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Chapter 3: Memory Blocks in Cyclone IV Devices 3–17
Design Considerations
In this mode, you also have two output choices: Old Data mode or Don't Care mode. 
In Old Data mode, a read-during-write operation to different ports causes the RAM 
outputs to reflect the old data at that address location. In Don't Care mode, the same 
operation results in a “Don't Care” or unknown value on the RAM outputs.

f For more information about how to implement the desired behavior, refer to the RAM 
Megafunction User Guide.

Figure 3–16 shows a sample functional waveform of mixed port read-during-write 
behavior for Old Data mode. In Don't Care mode, the old data is replaced with 
“Don't Care”.

1 For mixed-port read-during-write operation with dual clocks, the relationship 
between the clocks determines the output behavior of the memory. If you use the 
same clock for the two clocks, the output is the old data from the address location. 
However, if you use different clocks, the output is unknown during the mixed-port 
read-during-write operation. This unknown value may be the old or new data at the 
address location, depending on whether the read happens before or after the write.

Conflict Resolution
When you are using M9K memory blocks in true dual-port mode, it is possible to 
attempt two write operations to the same memory location (address). Because there is 
no conflict resolution circuitry built into M9K memory blocks, this results in unknown 
data being written to that location. Therefore, you must implement conflict-resolution 
logic external to the M9K memory block.

Figure 3–16. Mixed Port Read-During-Write: Old Data Mode
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Chapter 6: I/O Features in Cyclone IV Devices 6–33
High-Speed I/O Standards Support
A resistor network is required to attenuate the output voltage swing to meet RSDS, 
mini-LVDS, and PPDS specifications when using emulated transmitters. You can 
modify the resistor network values to reduce power or improve the noise margin. 

The resistor values chosen must satisfy Equation 6–1.

1 Altera recommends that you perform simulations using Cyclone IV devices IBIS 
models to validate that custom resistor values meet the RSDS, mini-LVDS, or PPDS 
requirements.

It is possible to use a single external resistor instead of using three resistors in the 
resistor network for an RSDS interface, as shown in Figure 6–17. The external 
single-resistor solution reduces the external resistor count while still achieving the 
required signaling level for RSDS. However, the performance of the single-resistor 
solution is lower than the performance with the three-resistor network.

Figure 6–17 shows the RSDS interface with a single resistor network on the top and 
bottom I/O banks.

Note to Figure 6–16: 

(1) RS and RP values are pending characterization.

Equation 6–1. Resistor Network

Figure 6–16. RSDS, Mini-LVDS, or PPDS Interface with External Resistor Network on the Top and 
Bottom I/O Banks (1)
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Figure 6–17. RSDS Interface with Single Resistor Network on the Top and Bottom I/O Banks (1)

Note to Figure 6–17: 

(1) RP value is pending characterization.
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6–34 Chapter 6: I/O Features in Cyclone IV Devices
High-Speed I/O Standards Support
LVPECL I/O Support in Cyclone IV Devices
The LVPECL I/O standard is a differential interface standard that requires a 2.5-V 
VCCIO. This standard is used in applications involving video graphics, 
telecommunications, data communications, and clock distribution. Cyclone IV 
devices support the LVPECL input standard at the dedicated clock input pins only. 
The LVPECL receiver requires an external 100- termination resistor between the two 
signals at the input buffer.

f For the LVPECL I/O standard electrical specification, refer to the Cyclone IV Device 
Datasheet chapter.

AC coupling is required when the LVPECL common mode voltage of the output 
buffer is higher than the Cyclone IV devices LVPECL input common mode voltage. 

Figure 6–18 shows the AC-coupled termination scheme. The 50- resistors used at the 
receiver are external to the device. DC-coupled LVPECL is supported if the LVPECL 
output common mode voltage is in the Cyclone IV devices LVPECL input buffer 
specification (refer to Figure 6–19).

Figure 6–19 shows the LVPECL DC-coupled termination.

Figure 6–18. LVPECL AC-Coupled Termination (1)

Note to Figure 6–18:

(1) The LVPECL AC-coupled termination is applicable only when an Altera FPGA transmitter is used.

Figure 6–19. LVPECL DC-Coupled Termination (1)

Note to Figure 6–19:

(1) The LVPECL DC-coupled termination is applicable only when an Altera FPGA transmitter is used.
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8–40 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
FPP Configuration 
The FPP configuration in Cyclone IV devices is designed to meet the increasing 
demand for faster configuration time. Cyclone IV devices are designed with the 
capability of receiving byte-wide configuration data per clock cycle.

You can perform FPP configuration of Cyclone IV devices with an intelligent host, 
such as a MAX II device or microprocessor with flash memory. If your system already 
contains a CFI flash memory, you can use it for the Cyclone IV device configuration 
storage as well. The MAX II PFL feature in MAX II devices provides an efficient 
method to program CFI flash memory devices through the JTAG interface and the 
logic to control configuration from the flash memory device to the Cyclone IV device.

f For more information about the PFL, refer to AN 386: Using the Parallel Flash Loader 
with the Quartus II Software.

1 FPP configuration is supported in EP4CGX30 (only for F484 package), EP4CGX50, 
EP4CGX75, EP4CGX110, EP4CGX150, and all Cyclone IV E devices.

1 The FPP configuration is not supported in E144 package of Cyclone IV E devices.

1 Cyclone IV devices do not support enhanced configuration devices for FPP 
configuration.

FPP Configuration Using an External Host
FPP configuration using an external host provides a fast method to configure 
Cyclone IV devices. In the FPP configuration scheme, you can use an external host 
device to control the transfer of configuration data from a storage device, such as flash 
memory, to the target Cyclone IV device. You can store configuration data in an .rbf, 
.hex, or .ttf format. When using the external host, a design that controls the 
configuration process, such as fetching the data from flash memory and sending it to 
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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8–48 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
To configure a single device in a JTAG chain, the programming software places all 
other devices in bypass mode. In bypass mode, devices pass programming data from 
the TDI pin to the TDO pin through a single bypass register without being affected 
internally. This scheme enables the programming software to program or verify the 
target device. Configuration data driven into the device appears on the TDO pin one 
clock cycle later.

The Quartus II software verifies successful JTAG configuration after completion. At 
the end of configuration, the software checks the state of CONF_DONE through the JTAG 
port. When Quartus II generates a .jam for a multi-device chain, it contains 
instructions so that all the devices in the chain are initialized at the same time. If 
CONF_DONE is not high, the Quartus II software indicates that configuration has failed. 
If CONF_DONE is high, the software indicates that configuration was successful. After 
the configuration bitstream is serially sent using the JTAG TDI port, the TCK port 
clocks an additional clock cycles to perform device initialization.

Figure 8–24. JTAG Configuration of a Single Device Using a Download Cable (1.5-V or 1.8-V VCCIO 
Powering the JTAG Pins)

Notes to Figure 8–24:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use JTAG 

configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] 
to either high or low, whichever is convenient on your board.

(3) In the USB-Blaster and ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming; 
otherwise it is a no connect.

(4) The nCE must be connected to GND or driven low for successful JTAG configuration.
(5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(6) Power up the VCC of the EthernetBlaster, ByteBlaster II or USB-Blaster cable with supply from VCCIO. The 

Ethernet-Blaster, ByteBlaster II, and USB-Blaster cables do not support a target supply voltage of 1.2 V. For the target 
supply voltage value, refer to the ByteBlaster II Download Cable User Guide, the USB-Blaster Download Cable User 
Guide, and the EthernetBlaster Communications Cable User Guide.

(7) Resistor value can vary from 1 k to 10 k.
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9–8 Chapter 9: SEU Mitigation in Cyclone IV Devices
Software Support
Figure 9–3 shows the error detection block diagram in FPGA devices and shows the 
interface that the WYSIWYG atom enables in your design.

1 The user logic is affected by the soft error failure, so reading out the 32-bit CRC 
signature through the regout should not be relied upon to detect a soft error. You 
should rely on the CRC_ERROR output signal itself, because this CRC_ERROR output 
signal cannot be affected by a soft error.

To enable the cycloneiv_crcblock WYSIWYG atom, you must name the atom for 
each Cyclone IV device accordingly.

Example 9–1 shows an example of how to define the input and output ports of a 
WYSIWYG atom in a Cyclone IV device.

Figure 9–3. Error Detection Block Diagram
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Example 9–1. Error Detection Block Diagram

cycloneiv_crcblock<crcblock_name>

(

.clk(<clock source>),

.shiftnld(<shiftnld source>),

.ldsrc(<ldsrc source>),

.crcerror(<crcerror out destination>),

.regout(<output destination>),

);
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



1–4 Chapter 1: Cyclone IV Transceivers Architecture
Architectural Overview

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Architectural Overview
Figure 1–3 shows the Cyclone IV GX transceiver channel datapath.

Each transceiver channel consists of a transmitter and a receiver datapath. Each 
datapath is further structured into the following:

■ Physical media attachment (PMA)—includes analog circuitry for I/O buffers, 
clock data recovery (CDR), serializer/deserializer (SERDES), and programmable 
pre-emphasis and equalization to optimize serial data channel performance.

■ Physical coding sublayer (PCS)—includes hard logic implementation of digital 
functionality within the transceiver that is compliant with supported protocols.

Outbound parallel data from the FPGA fabric flows through the transmitter PCS and 
PMA, is transmitted as serial data. Received inbound serial data flows through the 
receiver PMA and PCS into the FPGA fabric. The transceiver supports the following 
interface widths:

■ FPGA fabric-transceiver PCS—8, 10, 16, or 20 bits

■ PMA-PCS—8 or 10 bits

f The transceiver channel interfaces through the PIPE when configured for PCIe 
protocol implementation. The PIPE is compliant with version 2.00 of the PHY Interface 
for the PCI Express Architecture specification.

Figure 1–3. Transceiver Channel Datapath for Cyclone IV GX Devices
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1–16 Chapter 1: Cyclone IV Transceivers Architecture
Receiver Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Actual lock time depends on the transition density of the incoming data and the ppm 
difference between the receiver input reference clock and the upstream transmitter 
reference clock.

Transition from the LTD state to the LTR state occurs when either of the following 
conditions is met:

■ Signal detection circuitry indicates the absence of valid signal levels at the receiver 
input buffer. This condition is valid for PCI Express (PIPE) mode only. CDR 
transitions are not dependent on signal detection circuitry in other modes.

■ The recovered clock is not within the configured ppm frequency threshold setting 
with respect to CDR clocks from multipurpose PLLs.

In automatic lock mode, the switch from LTR to LTD states is indicated by the 
assertion of the rx_freqlocked signal and the switch from LTD to LTR states indicated 
by the de-assertion of the rx_freqlocked signal.

Manual Lock Mode
State transitions are controlled manually by using rx_locktorefclk and 
rx_locktodata ports. The LTR/LTD controller sets the CDR state depending on the 
logic level on the rx_locktorefclk and rx_locktodata ports. This mode provides the 
flexibility to control the CDR for a reduced lock time compared to the automatic lock 
mode. In automatic lock mode, the LTR/LTD controller relies on the ppm detector 
and the phase relationship detector to set the CDR in LTR or LTD mode. The ppm 
detector and phase relationship detector reaction times can be too long for some 
applications that require faster CDR lock time.

In manual lock mode, the rx_freqlocked signal is asserted when the CDR is in LTD 
state and de-asserted when CDR is in LTR state. For descriptions of rx_locktorefclk 
and rx_locktodata port controls, refer to Table 1–27 on page 1–87.

1 If you do not enable the optional rx_locktorefclk and rx_locktodata ports, the 
Quartus II software automatically configures the LTR/LTD controller in automatic 
lock mode.

f The recommended transceiver reset sequence varies depending on the CDR lock 
mode. For more information about the reset sequence recommendations, refer to the 
Reset Control and Power Down for Cyclone IV GX Devices chapter.

Deserializer
The deserializer converts received serial data from the receiver input buffer to parallel 
8- or 10-bit data. Serial data is assumed to be received from the LSB to the MSB. The 
deserializer operates with the high-speed recovered clock from the CDR with the 
frequency at half of the serial data rate. 

http://www.altera.com/literature/hb/cyclone-iv/cyiv-52002.pdf


1–36 Chapter 1: Cyclone IV Transceivers Architecture
Transceiver Clocking Architecture

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Figure 1–35 shows the datapath clocking in the transmitter and receiver operation 
mode with the rate match FIFO. The receiver datapath clocking in configuration 
without the rate match FIFO is identical to Figure 1–34.

In configuration with the rate match FIFO, the CDR unit in the receiver channel 
recovers the clock from received serial data and generates the high-speed recovered 
clock for the deserializer, and low-speed recovered clock for forwarding to the 
receiver PCS. The low-speed recovered clock feeds to the following blocks in the 
receiver PCS:

■ word aligner

■ write clock of rate match FIFO

The low-speed clock that is used in the transmitter PCS datapath feeds the following 
blocks in the receiver PCS:

■ read clock of rate match FIFO

■ 8B/10B decoder

■ write clock of byte deserializer

■ byte ordering

■ write clock of RX phase compensation FIFO

When the byte deserializer is enabled, the low-speed clock frequency is halved before 
feeding into the write clock of RX phase compensation FIFO. The low-speed clock is 
available in the FPGA fabric as tx_clkout port, which can be used in the FPGA fabric 
to send transmitter data and control signals, and capture receiver data and status 
signals.

Figure 1–35. Transmitter and Receiver Datapath Clocking with Rate Match FIFO in Non-Bonded Channel Configuration

Notes to Figure 1–35:

(1) Low-speed recovered clock.
(2) High-speed recovered clock.
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1–46 Chapter 1: Cyclone IV Transceivers Architecture
PCI-Express Hard IP Block

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

The calibration block internally generates a constant internal reference voltage, 
independent of PVT variations and uses this voltage and the external reference 
resistor on the RREF pin to generate constant reference currents. The OCT calibration 
circuit calibrates the OCT resistors present in the transceiver channels. Figure 1–41 
shows the calibration block diagram.

PCI-Express Hard IP Block
Figure 1–42 shows the block diagram of the PCIe hard IP block implementing the 
PHY MAC, Data Link Layer, and Transaction Layer for PCIe interfaces. The PIPE 
interface is used as the interface between the transceiver and the hard IP block. 

Figure 1–41. Input Signals to the Calibration Blocks (1)

Notes to Figure 1–41:

(1) All transceiver channels use the same calibration block clock and power down signals.
(2) Connect a 2 k (tolerance max ± 1%) external resistor to the RREF pin to ground. The RREF resistor connection in 

the board must be free from any external noise.
(3) Supports up to 125 MHz clock frequency. Use either dedicated global clock or divide-down logic from the FPGA fabric 

to generate a slow clock on the local clock routing.
(4) The calibration block restarts the calibration process following deassertion of the cal_blk_powerdown signal.
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Chapter 1: Cyclone IV Transceivers Architecture 1–47
Transceiver Functional Modes

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

The hard IP block supports 1, 2, or 4 initial lane configurations with a maximum 
payload of 256 bytes at Gen1 frequency. The application interface is 64 bits with a data 
width of 16 bits per channel running at up to 125 MHz. As a hard macro and a verified 
block, it uses very few FPGA resources, while significantly reducing design risk and 
the time required to achieve timing closure. It is compliant with the PCI Express Base 
Specification 1.1. You do not have to pay a licensing fee to use this module. 
Configuring the hard IP block requires using the PCI Express Compiler.

f For more information about the hard IP block, refer to the PCI Express Compiler User 
Guide.

Figure 1–43 shows the lane placement requirements when implementing PCIe with 
hard IP block.

Transceiver Functional Modes
The Cyclone IV GX transceiver supports the functional modes as listed in Table 1–14 
for protocol implementation.

Figure 1–43. PCIe with Hard IP Block Lane Placement Requirements (1)

Note to Figure 1–43:

(1) Applicable for PCIe ×1, ×2, and ×4 implementations with hard IP blocks only.

Channel 3

Channel 2

Channel 1

Channel 0

PCIe Lane 3

PCIe Lane 2
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PCIe
hard IP
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Block GXBL0

Table 1–14. Transceiver Functional Modes for Protocol Implementation (Part 1 of 2)

Functional Mode Protocol Key Feature Reference

Basic Proprietary, SATA, V-
by-One, Display Port

Low latency PCS, transmitter in electrical idle, signal 
detect at receiver, wider spread asynchronous SSC

“Basic Mode” on 
page 1–48

PCI Express 
(PIPE)

PCIe Gen1 with PIPE 
Interface

PIPE ports, receiver detect, transmitter in electrical 
idle, electrical idle inference, signal detect at receiver, 
fast recovery, protocol-compliant word aligner and 
rate match FIFO, synchronous SSC

“PCI Express (PIPE) 
Mode” on page 1–52

GIGE GbE
Running disparity preservation, protocol-compliant 
word aligner, recovered clock port for applications 
such as Synchronous Ethernet

“GIGE Mode” on 
page 1–59

Serial RapidIO SRIO Protocol-compliant word aligner “Serial RapidIO Mode” 
on page 1–64

XAUI XAUI Deskew FIFO, protocol-compliant word aligner and 
rate match FIFO

“XAUI Mode” on 
page 1–67

http://www.altera.com/literature/ug/ug_pci_express.pdf
http://www.altera.com/literature/ug/ug_pci_express.pdf
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Transceiver Functional Modes
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■ transmitter in electrical idle

■ receiver signal detect

■ receiver spread spectrum clocking

Low-Latency PCS Operation

When configured in low-latency PCS operation, the following blocks in the 
transceiver PCS are bypassed, resulting in a lower latency PCS datapath:

■ 8B/10B encoder and decoder

■ word aligner

■ rate match FIFO

■ byte ordering

Figure 1–47 shows the transceiver channel datapath in Basic mode with low-latency 
PCS operation.
.

Transmitter in Electrical Idle

The transmitter buffer supports electrical idle state, where when enabled, the 
differential output buffer driver is tri-stated. During electrical idle, the output buffer 
assumes the common mode output voltage levels. For details about the electrical idle 
features, refer to “PCI Express (PIPE) Mode” on page 1–52. 

1 The transmitter in electrical idle feature is required for compliance to the version 2.00 
of PHY Interface for the PCI Express (PIPE) Architecture specification for PCIe 
protocol implementation.

Signal Detect at Receiver

Signal detect at receiver is only supported when 8B/10B encoder/decoder block is 
enabled.

Figure 1–47. Transceiver Channel Datapath in Basic Mode with Low-Latency PCS Operation
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Figure 1–55 shows the transceiver channel datapath and clocking when configured in 
GIGE mode.

Figure 1–55. Transceiver Channel Datapath and Clocking when Configured in GIGE Mode

Notes to Figure 1–55:

(1) Low-speed recovered clock.
(2) High-speed recovered clock.
(3) Optional rx_recovclkout port from CDR low-speed recovered clock is available for applications such as Synchronous Ethernet.
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16-bit FPGA fabric-Transceiver 
Channel Interface with PCS-PMA 
set to 8/10 bits

Two 8-bit unencoded Data (rx_dataout)

rx_dataoutfull[7:0] - rx_dataout (LSByte) and

rx_dataoutfull[23:16]- rx_dataout (MSByte)

The following signals are used in 16-bit 8B/10B modes:

Two Control Bits

rx_dataoutfull[8] - rx_ctrldetect (LSB) and

rx_dataoutfull[24]- rx_ctrldetect (MSB)

Two Receiver Error Detect Bits

rx_dataoutfull[9] - rx_errdetect (LSB) and 

rx_dataoutfull[25]- rx_errdetect (MSB)

Two Receiver Sync Status Bits

rx_dataoutfull [10] - rx_syncstatus (LSB) and

rx_dataoutfull[26] - rx_syncstatus (MSB)

Two Receiver Disparity Error Bits

rx_dataoutfull [11] - rx_disperr (LSB) and

rx_dataoutfull[27] - rx_disperr (MSB)

Two Receiver Pattern Detect Bits

rx_dataoutfull[12] - rx_patterndetect (LSB) and 

rx_dataoutfull[28]- rx_patterndetect (MSB)

rx_dataoutfull[13] and rx_dataoutfull[29]: Rate Match FIFO deletion status 
indicator (rx_rmfifodatadeleted) in non-PCI Express (PIPE) functional modes

rx_dataoutfull[14] and rx_dataoutfull[30]: Rate Match FIFO insertion status 
indicator (rx_rmfifodatainserted) in non-PCI Express (PIPE) functional modes

Two 2-bit PCI Express (PIPE) Functional Mode Status Bits

rx_dataoutfull[14:13] - rx_pipestatus (LSB) and rx_dataoutfull[30:29] - 
rx_pipestatus (MSB)

rx_dataoutfull[15] and rx_dataoutfull[31]: 8B/10B running disparity 
indicator (rx_runningdisp)

Table 3–5. rx_dataoutfull[31..0] FPGA Fabric-Transceiver Channel Interface Signal Descriptions (Part 2 of 3)

FPGA Fabric-Transceiver Channel 
Interface Description

Receive Signal Description (Based on Cyclone IV GX Supported FPGA 
Fabric-Transceiver Channel Interface Widths)
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Clocking/Interface Options

The following describes the Clocking/Interface options available in Cyclone IV GX 
devices. The core clocking setup describes the transceiver core clocks that are the 
write and read clocks of the Transmit Phase Compensation FIFO and the Receive 
Phase Compensation FIFO, respectively. Core clocking is classified as transmitter core 
clocking and receiver core clocking. 

Table 3–6 lists the supported clocking interface settings for channel reconfiguration 
mode in Cyclone IV GX devices. 

Transmitter core clocking refers to the clock that is used to write the parallel data from 
the FPGA fabric into the Transmit Phase Compensation FIFO. You can use one of the 
following clocks to write into the Transmit Phase Compensation FIFO:

■ tx_coreclk—you can use a clock of the same frequency as tx_clkout from the 
FPGA fabric to provide the write clock to the Transmit Phase Compensation FIFO. 
If you use tx_coreclk, it overrides the tx_clkout options in the ALTGX 
MegaWizard Plug-In Manager.

■ tx_clkout—the Quartus II software automatically routes tx_clkout to the FPGA 
fabric and back into the Transmit Phase Compensation FIFO. 

Table 3–6. Dynamic Reconfiguration Clocking Interface Settings in Channel Reconfiguration 
Mode

ALTGX Setting Description

Dynamic Reconfiguration Channel Internal and Interface Settings

How should the receivers be 
clocked?

Select one of the available options:

■ Share a single transmitter core clock between receivers

■ Use the respective channel transmitter core clocks

■ Use the respective channel receiver core clocks

How should the transmitters be 
clocked?

Select one of the available options:

■ Share a single transmitter core clock between transmitters

■ Use the respective channel transmitter core clocks
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Example 1–1 shows how to calculate the change of 50-I/O impedance from 25°C at 
3.0 V to 85°C at 3.15 V.

Pin Capacitance
Table 1–11 lists the pin capacitance for Cyclone IV devices.

Example 1–1. Impedance Change

RV = (3.15 – 3) × 1000 × –0.026 = –3.83

RT = (85 – 25) × 0.262 = 15.72

Because RV is negative, 

MFV = 1 / (3.83/100 + 1) = 0.963

Because RT is positive, 

MFT = 15.72/100 + 1 = 1.157

MF = 0.963 × 1.157 = 1.114

Rfinal = 50 × 1.114 = 55.71 

Table 1–11. Pin Capacitance for Cyclone IV Devices (1)

Symbol Parameter

Typical – 
Quad Flat 

Pack 
(QFP)

Typical – 
Quad Flat 
No Leads 

(QFN)

Typical – 
Ball-Grid 

Array 
(BGA)

Unit

CIOTB Input capacitance on top and bottom I/O pins 7 7 6 pF

CIOLR Input capacitance on right I/O pins 7 7 5 pF

CLVDSLR Input capacitance on right I/O pins with dedicated LVDS output 8 8 7 pF

CVREFLR 
(2)

Input capacitance on right dual-purpose VREF pin when used as 
VREF or user I/O pin 21 21 21 pF

CVREFTB 
(2)

Input capacitance on top and bottom dual-purpose VREF pin when 
used as VREF or user I/O pin 23 (3) 23 23 pF

CCLKTB Input capacitance on top and bottom dedicated clock input pins 7 7 6 pF

CCLKLR Input capacitance on right dedicated clock input pins 6 6 5 pF

Notes to Table 1–11:

(1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.
(2) When you use the VREF pin as a regular input or output, you can expect a reduced performance of toggle rate and tCO because of higher pin 

capacitance.
(3) CVREFTB for the EP4CE22 device is 30 pF.
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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Operating Conditions

1.375

—

—

1.4

1.4

1.5

1.5

1.4

1.4

(3)

Max
LVDS 
(Column 
I/Os)

2.375 2.5 2.625 100 —

0.05 DMAX  500 Mbps 1.80

247 — 600 1.125 1.250.55 500 Mbps  DMAX 
 700 Mbps 1.80

1.05 DMAX > 700 Mbps 1.55

BLVDS (Row 
I/Os) (4) 2.375 2.5 2.625 100 — — — — — — — — —

BLVDS 
(Column 
I/Os) (4)

2.375 2.5 2.625 100 — — — — — — — — —

mini-LVDS 
(Row I/Os) 
(5)

2.375 2.5 2.625 — — — — — 300 — 600 1.0 1.2

mini-LVDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 300 — 600 1.0 1.2

RSDS® (Row 
I/Os) (5) 2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

RSDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

PPDS (Row 
I/Os) (5) 2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

PPDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

Notes to Table 1–20:

(1) For an explanation of terms used in Table 1–20, refer to “Glossary” on page 1–37.
(2) VIN range: 0 V  VIN  1.85 V.
(3) RL range: 90  RL  110  .
(4) There are no fixed VIN, VOD, and VOS specifications for BLVDS. They depend on the system topology.
(5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.
(6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 2 of 2)

I/O Standard
VCCIO (V) VID (mV) VIcM (V) (2) VOD (mV) (3) VOS (V) 

Min Typ Max Min Max Min Condition Max Min Typ Max Min Typ
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3
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Switching Characteristics
Table 1–34. True LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (3)

Symbol Modes
C6 C7, I7 C8, A7 C8L, I8L C9L

Unit
Min Max Min Max Min Max Min Max Min Max

fHSCLK (input 
clock 
frequency)

×10 5 420 5 370 5 320 5 320 5 250 MHz

×8 5 420 5 370 5 320 5 320 5 250 MHz

×7 5 420 5 370 5 320 5 320 5 250 MHz

×4 5 420 5 370 5 320 5 320 5 250 MHz

×2 5 420 5 370 5 320 5 320 5 250 MHz

×1 5 420 5 402.5 5 402.5 5 362 5 265 MHz

HSIODR

×10 100 840 100 740 100 640 100 640 100 500 Mbps

×8 80 840 80 740 80 640 80 640 80 500 Mbps

×7 70 840 70 740 70 640 70 640 70 500 Mbps

×4 40 840 40 740 40 640 40 640 40 500 Mbps

×2 20 840 20 740 20 640 20 640 20 500 Mbps

×1 10 420 10 402.5 10 402.5 10 362 10 265 Mbps

tDUTY — 45 55 45 55 45 55 45 55 45 55 %

TCCS — — 200 — 200 — 200 — 200 — 200 ps

Output jitter
(peak to peak) — — 500 — 500 — 550 — 600 — 700 ps

tLOCK 
(2) — — 1 — 1 — 1 — 1 — 1 ms

Notes to Table 1–34:

(1) Cyclone IV E—true LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6.
Cyclone IV GX—true LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6.

(2) tLOCK is the time required for the PLL to lock from the end-of-device configuration.
(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support 

C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 1 of 2)

Symbol Modes
C6 C7, I7 C8, A7 C8L, I8L C9L

Unit
Min Max Min Max Min Max Min Max Min Max

fHSCLK (input 
clock 
frequency)

×10 5 320 5 320 5 275 5 275 5 250 MHz

×8 5 320 5 320 5 275 5 275 5 250 MHz

×7 5 320 5 320 5 275 5 275 5 250 MHz

×4 5 320 5 320 5 275 5 275 5 250 MHz

×2 5 320 5 320 5 275 5 275 5 250 MHz

×1 5 402.5 5 402.5 5 402.5 5 362 5 265 MHz

HSIODR

×10 100 640 100 640 100 550 100 550 100 500 Mbps

×8 80 640 80 640 80 550 80 550 80 500 Mbps

×7 70 640 70 640 70 550 70 550 70 500 Mbps

×4 40 640 40 640 40 550 40 550 40 500 Mbps

×2 20 640 20 640 20 550 20 550 20 500 Mbps

×1 10 402.5 10 402.5 10 402.5 10 362 10 265 Mbps
December 2016 Altera Corporation Cyclone IV Device Handbook,
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