Intel - EP4CE22E22C6 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1395
Number of Logic Elements/Cells	22320
Total RAM Bits	608256
Number of I/O	79
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	144-EQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce22e22c6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Manual Clock Switchover	5–30
Guidelines	5–30
Programmable Bandwidth	5–32
Phase Shift Implementation	5–32
PLL Cascading	5–33
PLL Reconfiguration	5–34
PLL Reconfiguration Hardware Implementation	5–34
Post-Scale Counters (C0 to C4)	5–36
Scan Chain Description	5–37
Charge Pump and Loop Filter	5–38
Bypassing a PLL Counter	5–39
Dynamic Phase Shifting	5–39
Spread-Spectrum Clocking	5–41
PLL Specifications	5–41
Document Revision History	5–42

Section II. I/O Interfaces

LNAPTER 6. I/U FEATURES IN LYCIONE IN DEVI
--

Cyclone IV I/O Elements	
I/O Element Features	
Programmable Current Strength	6–3
Slew Rate Control	6–4
Open-Drain Output	
Bus Hold	6–4
Programmable Pull-Up Resistor	
Programmable Delay	
PCI-Clamp Diode	
OCT Support	
On-Chip Series Termination with Calibration	
On-Chip Series Termination Without Calibration	
I/O Standards	6–11
Termination Scheme for I/O Standards	
Voltage-Referenced I/O Standard Termination	6–14
Differential I/O Standard Termination	
I/O Banks	
High-Speed Differential Interfaces	
External Memory Interfacing	
Pad Placement and DC Guidelines	
Pad Placement	
DC Guidelines	
Clock Pins Functionality	
High-Speed I/O Interface	
High-Speed I/O Standards Support	
High Speed Serial Interface (HSSI) Input Reference Clock Support	
LVDS I/O Standard Support in Cyclone IV Devices	
Designing with LVDS	
BLVDS I/O Standard Support in Cyclone IV Devices	
Designing with BLVDS	
RSDS, Mini-LVDS, and PPDS I/O Standard Support in Cyclone IV Devices	
Designing with RSDS, Mini-LVDS, and PPDS	
LVPECL I/O Support in Cyclone IV Devices	
Differential SSTL I/O Standard Support in Cyclone IV Devices	

	Availability									
Features	General Purpose PLLs				Multipurpose PLLs					
	PLL_1 (1), (10)	PLL_2 (1), (10)	PLL_ 3 ⁽²⁾	PLL_ 4 ⁽³⁾	PLL_1 (4)	PLL_2 (4)	PLL_5 (1), (10)	PLL_6 (1), (10)	PLL_7	PLL_8 (1)
Input clock switchover	\checkmark									
User mode reconfiguration	\checkmark									
Loss of lock detection	\checkmark									
PLL drives TX Serial Clock, TX Load Enable, and TX Parallel Clock	~	~	_	_			•	/		
VCO output drives RX clock data recovery (CDR) clock	- ~									
PLL drives FREF for ppm detect	✓ ✓ <u> </u>				✓ <i>✓</i>					

Notes to Table 5-5:

- (1) This is only applicable to EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices in F672 and F896 package.
- (2) This is applicable to all Cyclone IV devices.
- (3) This is applicable to all Cyclone IV devices except EP4CGX15 devices in all packages, EP4CGX22, and EP4CGX30 devices in F169 package.
- (4) This is only applicable to EP4CGX15, EP4CGX22, and all EP4CGX30 devices except EP4CGX30 in the F484 package.
- (5) C counters range from 1 through 512 if the output clock uses a 50% duty cycle. For any output clocks using a non-50% duty cycle, the post-scale counters range from 1 through 256.
- (6) These clock pins can access the GCLK networks.
- (7) These clock pins are only available in EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices and cannot access the GCLK networks. CLK [17,19,20,21] p can be used as single-ended clock input pins.
- (8) Only applicable if the input clock jitter is in the input jitter tolerance specifications.
- (9) The smallest phase shift is determined by the voltage-controlled oscillator (VCO) period divided by eight. For degree increments, Cyclone IV GX devices can shift all output frequencies in increments of at least 45°. Smaller degree increments are possible depending on the frequency and divide parameters.
- (10) This is applicable to the EP4CGX30, EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices in F484 package.

Table 5–6 lists the features available in Cyclone IV E PLLs.

Table 5–6. Cyclone IV E PLL Features (Part 1 of 2)

Hardware Features	Availability
C (output counters)	5
M, N, C counter sizes	1 to 512 <i>(1)</i>
Dedicated clock outputs	1 single-ended or 1 differential pair
Clock input pins	4 single-ended or 2 differential pairs
Spread-spectrum input clock tracking	✓ (2)
PLL cascading	Through GCLK
Compensation modes	Source-Synchronous Mode, No Compensation Mode, Normal Mode, and Zero Delay Buffer Mode
Phase shift resolution	Down to 96-ps increments ⁽³⁾
Programmable duty cycle	✓
Output counter cascading	✓
Input clock switchover	✓
User mode reconfiguration	\checkmark

Figure 5–14 shows a waveform example of the phase relationship of the PLL clocks in this mode.

Figure 5-14. Phase Relationship Between PLL Clocks in Normal Mode

Note to Figure 5-14:

(1) The external clock output can lead or lag the PLL internal clock signals.

Zero Delay Buffer Mode

In zero delay buffer (ZDB) mode, the external clock output pin is phase-aligned with the clock input pin for zero delay through the device. When using this mode, use the same I/O standard on the input clock and output clocks to guarantee clock alignment at the input and output pins.

Figure 5–15 shows an example waveform of the phase relationship of the PLL clocks in ZDB mode.

In this mode, the activeclock signal mirrors the clkswitch signal. As both blocks are still functional during the manual switch, neither clkbad signals go high. Because the switchover circuit is positive edge-sensitive, the falling edge of the clkswitch signal does not cause the circuit to switch back from inclk1 to inclk0. When the clkswitch signal goes high again, the process repeats. The clkswitch signal and the automatic switch only works depending on the availability of the clock that is switched to. If the clock is unavailable, the state machine waits until the clock is available.

When CLKSWITCH = 1, it overrides the automatic switch-over function. As long as clkswitch signal is high, further switch-over action is blocked.

	•
inclk0	
inclk1 _	
muxout	
clkswitch _	
activeclock _	
clkbad0 —	
clkbad1 —	

Figure 5–19. Clock Switchover Using the clkswitch Control (1)

Note to Figure 5–19:

(1) Both inclk0 and inclk1 must be running when the clkswitch signal goes high to start a manual clock switchover event.

Manual Clock Switchover

PLLs of Cyclone IV devices support manual switchover, in which the clkswitch signal controls whether inclk0 or inclk1 is the input clock to the PLL. The characteristics of a manual switchover are similar to the manual override feature in an automatic clock switchover, in which the switchover circuit is edge-sensitive. When the clkswitch signal goes high, the switchover sequence starts. The falling edge of the clkswitch signal does not cause the circuit to switch back to the previous input clock.

• For more information about PLL software support in the Quartus II software, refer to the *ALTPLL Megafunction User Guide*.

Guidelines

Use the following guidelines to design with clock switchover in PLLs:

 Clock loss detection and automatic clock switchover require the inclk0 and inclk1 frequencies be within 20% of each other. Failing to meet this requirement causes the clkbad0 and clkbad1 signals to function improperly. • For the specific sustaining current for each V_{CCIO} voltage level driven through the resistor and for the overdrive current used to identify the next driven input level, refer to the *Cyclone IV Device Datasheet* chapter.

Programmable Pull-Up Resistor

Each Cyclone IV device I/O pin provides an optional programmable pull-up resistor while in user mode. If you enable this feature for an I/O pin, the pull-up resistor holds the output to the V_{CCIO} level of the output pin's bank.

- IF you enable the programmable pull-up resistor, the device cannot use the bus-hold feature. Programmable pull-up resistors are not supported on the dedicated configuration, JTAG, and dedicated clock pins.
- When the optional DEV_OE signal drives low, all I/O pins remains tri-stated even with the programmable pull-up option enabled.

Programmable Delay

The Cyclone IV IOE includes programmable delays to ensure zero hold times, minimize setup times, increase clock-to-output times, and delay the clock input signal.

A path in which a pin directly drives a register may require a programmable delay to ensure zero hold time, whereas a path in which a pin drives a register through combinational logic may not require the delay. Programmable delays minimize setup time. The Quartus II Compiler can program these delays to automatically minimize setup time while providing a zero hold time. Programmable delays can increase the register-to-pin delays for output registers. Each dual-purpose clock input pin provides a programmable delay to the global clock networks.

Table 6–1 shows the programmable delays for Cyclone IV devices.

Programmable Delay	Quartus II Logic Option
Input pin-to-logic array delay	Input delay from pin to internal cells
Input pin-to-input register delay	Input delay from pin to input register
Output pin delay	Delay from output register to output pin
Dual-purpose clock input pin delay	Input delay from dual-purpose clock pin to fan-out destinations

Table 6-1. Cyclone IV Devices Programmable Delay Chain

There are two paths in the IOE for an input to reach the logic array. Each of the two paths can have a different delay. This allows you to adjust delays from the pin to the internal logic element (LE) registers that reside in two different areas of the device. You must set the two combinational input delays with the input delay from pin to internal cells logic option in the Quartus II software for each path. If the pin uses the input register, one of the delays is disregarded and the delay is set with the input delay from pin to input register logic option in the Quartus II software.

Table 6–2 lists the I/O standards that support impedance matching and series termination.

I/O Standard	IOH/IOL Current Strength Setting (mA) ⁽¹⁾ , ⁽⁹⁾		R _s OC Calib Setting,	T with ration Ohm (Ω)	R _s OCT Calib Setting,	Without ration Ohm (Ω)	Cyclone IV E I/O Banks	Cyclone IV GX I/O Banks	Slew Rate Ontion	PCI- clamp Diode
	Column I/O	Row I/O	Column I/O	Row I/O ⁽⁸⁾	Column I/O	Row I/O ⁽⁸⁾	Support	Support	(6)	Support
3.3-V LVTTL	4,8	4,8	—		—				—	\checkmark
3.3-V LVCMOS	2	2	—	_	_	_				\checkmark
3.0-V LVTTL	4,8,12,16	4,8,12,16	50,25	50,25	50,25	50,25			019	\checkmark
3.0-V LVCMOS	4,8,12,16	4,8,12,16	50,25	50,25	50,25	50,25			0,1,2	\checkmark
3.0-V PCI/PCI-X	—	—	—	—	—	_		3,4,5,6,		~
2.5-V LVTTL/LVCMOS	4,8,12,16	4,8,12,16	50,25	50,25	50,25	50,25		7,8,9		~
1.8-V LVTTL/LVCMOS	2,4,6,8,10,12,1 6	2,4,6,8,10,12,1 6	50,25	50,25	50,25	50,25				
1.5-V LVCMOS	2,4,6,8,10,12,1 6	2,4,6,8,10,12,1 6	50,25	50,25	50,25	50,25				_
1.2-V LVCMOS	2,4,6,8,10,12	2,4,6,8,10	50,25	50	50,25	50	1,2,3,4, 5,6,7,8	4,5,6,7, 8		_
SSTL-2 Class I	8,12	8,12	50	50	50	50				—
SSTL-2 Class II	16	16	25	25	25	25			012	—
SSTL-18 Class I	8,10,12	8,10,12	50	50	50	50			0,1,2	—
SSTL-18 Class II	12,16	12,16	25	25	25	25		3,4,5,6,		_
HSTL-18 Class I	8,10,12	8,10,12	50	50	50	50		7,8,9		—
HSTL-18 Class II	16	16	25	25	25	25				—
HSTL-15 Class I	8,10,12	8,10,12	50	50	50	50				—
HSTL-15 Class II	16	16	25	25	25	25				
HSTL-12 Class I	8,10,12	8,10	50	50	50	50		4,5,6,7, 8		_
HSTL-12 Class II	14	—	25	—	25		3,4,7,8	4,7,8		—
Differential SSTL-2 Class I ^{(2), (7)}	8,12	8,12	50	50	50	50				_
Differential SSTL-2 Class II ^{(2),} ⁽⁷⁾	16	16	25	25	25	25				
Differential SSTL- 18 ^{(2), (7)}	8,10,12	_	50	_	50	_	1,2,3,4, 5,6,7,8	3,4,5,6, 7,8	0,1, 2	
Differential HSTL- 18 ^{(2),} (7)	8,10,12	_	50		50					
Differential HSTL- 15 ^{(2),} ⁽⁷⁾	8,10,12	—	50	—	50	—				_
Differential HSTL- 12 (2), (7)	8,10,12	_	50	—	50	—	3,4,7,8	4,7,8		_

Table 6–2. Cyclone IV Device I/O Features Support (Part 1 of 2)

After the first device completes configuration in a multi-device configuration chain, its nCEO pin drives low to activate the nCE pin of the second device, which prompts the second device to begin configuration. The second device in the chain begins configuration in one clock cycle. Therefore, the transfer of data destinations is transparent to the external host device. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF_DONE configuration pins are connected to every device in the chain. To ensure signal integrity and prevent clock skew problems, configuration signals may require buffering. Ensure that DCLK and DATA lines are buffered. All devices initialize and enter user mode at the same time because all CONF_DONE pins are tied together.

If any device detects an error, configuration stops for the entire chain and you must reconfigure the entire chain because all nSTATUS and CONF_DONE pins are tied together. For example, if the first device flags an error on nSTATUS, it resets the chain by pulling its nSTATUS pin low. This behavior is similar to a single device detecting an error.

You can have multiple devices that contain the same configuration data in your system. To support this configuration scheme, all device nCE inputs are tied to GND, while the nCEO pins are left floating. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF_DONE configuration pins are connected to every device in the chain. To ensure signal integrity and prevent clock skew problems, configuration signals may require buffering. Ensure that the DCLK and DATA lines are buffered. Devices must be of the same density and package. All devices start and complete configuration at the same time.

Figure 8–15 shows a multi-device PS configuration when both Cyclone IV devices are receiving the same configuration data.

Figure 8-15. Multi-Device PS Configuration When Both Devices Receive the Same Data

Notes to Figure 8-15:

- (1) You must connect the pull-up resistor to a supply that provides an acceptable input signal for all devices in the chain. V_{CC} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host.
- (2) The nCEO pins of both devices are left unconnected or used as user I/O pins when configuring the same configuration data into multiple devices.
- (3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA [0] and DCLK must fit the maximum overshoot outlined in Equation 8–1 on page 8–5.

If you configure a master device with an SFL design, the master device enters user mode even though the slave devices in the multiple device chain are not being configured. The master device enters user mode with a SFL design even though the CONF_DONE signal is externally held low by the other slave devices in chain. Figure 8–29 shows the JTAG configuration of a single Cyclone IV device with a SFL design.

Notes to Figure 8-29:

- (1) Connect the pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect MSEL for AS configuration schemes, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (3) Pin 6 of the header is a V₁₀ reference voltage for the MasterBlaster output driver. The V₁₀ must match the V_{CCA} of the device. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*. When using the ByteBlasterMV download cable, this pin is a no connect. When using USB-Blaster, ByteBlaster II, and EthernetBlaster cables, this pin is connected to nCE when it is used for AS programming, otherwise it is a no connect.
- (4) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
- (5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (6) Power up the V_{CC} of the EthernetBlaster, ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5- V V_{CCA} supply. Third-party programmers must switch to 2.5 V. Pin 4 of the header is a V_{CC} power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*.
- (7) Connect the series resistor at the near end of the serial configuration device.
- (8) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA[1] pin in AP and FPP modes.
- (9) Resistor value can vary from 1 k Ω to 10 k Ω .
- (10) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.

ISP of the Configuration Device

In the second stage, the SFL design in the master device allows you to write the configuration data for the device chain into the serial configuration device with the Cyclone IV device JTAG interface. The JTAG interface sends the programming data for the serial configuration device to the Cyclone IV device first. The Cyclone IV device then uses the ASMI pins to send the data to the serial configuration device.

Table 8–28. Document Revision History (Part 2 of 2)

Date	Version	Changes
		Updated for the Quartus II software 10.0 release:
July 2010	1.2	 Updated "Power-On Reset (POR) Circuit", "Configuration and JTAG Pin I/O Requirements", and "Reset" sections.
-		■ Updated Figure 8–10.
		■ Updated Table 8–16 and Table 8–17.
February 2010		Updated for the Quartus II software 9.1 SP1 release:
	1.1	 Added "Overriding the Internal Oscillator" and "AP Configuration (Supported Flash Memories)" sections.
		 Updated "JTAG Instructions" section.
		Added Table 8–6.
		■ Updated Table 8–2, Table 8–3, Table 8–4, Table 8–6, Table 8–11, Table 8–13, Table 8–14, Table 8–15, and Table 8–18.
		■ Updated Figure 8–4, Figure 8–5, Figure 8–6, Figure 8–13, Figure 8–14, Figure 8–15, Figure 8–17, Figure 8–18, Figure 8–23, Figure 8–24, Figure 8–25, Figure 8–26, Figure 8–27, Figure 8–28, and Figure 8–29.
November 2009	1.0	Initial release.

Figure 1–2. F484 and Larger Packages with Transceiver Channels for Cyclone IV GX Devices

For more information about the transceiver architecture, refer to the following sections:

- "Architectural Overview" on page 1–4
- "Transmitter Channel Datapath" on page 1–5
- "Receiver Channel Datapath" on page 1–11
- "Transceiver Clocking Architecture" on page 1–26
- "Transceiver Channel Datapath Clocking" on page 1–29
- "FPGA Fabric-Transceiver Interface Clocking" on page 1–43
- "Calibration Block" on page 1–45
- "PCI-Express Hard IP Block" on page 1–46

Input Reference Clocking

When used for transceiver, the left PLLs synthesize the input reference clock to generate the required clocks for the transceiver channels. Figure 1–25 and Figure 1–26 show the sources of input reference clocks for PLLs used in the transceiver operation.

Clock output from PLLs in the FPGA core cannot feed into PLLs used by the transceiver as input reference clock.

Notes to Figure 1-25:

- (1) The REFCLK0 and REFCLK1 pins are dual-purpose CLK, REFCLK, or DIFFCLK pins that reside in banks 3A and 8A respectively.
- (2) Using any clock input pins other than the designated REFCLK pins as shown here to drive the MPLLs may have reduced jitter performance.

Figure 1–61 shows the transceiver configuration in Serial RapidIO mode.

Figure 1–61. Transceiver Configuration in Serial RapidIO Mode

Lane Synchronization

In Serial RapidIO mode, the word aligner is compliant to the SRIO Specification 1.3 and is configured in automatic synchronization state machine mode with the parameter settings as listed in Table 1–20.

Table 1–20. Synchronization State Machine Parameters ⁽¹⁾

Parameter	Value
Number of valid synchronization (/K28.5/) code groups received to achieve synchronization	127
Number of erroneous code groups received to lose synchronization	3
Number of continuous good code groups received to reduce the error count by one	255

Note to Table 1-20:

(1) The word aligner supports 10-bit pattern lengths in SRIO mode.

Figure 1–72 shows the two paths in reverse serial loopback mode.

Figure 1–72. Reverse Serial Loopback ⁽¹⁾

Notes to Figure 1-72:

- (1) Grayed-Out Blocks are Not Active in this mode.
- (2) Post-CDR reverse serial loopback path.
- (3) Pre-CDR reverse serial loopback path.

Self Test Modes

Each transceiver channel in the Cyclone IV GX device contains modules for pattern generator and verifier. Using these built-in features, you can verify the functionality of the functional blocks in the transceiver channel without requiring user logic. The self test functionality is provided as an optional mechanism for debugging transceiver channels.

There are three types of supported pattern generators and verifiers:

- Built-in self test (BIST) incremental data generator and verifier—test the complete transmitter PCS and receiver PCS datapaths for bit errors with parallel loopback before the PMA blocks.
- Pseudo-random binary sequence (PRBS) generator and verifier—the PRBS generator and verifier interface with the serializer and deserializer in the PMA blocks. The advantage of using a PRBS data stream is that the randomness yields an environment that stresses the transmission medium. In the data stream, you can observe both random jitter and deterministic jitter using a time interval analyzer, bit error rate tester, or oscilloscope.
- High frequency and low frequency pattern generator—the high frequency patterns generate alternate ones and zeros and the low frequency patterns generate five ones and five zeroes. These patterns do not have a corresponding verifier.

The self-test features are only supported in Basic mode.

Block	Port Name	Input/ Output	Clock Domain	Description
	rx_coreclk	Output	Clock signal	Optional read clock port for the RX phase compensation FIFO.
RX PCS	rx_phase_comp_fifo _error	Output	Synchronous to tx_clkout (non-bonded modes) or coreclkout (bonded modes)	RX phase compensation FIFO full or empty indicator.A high level indicates FIFO is either full or empty.
	rx_bitslipboundarys electout	Output	Asynchronous signal.	Indicate the number of bits slipped in the word aligner configured in manual alignment mode. Values range from 0 to 9.
	rx datain	Input	N/A	Receiver serial data input port.
	rx_freqlocked	Output	Asynchronous signal	 Receiver CDR lock state indicator A high level indicates the CDR is in LTD state. A low level indicates the CDR is in LTR state.
	rx_locktodata	Input Asynchronous signal		 Receiver CDR LTD state control signal A high level forces the CDR to LTD state When deasserted, the receiver CDR lock state depends on the rx_locktorefclk signal level.
RX PMA	rx_locktorefclk	Input	Asynchronous signal	 Receiver CDR LTR state control signal. The rx_locktorefclk and rx_locktodata signals control whether the receiver CDR states as follows: [rx_locktodata:rx_locktorefclk] 2'b00—receiver CDR is in automatic lock mode 2b'01—receiver CDR is in manual lock mode (LTR state) 2b'1x—receiver CDR is in manual lock mode (LTD state)
	rx_signaldetect	Output	Asynchronous signal	 Signal threshold detect indicator. Available in Basic mode when 8B/10B encoder/decoder is used, and in PIPE mode. A high level indicates that the signal present at the receiver input buffer is above the programmed signal detection threshold value.
	rx_recovclkout	Output	Clock signal	 CDR low-speed recovered clock Only available in the GIGE mode for applications such as Synchronous Ethernet.

Table 1-27	. Receiver Ports	n ALTGX Megafunction	for Cyclone IV GX	(Part 3 of 3)
------------	------------------	----------------------	-------------------	---------------

Receiver and Transmitter Channel—Receiver CDR in Manual Lock Mode

This configuration contains both a transmitter and receiver channel. If you create a **Receiver and Transmitter** instance in the ALTGX MegaWizard Plug-In Manager with the receiver CDR in manual lock mode, use the reset sequence shown in Figure 2–9.

Figure 2–9. Sample Reset Sequence of Receiver and Transmitter Channel—Receiver CDR in Manual Lock Mode

Notes to Figure 2-9:

- (1) For $t_{LTR_LTD_Manual}$ duration, refer to the *Cyclone IV Device Datasheet* chapter.
- (2) For t_{LTD Manual} duration, refer to the *Cyclone IV Device Datasheet* chapter.
- (3) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

As shown in Figure 2–9, perform the following reset procedure for the receiver in manual lock mode:

- 1. After power up, assert pll_areset for a minimum period of 1 µs (the time between markers 1 and 2).
- Keep the tx_digitalreset, rx_analogreset, rx_digitalreset, and rx_locktorefclk signals asserted and the rx_locktodata signal deasserted during this time period. After you deassert the pll_areset signal, the multipurpose PLL starts locking to the transmitter input reference clock.
- 3. After the multipurpose PLL locks, as indicated by the pll_locked signal going high (marker 3), deassert tx_digitalreset (marker 4). For receiver operation, after deassertion of busy signal (marker 5), wait for two parallel clock cycles to deassert the rx_analogreset signal (marker 6). After rx_analogreset deassert, rx_pll_locked will assert.

DC Characteristics

This section lists the I/O leakage current, pin capacitance, on-chip termination (OCT) tolerance, and bus hold specifications for Cyclone IV devices.

Supply Current

The device supply current requirement is the minimum current drawn from the power supply pins that can be used as a reference for power size planning. Use the Excel-based early power estimator (EPE) to get the supply current estimates for your design because these currents vary greatly with the resources used. Table 1–6 lists the I/O pin leakage current for Cyclone IV devices.

Table 1–6. I/O Pin Leakage Current for Cyclone IV Devices (1), (2)

Symbol	Parameter	Conditions	Device	Min	Тур	Max	Unit
I _I	Input pin leakage current	$V_{I} = 0 V \text{ to } V_{CCIOMAX}$	_	-10	_	10	μA
I _{OZ}	Tristated I/O pin leakage current	$V_0 = 0 V \text{ to } V_{\text{CCIOMAX}}$		-10		10	μA

Notes to Table 1-6:

(1) This value is specified for normal device operation. The value varies during device power-up. This applies for all V_{CCI0} settings (3.3, 3.0, 2.5, 1.8, 1.5, and 1.2 V).

(2) The 10 μ A I/O leakage current limit is applicable when the internal clamping diode is off. A higher current can be observed when the diode is on.

Bus Hold

The bus hold retains the last valid logic state after the source driving it either enters the high impedance state or is removed. Each I/O pin has an option to enable bus hold in user mode. Bus hold is always disabled in configuration mode.

Table 1–7 lists bus hold specifications for Cyclone IV devices.

 Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 1 of 2)⁽¹⁾

		V _{CCI0} (V)												
Parameter	Condition	1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold low, sustaining current	V _{IN} > V _{IL} (maximum)	8	_	12	_	30	_	50	_	70	_	70	_	μΑ
Bus hold high, sustaining current	V _{IN} < V _{IL} (minimum)	-8	_	-12	_	-30	_	-50	_	-70	_	-70	_	μΑ
Bus hold low, overdrive current	$0 V < V_{IN} < V_{CCIO}$		125	_	175	_	200	_	300	_	500	_	500	μA
Bus hold high, overdrive current	$0 \text{ V} < \text{V}_{\text{IN}} < \text{V}_{\text{CCIO}}$		-125		-175		-200		-300		-500		-500	μΑ

Schmitt Trigger Input

Cyclone IV devices support Schmitt trigger input on the TDI, TMS, TCK, nSTATUS, nCONFIG, nCE, CONF_DONE, and DCLK pins. A Schmitt trigger feature introduces hysteresis to the input signal for improved noise immunity, especially for signals with slow edge rate. Table 1–14 lists the hysteresis specifications across the supported V_{CCIO} range for Schmitt trigger inputs in Cyclone IV devices.

 Table 1–14.
 Hysteresis Specifications for Schmitt Trigger Input in Cyclone IV Devices

Symbol	Parameter	Conditions (V)	Minimum	Unit
		V _{CCI0} = 3.3	200	mV
V	Hysteresis for Schmitt trigger	V _{CCI0} = 2.5	200	mV
VSCHMITT	input	V _{CCI0} = 1.8	140	mV
		V _{CCI0} = 1.5	110	mV

I/O Standard Specifications

The following tables list input voltage sensitivities (V_{IH} and V_{IL}), output voltage (V_{OH} and V_{OL}), and current drive characteristics (I_{OH} and I_{OL}), for various I/O standards supported by Cyclone IV devices. Table 1–15 through Table 1–20 provide the I/O standard specifications for Cyclone IV devices.

1/0 Standard	V _{CCIO} (V)			V _{IL} (V)		V	и _н (V)	V _{OL} (V)	V _{OH} (V)	I _{OL}	I _{OH}
i/u Stanuaru	Min	Тур	Max	Min	Max	Min	Max	Max	Min	(IIIA) (4)	(IIIA) (4)
3.3-V LVTTL <i>(3)</i>	3.135	3.3	3.465	—	0.8	1.7	3.6	0.45	2.4	4	-4
3.3-V LVCMOS (3)	3.135	3.3	3.465	_	0.8	1.7	3.6	0.2	$V_{CCI0} - 0.2$	2	-2
3.0-V LVTTL (3)	2.85	3.0	3.15	-0.3	0.8	1.7	$V_{CCIO} + 0.3$	0.45	2.4	4	-4
3.0-V LVCMOS (3)	2.85	3.0	3.15	-0.3	0.8	1.7	V _{CCI0} + 0.3	0.2	V _{CCI0} - 0.2	0.1	-0.1
2.5 V ⁽³⁾	2.375	2.5	2.625	-0.3	0.7	1.7	$V_{CCIO} + 0.3$	0.4	2.0	1	-1
1.8 V	1.71	1.8	1.89	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	2.25	0.45	V _{CCI0} – 0.45	2	-2
1.5 V	1.425	1.5	1.575	-0.3	0.35 x V _{CCIO}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
1.2 V	1.14	1.2	1.26	-0.3	0.35 x V _{CCI0}	0.65 x V _{CCI0}	V _{CCI0} + 0.3	0.25 x V _{CCIO}	0.75 x V _{CCIO}	2	-2
3.0-V PCI	2.85	3.0	3.15		0.3 x V _{CCIO}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5
3.0-V PCI-X	2.85	3.0	3.15		0.35 x V _{CCI0}	0.5 x V _{CCI0}	V _{CCI0} + 0.3	0.1 x V _{CCIO}	0.9 x V _{CCIO}	1.5	-0.5

Table 1–15. Single-Ended I/O Standard Specifications for Cyclone IV Devices (1), (2)

Notes to Table 1–15:

(1) For voltage-referenced receiver input waveform and explanation of terms used in Table 1–15, refer to "Glossary" on page 1–37.

(2) AC load CL = 10 pF

(3) For more information about interfacing Cyclone IV devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O standards, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

(4) To meet the loL and IoH specifications, you must set the current strength settings accordingly. For example, to meet the **3.3-V LVTTL** specification (4 mA), set the current strength settings to 4 mA or higher. Setting at lower current strength may not meet the loL and IoH specifications in the handbook.

Symbol	Madaa	C	6	C7	, 17	C8,	, A7	C8L	, 18L	C	9L	Unit
Symbol	modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	420	5	370	5	320	5	320	5	250	MHz
	×8	5	420	5	370	5	320	5	320	5	250	MHz
f _{HSCLK} (input	×7	5	420	5	370	5	320	5	320	5	250	MHz
frequency)	×4	5	420	5	370	5	320	5	320	5	250	MHz
1 37	×2	5	420	5	370	5	320	5	320	5	250	MHz
	×1	5	420	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	840	100	740	100	640	100	640	100	500	Mbps
	×8	80	840	80	740	80	640	80	640	80	500	Mbps
	×7	70	840	70	740	70	640	70	640	70	500	Mbps
חטוטח	×4	40	840	40	740	40	640	40	640	40	500	Mbps
	×2	20	840	20	740	20	640	20	640	20	500	Mbps
	×1	10	420	10	402.5	10	402.5	10	362	10	265	Mbps
t _{DUTY}	—	45	55	45	55	45	55	45	55	45	55	%
TCCS	—	_	200		200	_	200	_	200	_	200	ps
Output jitter (peak to peak)	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	—		1	—	1		1		1	_	1	ms

Table 1–34. True LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)}

Notes to Table 1-34:

(1) Cyclone IV E—true LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Cyclone IV GX—true LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 1 of 2)

Ormshall	Medee	C	6	C7,	, 17	C8,	A7	C8L,	, 18L	C	9L	Unit
Symbol	modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	320	5	320	5	275	5	275	5	250	MHz
	×8	5	320	5	320	5	275	5	275	5	250	MHz
f _{HSCLK} (input	×7	5	320	5	320	5	275	5	275	5	250	MHz
frequency)	×4	5	320	5	320	5	275	5	275	5	250	MHz
	×2	5	320	5	320	5	275	5	275	5	250	MHz
	×1	5	402.5	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	640	100	640	100	550	100	550	100	500	Mbps
	×8	80	640	80	640	80	550	80	550	80	500	Mbps
	×7	70	640	70	640	70	550	70	550	70	500	Mbps
INIUDA	×4	40	640	40	640	40	550	40	550	40	500	Mbps
	×2	20	640	20	640	20	550	20	550	20	500	Mbps
	×1	10	402.5	10	402.5	10	402.5	10	362	10	265	Mbps