Intel - EP4CE15F23I8L Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	963
Number of Logic Elements/Cells	15408
Total RAM Bits	516096
Number of I/O	343
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce15f23i8l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Document Revision History

Table 5–14 lists the revision history for this chapter.

Table 5–14. Document Revision Hi

Date	Version	Changes
October 2012 2.4		 Updated "Manual Override" and "PLL Cascading" sections.
	2.4	■ Updated Figure 5–9.
November 2011	0.3	 Updated the "Dynamic Phase Shifting" section.
	2.3	■ Updated Figure 5–26.
		 Updated for the Quartus II software version 10.1 release.
		■ Updated Figure 5–3 and Figure 5–10.
December 2010	2.2	 Updated "GCLK Network Clock Source Generation", "PLLs in Cyclone IV Devices", and "Manual Override" sections.
		 Minor text edits.
		■ Updated Figure 5–2, Figure 5–3, Figure 5–4, and Figure 5–10.
July 2010	2.1	■ Updated Table 5–1, Table 5–2, and Table 5–5.
		 Updated "Clock Feedback Modes" section.
		 Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1 release.
		 Updated "Clock Networks" section.
February 2010	2.0	■ Updated Table 5–1 and Table 5–2.
		Added Table 5–3.
		■ Updated Figure 5–2, Figure 5–3, and Figure 5–9.
		■ Added Figure 5–4 and Figure 5–10.
November 2009	1.0	Initial release.

In Cyclone IV devices, the DM pins are preassigned in the device pinouts. The Quartus II Fitter treats the DQ and DM pins in a DQS group equally for placement purposes. The preassigned DQ and DM pins are the preferred pins to use.

Some DDR2 SDRAM and DDR SDRAM devices support error correction coding (ECC), a method of detecting and automatically correcting errors in data transmission. In 72-bit DDR2 or DDR SDRAM, there are eight ECC pins and 64 data pins. Connect the DDR2 and DDR SDRAM ECC pins to a separate DQS or DQ group in Cyclone IV devices. The memory controller needs additional logic to encode and decode the ECC data.

Address and Control/Command Pins

The address signals and the control or command signals are typically sent at a single data rate. You can use any of the user I/O pins on all I/O banks of Cyclone IV devices to generate the address and control or command signals to the memory device.

Cyclone IV devices do not support QDR II SRAM in the burst length of two.

Memory Clock Pins

In DDR2 and DDR SDRAM memory interfaces, the memory clock signals (CK and CK#) are used to capture the address signals and the control or command signals. Similarly, QDR II SRAM devices use the write clocks (K and K#) to capture the address and command signals. The CK/CK# and K/K# signals are generated to resemble the write-data strobe using the DDIO registers in Cyclone IV devices.

CK/CK# pins must be placed on differential I/O pins (DIFFIO in Pin Planner) and in the same bank or on the same side as the data pins. You can use either side of the device for wraparound interfaces. As seen in the Pin Planner Pad View, CK0 cannot be located in the same row and column pad group as any of the interfacing DQ pins.

Cyclone IV Devices Memory Interfaces Features

This section discusses Cyclone IV memory interfaces, including DDR input registers, DDR output registers, OCT, and phase-lock loops (PLLs).

DDR Input Registers

The DDR input registers are implemented with three internal logic element (LE) registers for every DQ pin. These LE registers are located in the logic array block (LAB) adjacent to the DDR input pin.

- "FPP Configuration" on page 8–40
- "JTAG Configuration" on page 8–45
- "Device Configuration Pins" on page 8–62

Configuration Features

Table 8–1 lists the configuration methods you can use in each configuration scheme.

Table 8–1. Configuration Features in Cyclone IV Devices

Configuration Scheme	Configuration Method	Decompression	Remote System Upgrade ⁽¹⁾
AS	Serial Configuration Device 🗸		\checkmark
AP	Supported Flash Memory (2)	_	\checkmark
DC	External Host with Flash Memory	\checkmark	✓ (3)
	Download Cable	~	_
FPP	External Host with Flash Memory	—	✓ (3)
ITAC based configuration	External Host with Flash Memory	—	_
o rAd based connyuration	Download Cable	—	_

Notes to Table 8-1:

(1) Remote update mode is supported when you use the Remote System Upgrade feature. You can enable or disable remote update mode with an option setting in the Quartus® II software.

(2) For more information about the supported device families for the Micron commodity parallel flash, refer to Table 8–10 on page 8–22.

(3) Remote update mode is supported externally using the Parallel Flash Loader (PFL) with the Quartus II software.

Configuration Data Decompression

Cyclone IV devices support configuration data decompression, which saves configuration memory space and time. This feature allows you to store compressed configuration data in configuration devices or other memory and send the compressed bitstream to Cyclone IV devices. During configuration, Cyclone IV devices decompress the bitstream in real time and program the SRAM cells.

Compression may reduce the configuration bitstream size by 35 to 55%.

When you enable compression, the Quartus II software generates configuration files with compressed configuration data. This compressed file reduces the storage requirements in the configuration device or flash memory and decreases the time required to send the bitstream to the Cyclone IV device. The time required by a Cyclone IV device to decompress a configuration file is less than the time required to send the configuration data to the device. There are two methods for enabling compression for the Cyclone IV device bitstreams in the Quartus II software:

- Before design compilation (through the Compiler Settings menu)
- After design compilation (through the **Convert Programming Files** dialog box)

To enable compression in the compiler settings of the project in the Quartus II software, perform the following steps:

- 1. On the Assignments menu, click **Device**. The **Settings** dialog box appears.
- 2. Click Device and Pin Options. The Device and Pin Options dialog box appears.

four devices. During the first configuration cycle, the master device reads its configuration data from the serial configuration device while holding nCEO high. After completing its configuration cycle, the master device drives nCE low and sends the second copy of the configuration data to all three slave devices, configuring them simultaneously.

The advantage of the setup in Figure 8–4 is that you can have a different **.sof** for the master device. However, all the slave devices must be configured with the same **.sof**. You can either compress or uncompress the **.sof** in this configuration method.

You can still use this method if the master and slave devices use the same **.sof**.

PS Configuration Using an External Host

In the PS configuration scheme, you can use an intelligent host such as a MAX II device or microprocessor that controls the transfer of configuration data from a storage device, such as flash memory, to the target Cyclone IV device. You can store the configuration data in **.rbf**, **.hex**, or **.ttf** format.

Figure 8–13 shows the configuration interface connections between a Cyclone IV device and an external host device for single-device configuration.

Figure 8–13. Single-Device PS Configuration Using an External Host

Notes to Figure 8-13:

- (1) Connect the pull-up resistor to a supply that provides an acceptable input signal for the device. V_{CC} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host.
- (2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA [0] and DCLK must fit the maximum overshoot outlined in Equation 8–1 on page 8–5.

To begin the configuration, the external host device must generate a low-to-high transition on the nCONFIG pin. When nSTATUS is pulled high, the external host device must place the configuration data one bit at a time on DATA[0]. If you use configuration data in **.rbf**, **.ttf**, or **.hex**, you must first send the LSB of each data byte. For example, if the **.rbf** contains the byte sequence 02 1B EE 01 FA, the serial bitstream you must send to the device is:

0100-0000 1101-1000 0111-0111 1000-0000 0101-1111

Cyclone IV devices receive configuration data on DATA[0] and the clock is received on DCLK. Data is latched into the device on the rising edge of DCLK. Data is continuously clocked into the target device until CONF_DONE goes high and the device enters initialization state.

Two DCLK falling edges are required after CONF_DONE goes high to begin the initialization of the device.

INIT_DONE is released and pulled high when initialization is complete. The external host device must be able to detect this low-to-high transition which signals the device has entered user mode. When initialization is complete, the device enters user mode. In user mode, the user I/O pins no longer have weak pull-up resistors and function as assigned in your design.

The programming hardware or download cable then places the configuration data one bit at a time on the DATA [0] pin of the device. The configuration data is clocked into the target device until CONF_DONE goes high. The CONF_DONE pin must have an external $10-k\Omega$ pull-up resistor for the device to initialize.

When you use a download cable, setting the **Auto-restart configuration after error** option does not affect the configuration cycle because you must manually restart configuration in the Quartus II software if an error occurs. Additionally, the **Enable user-supplied start-up clock (CLKUSR)** option has no effect on device initialization, because this option is disabled in the **.sof** when programming the device with the Quartus II Programmer and download cable. Therefore, if you turn on the **CLKUSR** option, you do not have to provide a clock on CLKUSR when you configure the device with the Quartus II Programmer and a download cable.

Figure 8–17 shows PS configuration for Cyclone IV devices with a download cable.

Figure 8–17. PS Configuration Using a Download Cable

Notes to Figure 8-17:

- (1) You must connect the pull-up resistor to the same supply voltage as the V_{CCA} supply.
- (2) The pull-up resistors on DATA[0] and DCLK are only required if the download cable is the only configuration scheme used on your board. This is to ensure that DATA[0] and DCLK are not left floating after configuration. For example, if you also use a configuration device, the pull-up resistors on DATA[0] and DCLK are not required.
- (3) Pin 6 of the header is a V₁₀ reference voltage for the MasterBlaster output driver. V₁₀ must match the V_{CCA} of the device. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*. With the USB-Blaster, ByteBlaster II, ByteBlaster MV, and EthernetBlaster, this pin is a no connect.
- (4) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (5) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9 for PS configuration schemes. Connect the MSEL pins directly to V_{CCA} or GND.
- (6) Power up the V_{CC} of the ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V supply from V_{CCA}. Third-party programmers must switch to 2.5 V. Pin 4 of the header is a V_{CC} power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*.

Reconfiguration

After the configuration data is successfully written into the serial configuration device, the Cyclone IV device does not automatically start reconfiguration. The intelligent host issues the PULSE_NCONFIG JTAG instruction to initialize the reconfiguration process. During reconfiguration, the master device is reset and the SFL design no longer exists in the Cyclone IV device and the serial configuration device configures all the devices in the chain with the user design.

• For more information about the SFL, refer to *AN* 370: Using the Serial FlashLoader with *Quartus II Software*.

JTAG Instructions

For more information about the JTAG binary instruction code, refer to the *JTAG Boundary-Scan Testing for Cyclone IV Devices* chapter.

I/O Reconfiguration

Use the CONFIG_IO instruction to reconfigure the I/O configuration shift register (IOCSR) chain. This instruction allows you to perform board-level testing prior to configuring the Cyclone IV device or waiting for a configuration device to complete configuration. After the configuration is interrupted and JTAG testing is complete, you must reconfigure the part through the PULSE_NCONFIG_JTAG instruction or by pulsing the nCONFIG pin low.

You can issue the CONFIG_IO instruction any time during user mode.

You must meet the following timing restrictions when using the CONFIG_IO instruction:

- The CONFIG_IO instruction cannot be issued when the nCONFIG pin is low
- You must observe a 230 μs minimum wait time after any of the following conditions:
 - nCONFIG pin goes high
 - Issuing the PULSE_NCONFIG instruction
 - Issuing the ACTIVE_ENGAGE instruction, before issuing the CONFIG_IO instruction
- You must wait 230 µs after power up, with the nCONFIG pin high before issuing the CONFIG_IO instruction (or wait for the nSTATUS pin to go high)

Device	Boundary-Scan Register Length
EP4CGX75	1006
EP4CGX110	1495
EP4CGX150	1495

Table 10–1. B	Boundarv-Scan Re	aister Lenath for (Cyclone IV Devices	(Part 2 of 2)
		giotoi mongtii ioi t	· · · · · · · · · · · · · · · · · · ·	(

Note to Table 10-1:

(1) For the F484 package of the EP4CGX30 device, the boundary-scan register length is 1006.

Table 10–2 lists the IDCODE information for Cyclone IV devices.

Table 10-2.	IDCODE Information for 32-Bit (Cyclone IV Devices
-------------	---------------------------------	---------------------------

	IDCODE (32 Bits) ⁽¹⁾				
Device	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	LSB (1 Bit) ⁽²⁾	
EP4CE6	0000	0010 0000 1111 0001	000 0110 1110	1	
EP4CE10	0000	0010 0000 1111 0001	000 0110 1110	1	
EP4CE15	0000	0010 0000 1111 0010	000 0110 1110	1	
EP4CE22	0000	0010 0000 1111 0011	000 0110 1110	1	
EP4CE30	0000	0010 0000 1111 0100	000 0110 1110	1	
EP4CE40	0000	0010 0000 1111 0100	000 0110 1110	1	
EP4CE55	0000	0010 0000 1111 0101	000 0110 1110	1	
EP4CE75	0000	0010 0000 1111 0110	000 0110 1110	1	
EP4CE115	0000	0010 0000 1111 0111	000 0110 1110	1	
EP4CGX15	0000	0010 1000 0000 0001	000 0110 1110	1	
EP4CGX22	0000	0010 1000 0001 0010	000 0110 1110	1	
EP4CGX30 (3)	0000	0010 1000 0000 0010	000 0110 1110	1	
EP4CGX30 (4)	0000	0010 1000 0010 0011	000 0110 1110	1	
EP4CGX50	0000	0010 1000 0001 0011	000 0110 1110	1	
EP4CGX75	0000	0010 1000 0000 0011	000 0110 1110	1	
EP4CGX110	0000	0010 1000 0001 0100	000 0110 1110	1	
EP4CGX150	0000	0010 1000 0000 0100	000 0110 1110	1	

Notes to Table 10-2:

(1) The MSB is on the left.

(2) The IDCODE LSB is always 1.

(3) The IDCODE is applicable for all packages except for the F484 package.

(4) The IDCODE is applicable for the F484 package only.

IEEE Std.1149.6 mandates the addition of two new instructions: EXTEST_PULSE and EXTEST_TRAIN. These two instructions enable edge-detecting behavior on the signal path containing the AC pins.

Chapter Revision Dates	vii
Additional Information	
How to Contact Altera	Info–1
Typographic Conventions	Info–1
Section I. Transceivers	
Chapter 1. Cyclone IV Transceivers Architecture	1.0
Analyticational Operations	
Architectural Overview	
Transmitter Channel Datapath	
Parts Compensation FIFO	
Pyte Serializer	
OD/ JUD Encoder	
Transmitter Output Buffer	1 10
Pageiver Channel Datanath	
Receiver Unauter Datapatit	1 11
Clock Data Recovery	1 15
Automatic Lock Mode	1_15
Manual Lock Mode	1_16
Deserializer	1_16
Word Aligner	1_17
Deskew FIFO	1–22
Rate Match FIFO	1–23
8B/10B Decoder	1–23
Byte Deserializer	1–24
Byte Ordering	1–24
RX Phase Compensation FIFO	1–25
Miscellaneous Receiver PCS Feature	1–25
Transceiver Clocking Architecture	1–26
Input Reference Clocking	
Transceiver Channel Datapath Clocking	
Non-Bonded Channel Configuration	
Bonded Channel Configuration	
FPGA Fabric-Transceiver Interface Clocking	
Calibration Block	
PCI-Express Hard IP Block	
Transceiver Functional Modes	
Basic Mode	
Rate Match FIFO Operation in Basic Mode	
Additional Options in Basic Mode	
PCI Express (PIPE) Mode	
PIPE Interface	
Receiver Detection Circuitry	
Electrical Idle Control	

Rate Match FIFO

In asynchronous systems, the upstream transmitter and local receiver can be clocked with independent reference clocks. Frequency differences in the order of a few hundred ppm can corrupt the data when latching from the recovered clock domain (the same clock domain as the upstream transmitter reference clock) to the local receiver reference clock domain. Figure 1–21 shows the rate match FIFO block diagram.

Figure 1–21. Rate Match FIFO Block Diagram

The rate match FIFO compensates for small clock frequency differences of up to ± 300 ppm (600 ppm total) between the upstream transmitter and the local receiver clocks by performing the following functions:

- Insert skip symbols when the local receiver reference clock frequency is greater than the upstream transmitter reference clock frequency
- Delete skip symbols when the local receiver reference clock frequency is less than the upstream transmitter reference clock frequency

The 20-word deep rate match FIFO and logics control insertion and deletion of skip symbols, depending on the ppm difference. The operation begins after the word aligner synchronization status (rx_syncstatus) is asserted.

P

Rate match FIFO is only supported with 8B/10B encoded data and the word aligner in automatic synchronization state machine mode.

8B/10B Decoder

The 8B/10B decoder receives 10-bit data and decodes it into an 8-bit data and a 1-bit control identifier. The decoder is compliant with Clause 36 of the IEEE 802.3 specification.

Figure 1–22 shows the 8B/10B decoder block diagram.

Figure 1–22. 8B/10B Decoder Block Diagram

Table 1–9 lists the high- and low-speed clock sources for each channel.

Table 1–9.	High- and Low-Speed Clo	k Sources for Each	I Channel in Non-Bonded	Channel Configuration
------------	-------------------------	--------------------	-------------------------	-----------------------

Dookono	Transceiver Block	Transceiver Channel	High- and Low-Speed Clocks Sources		
гаскауе			Option 1	Option 2	
F324 and smaller	GXBL0	All channels	MPLL_1	MPLL_2	
F484 and larger	GXBL0	Channels 0, 1	MPLL_5/GPLL_1	MPLL_6	
		Channels 2, 3	MPLL_5	MPLL_6/MPLL_7 ⁽¹⁾	
	GVDI 1 (1)	Channels 0, 1	MPLL_7/MPLL_6	MPLL_8	
		GYRTI (1)	Channels 2, 3	MPLL_7	MPLL_8/GPLL_2

Note to Table 1–9:

(1) $\tt MPLL_7$ and <code>GXBL1</code> are not applicable for transceivers in F484 package

Bonded Channel Configuration

In bonded channel configuration, the low-speed clock for the bonded channels share a common bonded clock path that reduces clock skew between the bonded channels. The phase compensation FIFOs in bonded channels share a set of pointers and control logic that results in equal FIFO latency between the bonded channels. These features collectively result in lower channel-to-channel skew when implementing multi-channel serial interface in bonded channel configuration.

In a transceiver block, the high-speed clock for each bonded channels is distributed independently from one of the two multipurpose PLLs directly adjacent to the block. The low-speed clock for bonded channels is distributed from a common bonded clock path that selects from one of the two multipurpose PLLs directly adjacent to the block. Transceiver channels for devices in F484 and larger packages support additional clocking flexibility for ×2 bonded channels. In these packages, the ×2 bonded channels support high-speed and low-speed bonded clock distribution from PLLs beyond the two multipurpose PLLs directly adjacent to the block. Table 1–10 lists the high- and low-speed clock sources for the bonded channels.

Dookogo	Transceiver	Bonded Channels	High- and Low-Speed Clocks Source	
гаскауе	Block		Option 1	Option 2
F324 and smaller	GXBL0	×2 in channels 0, 1 ×4 in all channels	MPLL_1	MPLL_2
F484 and larger	GXBL0	×2 in channels 0, 1	MPLL_5/ GPLL_1	MPLL_6
		×4 in all channels	MPLL_5	MPLL_6
	GXBL1 (1)	×2 in channels 0, 1	MPLL_7/ MPLL_6	MPLL_8
		×4 in all channels	MPLL_7	MPLL_8

Table 1–10. High- and Low-Speed Clock Sources for Bonded Channels in Bonded Channel Configuration

Note to Table 1-10:

(1) GXBL1 is not available for transceivers in F484 package.

When implementing ×2 bonded channel configuration in a transceiver block, remaining channels 2 and 3 are available to implement other non-bonded channel configuration.

Configuring the hard IP module requires using the PCI Express Compiler. When configuring the transceiver for PCIe implementation with hard IP module, the byte serializer and deserializer are not enabled, providing an 8-bit transceiver-PIPE-hard IP data interface width running at 250 MHz clock frequency.

To For more information about PCIe implementation with hard IP module, refer to the *PCI Express Compiler User Guide*.

Figure 1–49 shows the transceiver configuration in PIPE mode.

	· · · · · · · · · · · · · · · · · · ·
Functional Mode	PCI Express (PIPE)
Channel Bonding	×1, ×2, ×4
Low-Latency PCS	Disabled
Word Aligner (Pattern Length)	Automatic Synchronization State Machine (10-Bit)
8B/10B Encoder/Decoder	Enabled
Rate Match FIFO	Enabled
Byte SERDES	Enabled
Data Rate (Gbps)	2.5
Byte Ordering	Disabled
FPGA Fabric-to-Transceiver Interface Width	16-Bit
FPGA Fabric-to-Transceiver Interface Frequency (MHz)	125

Figure 1–49. Transceiver Configuration in PIPE Mode

When configuring the transceiver into PIPE mode using ALTGX megafunction for PCIe implementation, the PHY-MAC, data link and transaction layers must be implemented in user logics. The PCIe hard IP block is bypassed in this configuration.

Figure 3–4 shows the write transaction waveform for Method 1.

Figure 3-4. Write Transaction Waveform—Use 'logical_channel_address port' Option

Notes to Figure 3-4:

- (1) In this waveform example, you are writing to only the transmitter portion of the channel.
- (2) In this waveform example, the number of channels connected to the dynamic reconfiguration controller is four. Therefore, the
- logical_channel_address port is 2 bits wide.

Read Transaction

For example, to read the existing V_{OD} values from the transmit V_{OD} control registers of the transmitter portion of a specific channel controlled by the ALTGX_RECONFIG instance, perform the following steps:

- Set the logical_channel_address input port to the logical channel address of the transceiver channel whose PMA controls you want to read (for example, tx_vodctrl_out).
- 2. Set the rx_tx_duplex_sel port to **2'b10** so that only the transmit PMA controls are read from the transceiver channel.
- 3. Ensure that the busy signal is low before you start a read transaction.
- 4. Assert the read signal for one reconfig_clk clock cycle. This initiates the read transaction.

The busy output status signal is asserted high to indicate that the dynamic reconfiguration controller is busy reading the PMA control values. When the read transaction has completed, the busy signal goes low. The data_valid signal is asserted to indicate that the data available at the read control signal is valid.

Clocking/Interface Options

The following describes the **Clocking/Interface** options available in Cyclone IV GX devices. The core clocking setup describes the transceiver core clocks that are the write and read clocks of the Transmit Phase Compensation FIFO and the Receive Phase Compensation FIFO, respectively. Core clocking is classified as transmitter core clocking and receiver core clocking.

Table 3–6 lists the supported clocking interface settings for channel reconfiguration mode in Cyclone IV GX devices.

ALTGX Setting	Description						
Dynamic Reconfiguration Channel Internal and Interface Settings							
How should the receivers be	Select one of the available options:						
	Share a single transmitter core clock between receivers						
clocked?	Use the respective channel transmitter core clocks						
	Use the respective channel receiver core clocks						
	Select one of the available options:						
How should the transmitters be	Share a single transmitter core clock between transmitters						
	 Use the respective channel transmitter core clocks 						

 Table 3–6. Dynamic Reconfiguration Clocking Interface Settings in Channel Reconfiguration

 Mode

Transmitter core clocking refers to the clock that is used to write the parallel data from the FPGA fabric into the Transmit Phase Compensation FIFO. You can use one of the following clocks to write into the Transmit Phase Compensation FIFO:

- tx_coreclk—you can use a clock of the same frequency as tx_clkout from the FPGA fabric to provide the write clock to the Transmit Phase Compensation FIFO. If you use tx_coreclk, it overrides the tx_clkout options in the ALTGX MegaWizard Plug-In Manager.
- tx_clkout—the Quartus II software automatically routes tx_clkout to the FPGA fabric and back into the Transmit Phase Compensation FIFO.

Option 1: Share a Single Transmitter Core Clock Between Transmitters

- Enable this option if you want tx_clkout of the first channel (channel 0) of the transceiver block to provide the write clock to the Transmitter Phase Compensation FIFOs of the remaining channels in the transceiver block.
- This option is typically enabled when all the channels of a transceiver block have the same functional mode and data rate and are reconfigured to the identical functional mode and data rate.

Figure 3–11 shows the sharing of channel 0's tx_clkout between all four regular channels of a transceiver block.

Cyclone IV Device Handbook,

Volume 3

101 Innovation Drive San Jose, CA 95134 www.altera.com

CYIV-5V3-2.1

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/ Description	Conditiono	C6			C7, I7				Unit			
	Conultions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UIII	
PLD-Transceiver Interface												
Interface speed (F324 and smaller package)	_	25	_	125	25		125	25	_	125	MHz	
Interface speed (F484 and larger package)	_	25	_	156.25	25	_	156.25	25	_	156.25	MHz	
Digital reset pulse width	_		Minimum is 2 parallel clock cycles									

Notes to Table 1–21:

(1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and XAUI protocols.

(2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in **Transmitter Only** mode. The minimum reconfig_clk frequency is 37.5 MHz if the transceiver channel is configured in **Receiver Only** or **Receiver and Transmitter** mode.

(3) The device cannot tolerate prolonged operation at this absolute maximum.

- (4) The rate matcher supports only up to ±300 parts per million (ppm).
- (5) Supported for the F169 and F324 device packages only.
- (6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
- (7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
- (8) Asynchronous spread-spectrum clocking is not supported.
- (9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
- (10) Time taken until pll_locked goes high after pll_powerdown deasserts.
- (11) Time that the CDR must be kept in lock-to-reference mode after rx_analogreset deasserts and before rx_locktodata is asserted in manual mode.

(12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1-2), or after rx_freqlocked signal goes high in automatic mode (Figure 1-3).

(13) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode.

- (14) Time taken to recover valid data after the $rx_freqlocked$ signal goes high in automatic mode.
- (15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–23 lists the Cyclone IV GX transceiver block AC specifications.

Symbol/	Conditions	C6				C 7, I7	7		Ilait		
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	UNIT
PCIe Transmit Jitter Generation ⁽³⁾											
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	_	_	0.25	_	_	0.25	_	_	0.25	UI
PCIe Receiver Jitter Tole	PCIe Receiver Jitter Tolerance ⁽³⁾										
Total jitter at 2.5 Gbps (Gen1)	Compliance pattern	> 0.6			> 0.6			> 0.6			UI
GIGE Transmit Jitter Gene	GIGE Transmit Jitter Generation ⁽⁴⁾										
Deterministic jitter	Pattern – CBPAT	_		0 14			0 14			0 14	111
(peak-to-peak)				0.14			0.14			0.14	01
Total jitter (peak-to-peak)	Pattern = CRPAT	—	—	0.279	-	—	0.279	_	—	0.279	UI
GIGE Receiver Jitter Tolerance ⁽⁴⁾											
Deterministic jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.4			> 0.4			> 0.4			UI
Combined deterministic and random jitter tolerance (peak-to-peak)	Pattern = CJPAT	> 0.66		> 0.66			> 0.66			UI	

Table 1–23. Transceiver Block AC Specification for Cyclone IV GX Devices (1), (2)

Notes to Table 1-23:

(1) Dedicated refclk pins were used to drive the input reference clocks.

(2) The jitter numbers specified are valid for the stated conditions only.

(3) The jitter numbers for PIPE are compliant to the PCIe Base Specification 2.0.

(4) The jitter numbers for GIGE are compliant to the IEEE802.3-2002 Specification.

Core Performance Specifications

The following sections describe the clock tree specifications, PLLs, embedded multiplier, memory block, and configuration specifications for Cyclone IV Devices.

Clock Tree Specifications

Table 1–24 lists the clock tree specifications for Cyclone IV devices.

 Table 1–24.
 Clock Tree Performance for Cyclone IV Devices (Part 1 of 2)

Device	Performance												
	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	18L ⁽¹⁾	A7	UNIT				
EP4CE6	500	437.5	402	362	265	437.5	362	402	MHz				
EP4CE10	500	437.5	402	362	265	437.5	362	402	MHz				
EP4CE15	500	437.5	402	362	265	437.5	362	402	MHz				
EP4CE22	500	437.5	402	362	265	437.5	362	402	MHz				
EP4CE30	500	437.5	402	362	265	437.5	362	402	MHz				
EP4CE40	500	437.5	402	362	265	437.5	362	402	MHz				

Table 1–42 and Table 1–43 list the IOE programmable delay for Cyclone IV E 1.2 V core voltage devices.

		Numbor	umber		Max Offset							
Parameter	Paths Affected	of Setting	Min Offset	Fa	ast Corn	er	Slow Corner					
				C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.211	1.211	2.177	2.340	2.433	2.388	2.508	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.307	1.203	1.203	2.19	2.387	2.540	2.430	2.545	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.437	0.402	0.402	0.747	0.820	0.880	0.834	0.873	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.693	0.665	0.665	1.200	1.379	1.532	1.393	1.441	ns

Notes to Table 1-42:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

Parameter		Numbor		Max Offset								
	Paths Affected	of Setting	Min Offset	Fa	ast Corn	er	Slow Corner					
				C6	17	A7	C6	C7	C8	17	A7	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.209	1.209	2.201	2.386	2.510	2.429	2.548	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.207	1.207	2.202	2.402	2.558	2.447	2.557	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.458	0.419	0.419	0.783	0.861	0.924	0.875	0.915	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.686	0.657	0.657	1.185	1.360	1.506	1.376	1.422	ns

Table 1–43. IOE Programmable Delay on Row Pins for Cyclone IV E 1.2 V Core Voltage Devices (1), (2)

Notes to Table 1-43:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.