Intel - EP4CE15F23I8LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	963
Number of Logic Elements/Cells	15408
Total RAM Bits	516096
Number of I/O	343
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce15f23i8ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

True Dual-Port Mode	
Shift Register Mode	
ROM Mode	
FIFO Buffer Mode	
Clocking Modes	
Independent Clock Mode	
Input or Output Clock Mode	
Read or Write Clock Mode	
Single-Clock Mode	
Design Considerations	
Read-During-Write Operations	
Same-Port Read-During-Write Mode	
Mixed-Port Read-During-Write Mode	
Conflict Resolution	
Power-Up Conditions and Memory Initialization	
Power Management	
Document Revision History	

Chapter 4. Embedded Multipliers in Cyclone IV Devices

Embedded Multiplier Block Overview	4–1
Architecture	4–2
Input Registers	4–3
Multiplier Stage	4–3
Output Registers	4–4
Operational Modes	4–4
18-Bit Multipliers	4–5
9-Bit Multipliers	4–6
Document Revision History	4–7

Chapter 5. Clock Networks and PLLs in Cyclone IV Devices

Clock Networks	
GCLK Network	
Clock Control Block	
GCLK Network Clock Source Generation	
GCLK Network Power Down	
clkena Signals	
PLLs in Cyclone IV Devices	
Cyclone IV PLL Hardware Overview	
External Clock Outputs	
Clock Feedback Modes	
Source-Synchronous Mode	
No Compensation Mode	
Normal Mode	
Zero Delay Buffer Mode	
Deterministic Latency Compensation Mode	
Hardware Features	
Clock Multiplication and Division	
Post-Scale Counter Cascading	
Programmable Duty Cycle	
PLL Control Signals	
Clock Switchover	
Automatic Clock Switchover	
Manual Override	

In this mode, the activeclock signal mirrors the clkswitch signal. As both blocks are still functional during the manual switch, neither clkbad signals go high. Because the switchover circuit is positive edge-sensitive, the falling edge of the clkswitch signal does not cause the circuit to switch back from inclk1 to inclk0. When the clkswitch signal goes high again, the process repeats. The clkswitch signal and the automatic switch only works depending on the availability of the clock that is switched to. If the clock is unavailable, the state machine waits until the clock is available.

When CLKSWITCH = 1, it overrides the automatic switch-over function. As long as clkswitch signal is high, further switch-over action is blocked.

	•
inclk0	
inclk1 _	
muxout	
clkswitch _	
activeclock _	
clkbad0 —	
clkbad1 —	

Figure 5–19. Clock Switchover Using the clkswitch Control (1)

Note to Figure 5–19:

(1) Both inclk0 and inclk1 must be running when the clkswitch signal goes high to start a manual clock switchover event.

Manual Clock Switchover

PLLs of Cyclone IV devices support manual switchover, in which the clkswitch signal controls whether inclk0 or inclk1 is the input clock to the PLL. The characteristics of a manual switchover are similar to the manual override feature in an automatic clock switchover, in which the switchover circuit is edge-sensitive. When the clkswitch signal goes high, the switchover sequence starts. The falling edge of the clkswitch signal does not cause the circuit to switch back to the previous input clock.

• For more information about PLL software support in the Quartus II software, refer to the *ALTPLL Megafunction User Guide*.

Guidelines

Use the following guidelines to design with clock switchover in PLLs:

 Clock loss detection and automatic clock switchover require the inclk0 and inclk1 frequencies be within 20% of each other. Failing to meet this requirement causes the clkbad0 and clkbad1 signals to function improperly.

Document Revision History

Table 5–14 lists the revision history for this chapter.

Table 5–14. Document Revision Hi

Date	Version	Changes		
October 2012 2.4	 Updated "Manual Override" and "PLL Cascading" sections. 			
	2.4	■ Updated Figure 5–9.		
November 2011	0.3	 Updated the "Dynamic Phase Shifting" section. 		
	2.3	■ Updated Figure 5–26.		
		 Updated for the Quartus II software version 10.1 release. 		
		■ Updated Figure 5–3 and Figure 5–10.		
December 2010	2.2	 Updated "GCLK Network Clock Source Generation", "PLLs in Cyclone IV Devices", and "Manual Override" sections. 		
		 Minor text edits. 		
		■ Updated Figure 5–2, Figure 5–3, Figure 5–4, and Figure 5–10.		
July 2010	2.1	■ Updated Table 5–1, Table 5–2, and Table 5–5.		
		 Updated "Clock Feedback Modes" section. 		
		 Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1 release. 		
	2.0	 Updated "Clock Networks" section. 		
February 2010		■ Updated Table 5–1 and Table 5–2.		
		Added Table 5–3.		
		■ Updated Figure 5–2, Figure 5–3, and Figure 5–9.		
		■ Added Figure 5–4 and Figure 5–10.		
November 2009	1.0	Initial release.		

Figure 6–11. Cyclone IV GX I/O Banks for EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 ^{(1), (2), (9)}

Notes to Figure 6–11:

- (1) This is a top view of the silicon die. For exact pin locations, refer to the pin list and the Quartus II software.
- (2) True differential (PPDS, LVDS, mini-LVDS, and RSDS I/O standards) outputs are supported in row I/O banks 5 and 6 only. External resistors are needed for the differential outputs in column I/O banks.
- (3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
- (4) The HSTL-12 Class II is supported in column I/O banks 4, 7, and 8.
- (5) The differential SSTL-18 and SSTL-2, differential HSTL-18, and HSTL-15 I/O standards are supported only on clock input pins and phase-locked loops (PLLs) output clock pins. PLL output clock pins do not support Class II interface type of differential SSTL-18, HSTL-18, HSTL-15, and HSTL-12 I/O standards.
- (6) The differential HSTL-12 I/O standard is only supported on clock input pins and PLL output clock pins. Differential HSTL-12 Class II is supported only in column I/O banks 4, 7, and 8.
- (7) BLVDS output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses the LVDS input buffer.
- (8) The PCI-X I/O standard does not meet the IV curve requirement at the linear region.
- (9) The OCT block is located in the shaded banks 4, 5, and 7.
- (10) The dedicated clock input I/O banks 3A, 3B, 8A, and 8B can be used either for HSSI input reference clock pins or clock input pins.
- (11) Single-ended clock input support is available for dedicated clock input I/O banks 3B and 8B.

Designing with LVDS

Cyclone IV I/O banks support the LVDS I/O standard. The Cyclone IV GX right I/O banks support true LVDS transmitters while the Cyclone IV E left and right I/O banks support true LVDS transmitters. On the top and bottom I/O banks, the emulated LVDS transmitters are supported using two single-ended output buffers with external resistors. One of the single-ended output buffers is programmed to have opposite polarity. The LVDS receiver requires an external 100- Ω termination resistor between the two signals at the input buffer.

Figure 6–12 shows a point-to-point LVDS interface using Cyclone IV devices true LVDS output and input buffers.

Figure 6–12. Cyclone IV Devices LVDS Interface with True Output Buffer on the Right I/O Banks

Figure 6–13 shows a point-to-point LVDS interface with Cyclone IV devices LVDS using two single-ended output buffers and external resistors.

Figure 6–13. LVDS Interface with External Resistor Network on the Top and Bottom I/O Banks (1)

(1) $R_{\rm S} = 120 \ \Omega$. $R_{\rm P} = 170 \ \Omega$.

BLVDS I/O Standard Support in Cyclone IV Devices

The BLVDS I/O standard is a high-speed differential data transmission technology that extends the benefits of standard point-to-point LVDS to multipoint configuration that supports bidirectional half-duplex communication. BLVDS differs from standard LVDS by providing a higher drive to achieve similar signal swings at the receiver while loaded with two terminations at both ends of the bus.

For more information about Cyclone IV PLL, refer to the Clock Networks and PLLs in Cyclone IV Devices chapter.

Document Revision History

Table 7–3 lists the revision history for this chapter.

lable 7–3. Document Revision History			
Date	Version	Changes	
		 Updated Table 7–1 to remove support for the N148 package. 	
March 2016	2.6	■ Updated note (1) in Figure 7–2 to remove support for the N148 package.	
		 Updated Figure 7-4 to remove support for the N148 package. 	
May 2013	2.5	Updated Table 7–2 to add new device options and packages.	
February 2013	2.4	Updated Table 7–2 to add new device options and packages.	
October 2012	2.3	Updated Table 7–1 and Table 7–2.	
		 Updated for the Quartus II software version 10.1 release. 	
December 2010	2.2	 Added Cyclone IV E new device package information. 	
December 2010		■ Updated Table 7–2.	
		 Minor text edits. 	
November 2010	2.1	Updated "Data and Data Clock/Strobe Pins" section.	
February 2010		 Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1 release. 	
	2.0	■ Updated Table 7–1.	
		■ Added Table 7–2.	
		■ Added Figure 7–5 and Figure 7–6.	

Та

November 2009

1.0

Initial release.

Byte-Wide Multi-Device AP Configuration

The simpler method for multi-device AP configuration is the byte-wide multi-device AP configuration. In the byte-wide multi-device AP configuration, the LSB of the DATA [7..0] pin from the flash and master device (set to the AP configuration scheme) is connected to the slave devices set to the FPP configuration scheme, as shown in Figure 8–8.

Notes to Figure 8-8:

- (1) Connect the pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) Connect the pull-up resistor to the V_{CCIO} supply voltage of the I/O bank in which the nCE pin resides.
- (3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (4) The MSEL pin settings vary for different configuration voltage standards and POR time. You must set the master device in AP mode and the slave devices in FPP mode. To connect MSEL [3..0] for the master device in AP mode and the slave devices in FPP mode, refer to Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (5) The AP configuration ignores the WAIT signal during configuration mode. However, if you are accessing flash during user mode with user logic, you can optionally use the normal I/O to monitor the WAIT signal from the Micron P30 or P33 flash.
- (6) Connect the repeater buffers between the Cyclone IV E master device and slave devices for DATA [15..0] and DCLK. All I/O inputs must maintain a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in "Configuration and JTAG Pin I/O Requirements" on page 8–5.

Word-Wide Multi-Device AP Configuration

The more efficient setup is one in which some of the slave devices are connected to the LSB of the DATA[7..0] and the remaining slave devices are connected to the MSB of the DATA[15..8]. In the word-wide multi-device AP configuration, the nCEO pin of the master device enables two separate daisy chains of slave devices, allowing both chains to be programmed concurrently, as shown in Figure 8–9.

You can use a download cable to configure multiple Cyclone IV device configuration pins. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF_DONE are connected to every device in the chain. All devices in the chain utilize and enter user mode at the same time because all CONF DONE pins are tied together.

In addition, the entire chain halts configuration if any device detects an error because the nSTATUS pins are tied together. Figure 8–18 shows the PS configuration for multiple Cyclone IV devices using a MasterBlaster, USB-Blaster, ByteBlaster II, or ByteBlasterMV cable.

Notes to Figure 8-18:

- (1) You must connect the pull-up resistor to the same supply voltage as the V_{CCA} supply.
- (2) The pull-up resistors on DATA[0] and DCLK are only required if the download cable is the only configuration scheme used on your board. This ensures that DATA[0] and DCLK are not left floating after configuration. For example, if you also use a configuration device, the pull-up resistors on DATA[0] and DCLK are not required.
- (3) Pin 6 of the header is a V_{I0} reference voltage for the MasterBlaster output driver. V_{I0} must match the V_{CCA} of the device. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*. When using the ByteBlasterMV download cable, this pin is a no connect. When using USB-Blaster, ByteBlaster II, and EthernetBlaster cables, this pin is connected to nCE when it is used for AS programming. Otherwise, it is a no connect.
- (4) Connect the pull-up resistor to the V_{CCIO} supply voltage of the I/O bank in which the nCE pin resides.
- (5) The nCEO pin of the last device in the chain is left unconnected or used as a user I/O pin.
- (6) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect MSEL for PS configuration schemes, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (7) Power up the V_{CC} of the ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5 V supply from V_{CCA}. Third-party programmers must switch to 2.5 V. Pin 4 of the header is a V_{CC} power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the MasterBlaster Serial/USB Communications Cable User Guide.

Figure 8–24. JTAG Configuration of a Single Device Using a Download Cable (1.5-V or 1.8-V V_{CCIO} Powering the JTAG Pins)

Notes to Figure 8-24:

- (1) Connect these pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use JTAG configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
- (3) In the USB-Blaster and ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming; otherwise it is a no connect.
- (4) The nCE must be connected to GND or driven low for successful JTAG configuration.
- (5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (6) Power up the V_{CC} of the EthernetBlaster, ByteBlaster II or USB-Blaster cable with supply from V_{CCI0}. The Ethernet-Blaster, ByteBlaster II, and USB-Blaster cables do not support a target supply voltage of 1.2 V. For the target supply voltage value, refer to the *ByteBlaster II Download Cable User Guide*, the USB-Blaster Download Cable User Guide, and the EthernetBlaster Communications Cable User Guide.
- (7) Resistor value can vary from 1 k Ω to 10 k Ω .

To configure a single device in a JTAG chain, the programming software places all other devices in bypass mode. In bypass mode, devices pass programming data from the TDI pin to the TDO pin through a single bypass register without being affected internally. This scheme enables the programming software to program or verify the target device. Configuration data driven into the device appears on the TDO pin one clock cycle later.

The Quartus II software verifies successful JTAG configuration after completion. At the end of configuration, the software checks the state of CONF_DONE through the JTAG port. When Quartus II generates a **.jam** for a multi-device chain, it contains instructions so that all the devices in the chain are initialized at the same time. If CONF_DONE is not high, the Quartus II software indicates that configuration has failed. If CONF_DONE is high, the software indicates that configuration was successful. After the configuration bitstream is serially sent using the JTAG TDI port, the TCK port clocks an additional clock cycles to perform device initialization.

- JTAG configuration allows an unlimited number of Cyclone IV devices to be cascaded in a JTAG chain.
- For more information about configuring multiple Altera devices in the same configuration chain, refer to the *Configuring Mixed Altera FPGA Chains* chapter in volume 2 of the *Configuration Handbook*.

Figure 8–27 shows JTAG configuration with a Cyclone IV device and a microprocessor.

Notes to Figure 8-27:

- (1) You must connect the pull-up resistor to a supply that provides an acceptable input signal for all devices in the chain.
- (2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use a JTAG configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
- (3) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
- (4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. Signals driving into TDI, TMS, and TCK must fit the maximum overshoot outlined in Equation 8–1 on page 8–5.

Configuring Cyclone IV Devices with Jam STAPL

Jam[™] STAPL, JEDEC standard JESD-71, is a standard file format for in-system programmability (ISP) purposes. Jam STAPL supports programming or configuration of programmable devices and testing of electronic systems, using the IEEE 1149.1 JTAG interface. Jam STAPL is a freely licensed open standard. The Jam Player provides an interface for manipulating the IEEE Std. 1149.1 JTAG TAP state machine.

C For more information about JTAG and Jam STAPL in embedded environments, refer to *AN 425: Using Command-Line Jam STAPL Solution for Device Programming*. To download the Jam Player, visit the Altera website (www.altera.com).

Configuring Cyclone IV Devices with the JRunner Software Driver

The JRunner software driver allows you to configure Cyclone IV devices through the ByteBlaster II or ByteBlasterMV cables in JTAG mode. The supported programming input file is in **.rbf** format. The JRunner software driver also requires a Chain Description File (**.cdf**) generated by the Quartus II software. The JRunner software driver is targeted for embedded JTAG configuration. The source code is developed for the Windows NT operating system (OS). You can customize the code to make it run on your embedded platform.

Remote System Upgrade Mode

In remote update mode, Cyclone IV devices load the factory configuration image after power up. The user-defined factory configuration determines the application configuration to be loaded and triggers a reconfiguration cycle. The factory configuration can also contain application logic.

When used with configuration memory, the remote update mode allows an application configuration to start at any flash sector boundary. Additionally, the remote update mode features a user watchdog timer that can detect functional errors in an application configuration.

Remote Update Mode

In AS configuration scheme, when a Cyclone IV device is first powered up in remote update, it loads the factory configuration located at address <code>boot_address[23:0] = 24b'0</code>. Altera recommends storing the factory configuration image for your system at boot address 24b'0, which corresponds to the start address location 0×000000 in the serial configuration device. A factory configuration image is a bitstream for the Cyclone IV device in your system that is programmed during production and is the fall-back image when an error occurs. This image is stored in non-volatile memory and is never updated or modified using remote access.

When you use the AP configuration in Cyclone IV E devices, the Cyclone IV E device loads the default factory configuration located at the following address after device power-up in remote update mode:

boot_address[23:0] = 24'h010000 = 24'b1 0000 0000 0000.

You can change the default factory configuration address to any desired address using the APFC_BOOT_ADDR JTAG instruction. The factory configuration image is stored in non-volatile memory and is never updated or modified using remote access. This corresponds to the default start address location 0×010000 represented in 16-bit word addressing (or the updated address if the default address is changed) in the supported parallel flash memory. For more information about the application of the APFC_BOOT_ADDR JTAG instruction in AP configuration scheme, refer to the "JTAG Instructions" on page 8–57.

The factory configuration image is user-designed and contains soft logic (Nios II processor or state machine and the remote communication interface) to:

- Process any errors based on status information from the dedicated remote system upgrade circuitry
- Communicate with the remote host and receive new application configurations and store the new configuration data in the local non-volatile memory device
- Determine the application configuration to be loaded into the Cyclone IV device
- Enable or disable the user watchdog timer and load its time-out value (optional)
- Instruct the dedicated remote system upgrade circuitry to start a reconfiguration cycle

The calibration block internally generates a constant internal reference voltage, independent of PVT variations and uses this voltage and the external reference resistor on the RREF pin to generate constant reference currents. The OCT calibration circuit calibrates the OCT resistors present in the transceiver channels. Figure 1–41 shows the calibration block diagram.

Notes to Figure 1-41:

- (1) All transceiver channels use the same calibration block clock and power down signals.
- (2) Connect a 2 k Ω (tolerance max ± 1%) external resistor to the RREF pin to ground. The RREF resistor connection in the board must be free from any external noise.
- (3) Supports up to 125 MHz clock frequency. Use either dedicated global clock or divide-down logic from the FPGA fabric to generate a slow clock on the local clock routing.
- (4) The calibration block restarts the calibration process following deassertion of the cal_blk_powerdown signal.

PCI-Express Hard IP Block

Figure 1–42 shows the block diagram of the PCIe hard IP block implementing the PHY MAC, Data Link Layer, and Transaction Layer for PCIe interfaces. The PIPE interface is used as the interface between the transceiver and the hard IP block.

Figure 1–42. PCI Express Hard IP High-Level Block Diagram

Figure 1–56 shows the transceiver configuration in GIGE mode.

Figure 1–56. Transceiver Configuration in GIGE Mode

When configured in GIGE mode, three encoded comma (/K28.5/) code groups are transmitted automatically after deassertion of tx_digitalreset and before transmitting user data on the tx_datain port. This could affect the synchronization state machine behavior at the receiver.

Depending on when you start transmitting the synchronization sequence, there could be an even or odd number of encoded data (/Dx.y/) code groups transmitted between the last of the three automatically sent /K28.5/ code groups and the first /K28.5/ code group of the synchronization sequence. If there is an even number of /Dx.y/ code groups received between these two /K28.5/ code groups, the first /K28.5/ code group of the synchronization sequence begins at an odd code group boundary. An IEEE802.3-compliant GIGE synchronization state machine treats this as an error condition and goes into the Loss-of-Sync state.

		8-bit Channel Width			10-bit Channel Width				
Patterns	Polynomial	Channel Width of 8 bits (1)	Word Alignment Pattern	Maximum Data Rate (Gbps) for F324 and Smaller Packages	Maximum Data Rate (Gbps) for F484 and Larger Packages	Channel Width of 10-bits (1)	Word Alignment Pattern	Maximum Data Rate (Gbps) for F324 and Smaller Packages	Maximum Data Rate (Gbps) for F484 and Larger Packages
Low Frequency ⁽²⁾	1111100000	N		_	_	Y		2.5	3.125

Table 1-25	. PRBS, High and Lo	w Frequency Patterns	, and Channel Settings	(Part 2 of 2)
------------	---------------------	----------------------	------------------------	---------------

Notes to Table 1-25:

(1) Channel width refers to the **What is the channel width?** option in the **General** screen of the ALTGX MegaWizard Plug-In Manager. Based on the selection, an 8 or 10 bits wide pattern is generated as indicated by a **Yes (Y)** or **No (N)**.

(2) A verifier and associated rx bistdone and rx bisterr signals are not available for the specified patterns.

You can enable the serial loopback option to loop the generated PRBS patterns to the receiver channel for verifier to check the PRBS patterns. When the PRBS pattern is received, the rx_bisterr and rx_bistdone signals indicate the status of the verifier. After the word aligner restores the word boundary, the rx_bistdone signal is driven high when the verifier receives a complete pattern cycle and remains asserted until it is reset using the rx_digitalreset port. After the assertion of rx_bistdone, the rx_bisterr signal is asserted for a minimum of three rx_clkout cycles when errors are detected in the data and deasserts if the following PRBS sequence contains no error. You can reset the PRBS pattern generator and verifier by asserting the tx_digitalreset and rx_digitalreset ports, respectively.

As shown in Figure 2–5, perform the following reset procedure for the receiver CDR in manual lock mode configuration:

- 1. After power up, assert pll areset for a minimum period of 1 µs (the time between markers 1 and 2).
- 2. Keep the tx digitalreset, rx analogreset, rx digitalreset, and rx locktorefclk signals asserted and the rx locktodata signal deasserted during this time period. After you deassert the pll areset signal, the multipurpose PLL starts locking to the input reference clock.
- 3. After the multipurpose PLL locks, as indicated by the pll locked signal going high (marker 3), deassert the tx digitalreset signal (marker 4). For the receiver operation, after deassertion of the busy signal, wait for two parallel clock cycles to deassert the rx_analogreset signal.
- 4. In a bonded channel group, wait for at least $t_{LTR_LTD_Manual}$, then deassert rx locktorefclk and assert rx locktodata (marker 7). At this point, the receiver CDR of all the channels enters into lock-to-data mode and starts locking to the received data.
- 5. After asserting the rx locktodata signal, wait for at least t_{LTD Manual} before deasserting rx_digitalreset (the time between markers 7 and 8). At this point, the transmitter and receiver are ready for data traffic.

Non-Bonded Channel Configuration

In non-bonded channels, each channel in the ALTGX MegaWizard Plug-In Manager instance contains its own tx digitalreset, rx analogreset, rx digitalreset, and rx freqlocked signals.

You can reset each channel independently. For example, if there are four non-bonded channels, the ALTGX MegaWizard Plug-In Manager provides four each of the following signals: tx digitalreset, rx analogreset, rx digitalreset, and rx freqlocked.

Table 2–6 lists the reset and power-down sequences for one channel in a non-bonded configuration under the stated functional modes.

Table 2–6. Reset and Power-Down Sequences for Non-Bonded Channel Configurations			
Channel Set Up	Receiver CDR Mode	Refer to	
Transmitter Only	Basic ×1	"Transmitter Only Channel" on page 2–11	
Receiver Only	Automatic lock mode	"Receiver Only Channel—Receiver CDR in Automatic Lock Mode" on page 2–11	
Receiver Only	Manual lock mode	"Receiver Only Channel—Receiver CDR in Manual Lock Mode" on page 2–12	
Receiver and Transmitter	Automatic lock mode	"Receiver and Transmitter Channel—Receiver CDR in Automatic Lock Mode" on page 2–13	
Receiver and Transmitter	Manual lock mode	"Receiver and Transmitter Channel—Receiver CDR in	

Follow the same reset sequence for all the other channels in the non-bonded configuration.

Manual Lock Mode" on page 2-14

Clocking/Interface Options

The following describes the **Clocking/Interface** options available in Cyclone IV GX devices. The core clocking setup describes the transceiver core clocks that are the write and read clocks of the Transmit Phase Compensation FIFO and the Receive Phase Compensation FIFO, respectively. Core clocking is classified as transmitter core clocking and receiver core clocking.

Table 3–6 lists the supported clocking interface settings for channel reconfiguration mode in Cyclone IV GX devices.

ALTGX Setting	Description		
Dynamic Reconfiguration Chann	el Internal and Interface Settings		
	Select one of the available options:		
How should the receivers be clocked?	Share a single transmitter core clock between receivers		
	 Use the respective channel transmitter core clocks 		
	 Use the respective channel receiver core clocks 		
How should the transmitters be	Select one of the available options:		
	Share a single transmitter core clock between transmitters		
	 Use the respective channel transmitter core clocks 		

 Table 3–6. Dynamic Reconfiguration Clocking Interface Settings in Channel Reconfiguration

 Mode

Transmitter core clocking refers to the clock that is used to write the parallel data from the FPGA fabric into the Transmit Phase Compensation FIFO. You can use one of the following clocks to write into the Transmit Phase Compensation FIFO:

- tx_coreclk—you can use a clock of the same frequency as tx_clkout from the FPGA fabric to provide the write clock to the Transmit Phase Compensation FIFO. If you use tx_coreclk, it overrides the tx_clkout options in the ALTGX MegaWizard Plug-In Manager.
- tx_clkout—the Quartus II software automatically routes tx_clkout to the FPGA fabric and back into the Transmit Phase Compensation FIFO.

Option 2: Use the Respective Channel Transmitter Core Clocks

- Enable this option if you want the individual transmitter channel tx_clkout signals to provide the write clock to their respective Transmit Phase Compensation FIFOs.
- This option is typically enabled when each transceiver channel is reconfigured to a different functional mode using channel reconfiguration.

Figure 3–12 shows how each transmitter channel's tx_clkout signal provides a clock to the Transmit Phase Compensation FIFOs of the respective transceiver channels.

Figure 3–12. Option 2 for Transmitter Core Clocking (Channel Reconfiguration Mode)

Receiver core clocking refers to the clock that is used to read the parallel data from the Receiver Phase Compensation FIFO into the FPGA fabric. You can use one of the following clocks to read from the Receive Phase Compensation FIFO:

- rx_coreclk—you can use a clock of the same frequency as rx_clkout from the FPGA fabric to provide the read clock to the Receive Phase Compensation FIFO. If you use rx_coreclk, it overrides the rx_clkout options in the ALTGX MegaWizard Plug-In Manager.
- rx_clkout—the Quartus II software automatically routes rx_clkout to the FPGA fabric and back into the Receive Phase Compensation FIFO.

Option 2: Use the Respective Channel Transmitter Core Clocks

- Enable this option if you want the individual transmitter channel's tx_clkout signal to provide the read clock to its respective Receive Phase Compensation FIFO.
- This option is typically enabled when all the transceiver channels have rate matching enabled with different data rates and are reconfigured to another Basic or Protocol functional mode with rate matching enabled.

Figure 3–14 shows the respective tx_clkout of each channel clocking the respective channels of a transceiver block.

Figure 3–14. Option 2 for Receiver Core Clocking (Channel Reconfiguration Mode)

Note to Figure 3-14:

(1) Assuming channel 2 and 3 are running at the same data rate with rate matcher enabled and are reconfigured to another Basic or Protocol functional mode with rate matching enabled.

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

Table 1-44.	IOE Programmable Dela	y on Column Pins for C	yclone IV GX Devices ^{(1), (2)}
-------------	-----------------------	------------------------	--

	Paths Affected	Number of Settings	Min Offset	Max Offset						
Parameter				Fast Corner		Slow Corner				Unit
				C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns

Notes to Table 1-44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

	Paths Affected	Number of Settings	Min Offset	Max Offset						
Parameter				Fast Corner		Slow Corner				Unit
				C6	17	C6	C7	C8	17	
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

Notes to Table 1-45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software