PCIe Gen1 signaling rate with PIPE interface 
implementation. The Cyclone IV GX transceiver provides following features in PIPE 
mode:

■ PIPE interface

■ receiver detection circuitry

■ electrical idle control

■ signal detect at receiver

■ lane synchronization with compliant state machine

■ clock rate compensation with rate match FIFO

■ Low-Latency Synchronous PCIe

■ fast recovery from P0s state

■ electrical idle inference

■ compliance pattern transmission

■ reset requirement

Figure 1–48 shows the transceiver channel datapath and clocking when configured in 
PIPE mode with ×1 channel configuration.
.

Figure 1–48. Transceiver Channel Datapath and Clocking when Configured in PIPE Mode with ×1 Channel Configuration

Notes to Figure 1–48:

(1) Low-speed recovered clock.
(2) High-speed recovered clock.
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RX PCS

rx_coreclk Output Clock signal Optional read clock port for the RX phase compensation 
FIFO.

rx_phase_comp_fifo
_error Output

Synchronous to tx_clkout 
(non-bonded modes) or 
coreclkout (bonded modes)

RX phase compensation FIFO full or empty indicator.

■ A high level indicates FIFO is either full or empty.

rx_bitslipboundarys
electout Output Asynchronous signal. 

Indicate the number of bits slipped in the word aligner 
configured in manual alignment mode.

■ Values range from 0 to 9.

RX PMA

rx_datain Input N/A Receiver serial data input port.

rx_freqlocked Output Asynchronous signal

Receiver CDR lock state indicator

■ A high level indicates the CDR is in LTD state.

■ A low level indicates the CDR is in LTR state.

rx_locktodata Input Asynchronous signal

Receiver CDR LTD state control signal

■ A high level forces the CDR to LTD state

■ When deasserted, the receiver CDR lock state 
depends on the rx_locktorefclk signal level.

rx_locktorefclk Input Asynchronous signal

Receiver CDR LTR state control signal. 

■ The rx_locktorefclk and rx_locktodata 
signals control whether the receiver CDR states as 
follows:
[rx_locktodata:rx_locktorefclk]

■ 2'b00—receiver CDR is in automatic lock mode

■ 2b'01—receiver CDR is in manual lock mode (LTR 
state)

■ 2b'1x—receiver CDR is in manual lock mode (LTD 
state)

rx_signaldetect Output Asynchronous signal

Signal threshold detect indicator.

■ Available in Basic mode when 8B/10B 
encoder/decoder is used, and in PIPE mode.

■ A high level indicates that the signal present at the 
receiver input buffer is above the programmed signal 
detection threshold value.

rx_recovclkout Output Clock signal
CDR low-speed recovered clock

■ Only available in the GIGE mode for applications such 
as Synchronous Ethernet.

Table 1–27. Receiver Ports in ALTGX Megafunction for Cyclone IV GX (Part 3 of 3)

Block Port Name Input/
Output Clock Domain Description
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The .mif files carries the reconfiguration information that will be used to reconfigure 
the multipurpose PLL or general purpose PLL dynamically. The .mif contents is 
generated automatically when you select the Enable PLL Reconfiguration option in 
the Reconfiguration Setting in ALTGX instances. The .mif files will be generated 
based on the data rate and input reference clock setting in the ALTGX MegaWizard. 
You must use the external ROM and feed its content to the ALTPLL_RECONFIG 
megafunction to reconfigure the multipurpose PLL setting. 

f For more information about instantiating the ALTPLL_Reconfig, refer to the AN 609: 
Implementing Dynamic Reconfiguration in Cyclone IV GX Devices.

Figure 3–16 shows the connection for PLL reconfiguration mode.

f For more information about connecting the ALTPLL_RECONFIG and ALTGX 
instances, refer to the AN 609: Implementing Dynamic Reconfiguration in Cyclone IV GX 
Devices.

Figure 3–16. ALTGX and ALTPLL_RECONFIG Connection for PLL Reconfiguration Mode

Notes to Figure 3–16:

(1) <n> = (number of transceiver PLLs configured in the ALTGX MegaWizard)  - 1.
(2) You must connect the pll_reconfig_done signal from the ALTGX to the pll_scandone port from ALTPLL_RECONFIG.
(3) You need two ALTPLL_RECONFIG controllers if you have two separate ALTGX instances with transceiver PLL instantiated in each ALTGX instance.
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f For more information about the supported maximum clock rate, device and pin 
planning, IP implementation, and device termination, refer to Section III: System 
Performance Specifications of the External Memory Interface Handbook.

Table 1–37 lists the memory output clock jitter specifications for Cyclone IV devices.

Duty Cycle Distortion Specifications
Table 1–38 lists the worst case duty cycle distortion for Cyclone IV devices.

OCT Calibration Timing Specification
Table 1–39 lists the duration of calibration for series OCT with calibration at device 
power-up for Cyclone IV devices.

Table 1–37. Memory Output Clock Jitter Specifications for Cyclone IV Devices (1), (2)

Parameter Symbol Min Max Unit

Clock period jitter tJIT(per) –125 125 ps

Cycle-to-cycle period jitter tJIT(cc) –200 200 ps

Duty cycle jitter tJIT(duty) –150 150 ps

Notes to Table 1–37:

(1) Memory output clock jitter measurements are for 200 consecutive clock cycles, as specified in the JEDEC DDR2 
standard.

(2) The clock jitter specification applies to memory output clock pins generated using DDIO circuits clocked by a PLL 
output routed on a global clock (GCLK) network.

Table 1–38. Duty Cycle Distortion on Cyclone IV Devices I/O Pins (1), (2), (3)

Symbol
C6 C7, I7 C8, I8L, A7 C9L

Unit
Min Max Min Max Min Max Min Max

Output Duty Cycle 45 55 45 55 45 55 45 55 %

Notes to Table 1–38:

(1) The duty cycle distortion specification applies to clock outputs from the PLLs, global clock tree, and IOE driving the dedicated and general 
purpose I/O pins.

(2) Cyclone IV devices meet the specified duty cycle distortion at the maximum output toggle rate for each combination of I/O standard and current 
strength.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support 
C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–39. Timing Specification for Series OCT with Calibration at Device Power-Up for 
Cyclone IV Devices (1)

Symbol Description Maximum Units

tOCTCAL 
Duration of series OCT with 
calibration at device power-up 20 µs

Note to Table 1–39:

(1) OCT calibration takes place after device configuration and before entering user mode.
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3
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I/O Timing
Use the following methods to determine I/O timing: 

■ the Excel-based I/O Timing

■ the Quartus II timing analyzer

The Excel-based I/O timing provides pin timing performance for each device density 
and speed grade. The data is typically used prior to designing the FPGA to get a 
timing budget estimation as part of the link timing analysis. The Quartus II timing 
analyzer provides a more accurate and precise I/O timing data based on the specifics 
of the design after place-and-route is complete.

f The Excel-based I/O Timing spreadsheet is downloadable from Cyclone IV Devices 
Literature website.

Glossary
Table 1–46 lists the glossary for this chapter.

Table 1–46. Glossary (Part 1 of 5)

Letter Term Definitions

A — —

B — —

C — —

D — —

E — —

F fHSCLK High-speed I/O block: High-speed receiver/transmitter input and output clock frequency.

G
GCLK Input pin directly to Global Clock network.

GCLK PLL Input pin to Global Clock network through the PLL.

H HSIODR High-speed I/O block: Maximum/minimum LVDS data transfer rate (HSIODR = 1/TUI).

I

Input Waveforms 
for the SSTL 
Differential I/O 
Standard

VIL

VREF

VIH

VSWING
December 2016 Altera Corporation Cyclone IV Device Handbook,
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