E·XFL

Intel - EP4CE22E22I7N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1395
Number of Logic Elements/Cells	22320
Total RAM Bits	608256
Number of I/O	79
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	144-LQFP Exposed Pad
Supplier Device Package	144-EQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce22e22i7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Word-Wide Multi-Device AP Configuration	8–26
Guidelines for Connecting Parallel Flash to Cyclone IV E Devices for an AP Interface	8–28
Configuring With Multiple Bus Masters	8–28
Estimating AP Configuration Time	8–30
Programming Parallel Flash Memories	8–31
PS Configuration	8–32
PS Configuration Using an External Host	8–33
PS Configuration Timing	8–36
PS Configuration Using a Download Cable	8–37
FPP Configuration	8–40
FPP Configuration Using an External Host	8–40
FPP Configuration Timing	8–44
JTAG Configuration	8–45
Configuring Cyclone IV Devices with Jam STAPL	8–52
Configuring Cyclone IV Devices with the JRunner Software Driver	8–52
Combining JTAG and AS Configuration Schemes	8–53
Programming Serial Configuration Devices In-System with the JTAG Interface	8–55
JTAG Instructions	8–57
Device Configuration Pins	8–62
Remote System Upgrade	8–69
Functional Description	8–69
Enabling Remote Update	8–70
Configuration Image Types	8–70
Remote System Upgrade Mode	8–71
Remote Update Mode	8–71
Dedicated Remote System Upgrade Circuitry	8–74
Remote System Upgrade Registers	8–75
Remote System Upgrade State Machine	8–78
User Watchdog Timer	8–79
Quartus II Software Support	8–80
Document Revision History	8–80

Chapter 9. SEU Mitigation in Cyclone IV Devices

Configuration Error Detection	9–1
User Mode Error Detection	9–2
Automated SEU Detection	9–3
CRC_ERROR Pin	9–3
Error Detection Block	9–4
Error Detection Registers	9–4
Error Detection Timing	9–5
Software Support	9–6
Accessing Error Detection Block Through User Logic	9–7
Recovering from CRC Errors	9–9
Document Revision History	9–10

Chapter 10. JTAG Boundary-Scan Testing for Cyclone IV Devices

IEEE Std. 1149.6 Boundary-Scan Register	
BST Operation Control	
EXTEST_PULSE	
EXTEST_TRAIN	
I/O Voltage Support in a JTAG Chain	
Boundary-Scan Description Language Support	10–6
Document Revision History	10–7

Table 5–2. GCLK Network Connections for EP4CGX30, EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 Devices ^{(1), (2)} (Part 4 of 4)

GCLK Network Clock														GCI	LK Ne	etwo	rks													
Sources	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
DPCLK17				_	—	—	_	—	—	—	—	—	_	—	—	—	—	—	-	\checkmark	—	—	_		_	—	—	—	—	—

Notes to Table 5-2:

(1) EP4CGX30 information in this table refers to only EP4CGX30 device in F484 package.

(2) PLL_1, PLL_2, PLL_3, and PLL_4 are general purpose PLLs while PLL_5, PLL_6, PLL_7, and PLL_8 are multipurpose PLLs.

(3) PLL_7 and PLL_8 are not available in EP4CXGX30, EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices in F484 package.

GCLK Network Clock Sources									GC	LK No	etwoi	'ks								
Sources	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
CLK1	—	\checkmark	\checkmark	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CLK2/DIFFCLK_1p		\checkmark		\checkmark	\checkmark					_								_	-	—
CLK3/DIFFCLK_1n	\checkmark			\checkmark						_								_	_	_
CLK4/DIFFCLK_2p	-	_	-	-	-	\checkmark	-	>	-	<										_
CLK5/DIFFCLK_2n							\checkmark	\checkmark			—	—	—	—	—		—			—
CLK6/DIFFCLK_3p							~		\checkmark	\checkmark								_	_	_
CLK7/DIFFCLK_3n	-	_	-	-	-	\checkmark	-		\checkmark	Ι										_
CLK8/DIFFCLK_5n (2)								—			\checkmark	_	\checkmark	_	\checkmark		_	Ι	Ι	—
CLK9/DIFFCLK_5p (2)								—			—	\checkmark	\checkmark	—	—		—			—
CLK10/DIFFCLK_4n (2)	_	_	_	_	—	_	—	_	_	_		~	_	~	~	_		_	_	
CLK11/DIFFCLK_4p (2)	_	_	_	_	_	_	_	_	_	_	~	_	_	~	_	_	_	_	_	
CLK12/DIFFCLK_7n (2)	_		_	_	_	_	_		_	_	_			_		~	_	~	_	~
CLK13/DIFFCLK_7p (2)					_	_	_	_		_	_	_	_	_	_	_	\checkmark	~	_	
CLK14/DIFFCLK_6n (2)		_	—		_		_	_	—	_		_	_				~	_	~	\checkmark

Table 5-3. GCLK Network Connections for Cyclone IV E Devices (1) (Part 1 of 3)

Figure 5–1 shows the clock control block.

Figure 5–1. Clock Control Block

Notes to Figure 5-1:

- (1) The clkswitch signal can either be set through the configuration file or dynamically set when using the manual PLL switchover feature. The output of the multiplexer is the input clock (f_{IN}) for the PLL.
- (2) The clkselect[1..0] signals are fed by internal logic and are used to dynamically select the clock source for the GCLK when the device is in user mode.
- (3) The static clock select signals are set in the configuration file. Therefore, dynamic control when the device is in user mode is not feasible.
- (4) Two out of four PLL clock outputs are selected from adjacent PLLs to drive into the clock control block.
- (5) You can use internal logic to enable or disable the GCLK in user mode.
- (6) CLK [12] is not available on the left side of Cyclone IV E devices.

Each PLL generates five clock outputs through the c[4..0] counters. Two of these clocks can drive the GCLK through a clock control block, as shown in Figure 5–1.

For more information about how to use the clock control block in the Quartus II software, refer to the *ALTCLKCTRL Megafunction User Guide*.

Figure 5–21 shows an example of phase shift insertion using fine resolution through VCO phase taps method. The eight phases from the VCO are shown and labeled for reference. In this example, CLK0 is based on 0° phase from the VCO and has the C value for the counter set to one. The CLK1 signal is divided by four, two VCO clocks for high time and two VCO clocks for low time. CLK1 is based on the 135° phase tap from the VCO and has the C value for the counter set to one. The CLK1 signal is also divided by four. In this case, the two clocks are offset by 3 $\Phi_{\rm fine}$. CLK2 is based on the 0° phase from the VCO but has the C value for the counter set to three. This creates a delay of two $\Phi_{\rm coarse}$ (two complete VCO periods).

You can use the coarse and fine phase shifts to implement clock delays in Cyclone IV devices.

Cyclone IV devices support dynamic phase shifting of VCO phase taps only. The phase shift is configurable for any number of times. Each phase shift takes about one scanclk cycle, allowing you to implement large phase shifts quickly.

PLL Cascading

Cyclone IV devices allow cascading between general purpose PLLs and multipurpose PLLs in normal or direct mode through the GCLK network. If your design cascades PLLs, the source (upstream) PLL must have a low-bandwidth setting, while the destination (downstream) PLL must have a high-bandwidth setting.

PLL_6 and PLL7 have upstream cascading capability only.

PLL cascading is not supported when used in transceiver applications.

			V _{ccio} Leve	l (in V)	C	olumn I/O P	ins	Row I/	' 0 Pins ⁽¹⁾
I/O Standard	Туре	Standard Support	Input	Output	CLK, DQS	PLL_OUT	User I/O Pins	CLK, DQS	User I/O Pins
LVPECL (7)	Differential	_	2.5	_	\checkmark	—	_	\checkmark	—

Table 6–3. Cyclone IV Devices Supported I/O Standards and Constraints (Part 3 of 3)

Notes to Table 6-3:

(1) Cyclone IV GX devices only support right I/O pins.

(2) The PCI-clamp diode must be enabled for 3.3-V/3.0-V LVTTL/LVCMOS.

(3) The Cyclone IV architecture supports the MultiVolt I/O interface feature that allows Cyclone IV devices in all packages to interface with I/O systems that have different supply voltages.

(4) Cyclone IV GX devices do not support 1.2-V V_{CCIO} in banks 3 and 9. I/O pins in bank 9 are dual-purpose I/O pins that are used as configuration or GPIO pins. Configuration scheme is not support at 1.2 V, therefore bank 9 can not be powered up at 1.2-V V_{CCIO}.

(5) Differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed as inverted. Differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and SSTL inputs and only decode one of them. Differential HSTL and SSTL are only supported on CLK pins.

(6) PPDS, mini-LVDS, and RSDS are only supported on output pins.

- (7) LVPECL is only supported on clock inputs.
- (8) Bus LVDS (BLVDS) output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses LVDS input buffer.
- (9) 1.2-V HSTL input is supported at both column and row I/Os regardless of Class I or Class II.
- (10) True LVDS, RSDS, and mini-LVDS I/O standards are supported in left and right I/O pins, while emulated LVDS, RSDS, and mini-LVDS I/O standards are supported in the top, bottom, and right I/O pins.

Cyclone IV devices support PCI and PCI-X I/O standards at 3.0-V V_{CCIO}. The 3.0-V PCI and PCI-X I/O are fully compatible for direct interfacing with 3.3-V PCI systems without requiring any additional components. The 3.0-V PCI and PCI-X outputs meet the V_{IH} and V_{IL} requirements of 3.3-V PCI and PCI-X inputs with sufficient noise margin.

For more information about the 3.3/3.0/2.5-V LVTTL & LVCMOS multivolt I/O support, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

Termination Scheme for I/O Standards

This section describes recommended termination schemes for voltage-referenced and differential I/O standards.

The 3.3-V LVTTL, 3.0-V LVTTL and LVCMOS, 2.5-V LVTTL and LVCMOS, 1.8-V LVTTL and LVCMOS, 1.5-V LVCMOS, 1.2-V LVCMOS, 3.0-V PCI, and PCI-X I/O standards do not specify a recommended termination scheme per the JEDEC standard

]	Chapter 6: I/O Banks
	I/O Fea
	ntures ir
	ı Cyclon
	e IV De

ices

Table 6-4. Number of VREF Pins Per I/O Bank for Cyclone IV E Devices (Part 2 of 2)

Device		EP4CE6			EP4CE10				- 107 G	E146E13				EP4CE22			EP4CE30				Er46E4U			EP4CE55			EP4CE75		EDAFE11E	Er4veiij
l/O Bank (1)	144-EQPF	256-UBGA	256-FBGA	144-EQPF	256-UBGA	256-FBGA	144-EQPF	164-MBGA	256-MBGA	256-UBGA	256-FBGA	484-FBGA	144-EQPF	256-UBGA	256-FBGA	324-FBGA	484-FBGA	780-FBGA	324-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-FBGA	780-FBGA
8	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3

Note to Table 6-4:

(1) User I/O pins are used as inputs or outputs; clock input pins are used as inputs only; clock output pins are used as output only.

lable 6–5.	Number	of VREF	Pins Per	I/O Bank fo	or Cyclone I	V GX Devices
------------	--------	---------	-----------------	-------------	--------------	--------------

Device	4CGX15	4CG	i X22		4CGX30		4CG	AX50	4CG	X75		4CGX110		4CGX150			
i/O Bank (1)	169-FBGA	169-FBGA	324-FBGA	169-FBGA	324-FBGA	484-FBGA	484-FBGA	672-FBGA	484-FBGA	672-FBGA	484-FBGA	672-FBGA	896-FBGA	484-FBGA	672-FBGA	896-FBGA	
3	1	-	1		1	3	:	3	3	3		3			3		
4	1	-	1	1		3		3	3	3		3			3		
5	1	-	1		1	3	:	3	3	3	3				3		
6	1	-	1		1	3		3	3	3		3			3		
7	1		1	1		3	3		3	3		3					
8 (2)	1		1		1	3	:	3	3	3		3			3		

Notes to Table 6-5:

(1) User I/O pins are used as inputs or outputs; clock input pins are used as inputs only; clock output pins are used as output only.

(2) Bank 9 does not have VREF pin. If input pins with VREF I/O standards are used in bank 9 during user mode, it shares the VREF pin in bank 8.

Each Cyclone IV I/O bank has its own VCCIO pins. Each I/O bank can support only one V_{CCIO} setting from among 1.2, 1.5, 1.8, 2.5, 3.0, or 3.3 V. Any number of supported single-ended or differential standards can be simultaneously supported in a single I/O bank, as long as they use the same V_{CCIO} levels for input and output pins.

Figure 6–14 shows a typical BLVDS topology with multiple transmitter and receiver pairs.

Figure 6-14. BLVDS Topology with Cyclone IV Devices Transmitters and Receivers

The BLVDS I/O standard is supported on the top, bottom, and right I/O banks of Cyclone IV devices. The BLVDS transmitter uses two single-ended output buffers with the second output buffer programmed as inverted, while the BLVDS receiver uses a true LVDS input buffer. The transmitter and receiver share the same pins. An output-enabled (OE) signal is required to tristate the output buffers when the LVDS input buffer receives a signal.

• For more information, refer to the *Cyclone IV Device Datasheet* chapter.

Designing with BLVDS

The BLVDS bidirectional communication requires termination at both ends of the bus in BLVDS. The termination resistor (R_T) must match the bus differential impedance, which in turn depends on the loading on the bus. Increasing the load decreases the bus differential impedance. With termination at both ends of the bus, termination is not required between the two signals at the input buffer. A single series resistor (R_S) is required at the output buffer to match the output buffer impedance to the transmission line impedance. However, this series resistor affects the voltage swing at the input buffer. The maximum data rate achievable depends on many factors.

- Altera recommends that you perform simulation using the IBIS model while considering factors such as bus loading, termination values, and output and input buffer location on the bus to ensure that the required performance is achieved.
- ***** For more information about BLVDS interface support in Altera devices, refer to *AN 522: Implementing Bus LVDS Interface in Supported Altera Device Families.*

7. External Memory Interfaces in Cyclone IV Devices

This chapter describes the memory interface pin support and the external memory interface features of Cyclone[®] IV devices.

In addition to an abundant supply of on-chip memory, Cyclone IV devices can easily interface with a broad range of external memory devices, including DDR2 SDRAM, DDR SDRAM, and QDR II SRAM. External memory devices are an important system component of a wide range of image processing, storage, communications, and general embedded applications.

Altera recommends that you construct all DDR2 or DDR SDRAM external memory interfaces using the Altera[®] ALTMEMPHY megafunction. You can implement the controller function using the Altera DDR2 or DDR SDRAM memory controllers, third-party controllers, or a custom controller for unique application needs. Cyclone IV devices support QDR II interfaces electrically, but Altera does not supply controller or physical layer (PHY) megafunctions for QDR II interfaces.

This chapter includes the following sections:

- "Cyclone IV Devices Memory Interfaces Pin Support" on page 7–2
- "Cyclone IV Devices Memory Interfaces Features" on page 7–12
- For more information about supported maximum clock rate, device and pin planning, IP implementation, and device termination, refer to the *External Memory Interface Handbook*.

© 2016 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Remote System Upgrade Mode

In remote update mode, Cyclone IV devices load the factory configuration image after power up. The user-defined factory configuration determines the application configuration to be loaded and triggers a reconfiguration cycle. The factory configuration can also contain application logic.

When used with configuration memory, the remote update mode allows an application configuration to start at any flash sector boundary. Additionally, the remote update mode features a user watchdog timer that can detect functional errors in an application configuration.

Remote Update Mode

In AS configuration scheme, when a Cyclone IV device is first powered up in remote update, it loads the factory configuration located at address <code>boot_address[23:0] = 24b'0</code>. Altera recommends storing the factory configuration image for your system at boot address 24b'0, which corresponds to the start address location 0×000000 in the serial configuration device. A factory configuration image is a bitstream for the Cyclone IV device in your system that is programmed during production and is the fall-back image when an error occurs. This image is stored in non-volatile memory and is never updated or modified using remote access.

When you use the AP configuration in Cyclone IV E devices, the Cyclone IV E device loads the default factory configuration located at the following address after device power-up in remote update mode:

boot_address[23:0] = 24'h010000 = 24'b1 0000 0000 0000.

You can change the default factory configuration address to any desired address using the APFC_BOOT_ADDR JTAG instruction. The factory configuration image is stored in non-volatile memory and is never updated or modified using remote access. This corresponds to the default start address location 0×010000 represented in 16-bit word addressing (or the updated address if the default address is changed) in the supported parallel flash memory. For more information about the application of the APFC_BOOT_ADDR JTAG instruction in AP configuration scheme, refer to the "JTAG Instructions" on page 8–57.

The factory configuration image is user-designed and contains soft logic (Nios II processor or state machine and the remote communication interface) to:

- Process any errors based on status information from the dedicated remote system upgrade circuitry
- Communicate with the remote host and receive new application configurations and store the new configuration data in the local non-volatile memory device
- Determine the application configuration to be loaded into the Cyclone IV device
- Enable or disable the user watchdog timer and load its time-out value (optional)
- Instruct the dedicated remote system upgrade circuitry to start a reconfiguration cycle

Remote System Upgrade Registers

The remote system upgrade block contains a series of registers that stores the configuration addresses, watchdog timer settings, and status information. Table 8–22 lists these registers.

 Table 8–22.
 Remote System Upgrade Registers

Register	Description
Shift register	This register is accessible by the logic array and allows the update, status, and control registers to be written and sampled by user logic. Write access is enabled in remote update mode for factory configurations to allow writing to the update register. Write access is disabled for all application configurations in remote update mode.
Control register	This register contains the current configuration address, the user watchdog timer settings, one option bit for checking early CONF_DONE, and one option bit for selecting the internal oscillator as the startup state machine clock. During a read operation in an application configuration, this register is read into the shift register. When a reconfiguration cycle is started, the contents of the update register are written into the control register.
Update register	This register contains data similar to that in the control register. However, it can only be updated by the factory configuration by shifting data into the shift register and issuing an update operation. When a reconfiguration cycle is triggered by the factory configuration, the control register is updated with the contents of the update register. During a read in a factory configuration, this register is read into the shift register.
Status register	This register is written by the remote system upgrade circuitry on every reconfiguration to record the cause of the reconfiguration. This information is used by the factory configuration to determine the appropriate action following a reconfiguration. During a capture cycle, this register is read into the shift register.

The control and status registers of the remote system upgrade are clocked by the 10-MHz internal oscillator (the same oscillator that controls the user watchdog timer) or the CLKUSR. However, the shift and update registers of the remote system upgrade are clocked by the maximum frequency of 40-MHz user clock input (RU_CLK). There is no minimum frequency for RU_CLK.

Remote System Upgrade Control Register

The remote system upgrade control register stores the application configuration address, the user watchdog timer settings, and option bits for a application configuration. In remote update mode for the AS configuration scheme, the control register address bits are set to all zeros (24'b0) at power up to load the AS factory configuration. In remote update mode for the AP configuration scheme, the control register address bits are set to 24'h010000 (24'b1 0000 0000 0000) at power up to load the AP default factory configuration. However, for the AP configuration scheme, you can change the default factory configuration address to any desired address using the APFC_BOOT_ADDR JTAG instruction. Additionally, a factory configuration in remote update mode has write access to this register.

Word Aligner

Figure 1–16 shows the word aligner block diagram. The word aligner receives parallel data from the deserializer and restores the word boundary based on a pre-defined alignment pattern that must be received during link synchronization. The word aligner supports three operational modes as listed in Table 1–3.

Table 1-3. Word Aligner Modes

Modes	PMA-PCS Interface Widths	Allowed Word Alignment Pattern Lengths		
Manual Alignment	8-bit	16 bits		
Manual Algument	10-bit	7 or 10 bits		
Rit Clin	8-bit	16 bits		
Bit-Silp	10-bit	7 or 10 bits		
Automatic Synchronization State Machine	10-bit	7 or 10 bits		

Manual Alignment Mode

In manual alignment mode, the rx_enapatternalign port controls the word aligner with either an 8- or 10-bit data width setting.

The 8-bit word aligner is edge-sensitive to the rx_enapatternalign signal. A rising edge on rx_enapatternalign signal after deassertion of the rx_digitalreset signal triggers the word aligner to look for the word alignment pattern in the received data stream. It updates the word boundary if it finds the word alignment pattern in a new word boundary. Any word alignment pattern received thereafter in a different word boundary causes the word aligner to re-align to the new word boundary only if there is a rising edge in the rx enapatternalign signal.

The 10-bit word aligner is level-sensitive to the rx_enapatternalign signal. The word aligner looks for the programmed 7-bit or 10-bit word alignment pattern or its complement in the received data stream, if the rx_enapatternalign signal is held high. It updates the word boundary if it finds the word alignment pattern in a new word boundary. If the rx_enapatternalign signal is deasserted, the word alignment pattern maintains the current word boundary even when it receives the word alignment pattern in a new word boundary.

Bonded Channel Configuration

In bonded channel configuration, the low-speed clock for the bonded channels share a common bonded clock path that reduces clock skew between the bonded channels. The phase compensation FIFOs in bonded channels share a set of pointers and control logic that results in equal FIFO latency between the bonded channels. These features collectively result in lower channel-to-channel skew when implementing multi-channel serial interface in bonded channel configuration.

In a transceiver block, the high-speed clock for each bonded channels is distributed independently from one of the two multipurpose PLLs directly adjacent to the block. The low-speed clock for bonded channels is distributed from a common bonded clock path that selects from one of the two multipurpose PLLs directly adjacent to the block. Transceiver channels for devices in F484 and larger packages support additional clocking flexibility for ×2 bonded channels. In these packages, the ×2 bonded channels support high-speed and low-speed bonded clock distribution from PLLs beyond the two multipurpose PLLs directly adjacent to the block. Table 1–10 lists the high- and low-speed clock sources for the bonded channels.

Dookogo	Transceiver	Pondod Chonnolo	High- and Low-Speed Clocks Source			
гаскауе	Block	Bonueu Channeis	Option 1	Option 2		
F324 and smaller	GXBL0	×2 in channels 0, 1 ×4 in all channels	MPLL_1	MPLL_2		
	GXBL0	×2 in channels 0, 1	MPLL_5/ GPLL_1	MPLL_6		
F484 and larger		×4 in all channels	MPLL_5	MPLL_6		
	GXBL1 (1)	×2 in channels 0, 1	MPLL_7/ MPLL_6	MPLL_8		
		×4 in all channels	MPLL_7	MPLL_8		

Table 1–10. High- and Low-Speed Clock Sources for Bonded Channels in Bonded Channel Configuration

Note to Table 1-10:

(1) GXBL1 is not available for transceivers in F484 package.

When implementing ×2 bonded channel configuration in a transceiver block, remaining channels 2 and 3 are available to implement other non-bonded channel configuration.

Signal Detect at Receiver

In PIPE mode, signal detection is supported with the built-in signal threshold detection circuitry. When electrical idle inference is not enabled, the rx_signaldetect signal is inverted and available as pipeelecidle port in the PIPE interface.

Lane Synchronization

In PIPE mode, the word aligner is configured in automatic synchronization state machine mode that complies with the PCIe specification. Table 1–16 lists the synchronization state machine parameters that implement the PCIe-compliant synchronization.

Table 1–16. Synchronization State Machine Parameters (1)

Parameter	Value
Number of valid synchronization (/K28.5/) code groups received to achieve synchronization	4
Number of erroneous code groups received to lose synchronization	17
Number of continuous good code groups received to reduce the error count by one	16

Note to Table 1-16:

(1) The word aligner supports 10-bit pattern lengths in PIPE mode.

Clock Rate Compensation

In PIPE mode, the rate match FIFO compensates up to ±300 ppm (600 ppm total) difference between the upstream transmitter and the local receiver reference clock. In PIPE mode, the rate match FIFO operation is compliant to the version 2.0 of the PCIe Base Specification. The PCIe protocol requires the receiver to recognize a skip (SKP) ordered set, and inserts or deletes only one SKP symbol per SKP ordered set received to prevent the rate match FIFO from overflowing or underflowing. The SKP ordered set is a /K28.5/ comma (COM) symbol followed by one to five consecutive /K28.0/ SKP symbols, which are sent by transmitter during the inter-packet gap.

The rate match operation begins after the synchronization state machine in the word aligner indicates synchronization is acquired, as indicated with logic high on rx_syncstatus signal. Rate match FIFO insertion and deletion events are communicated to FPGA fabric on the pipestatus [2..0] port from each channel.

Low-Latency Synchronous PCIe

In PIPE mode, the Cyclone IV GX transceiver supports a lower latency in synchronous PCIe by reducing the latency across the rate match FIFO. In synchronous PCIe, the system uses a common reference clocking that gives a 0 ppm difference between the upstream transmitter's and local receiver's reference clock.

When using common reference clocking, the transceiver supports spread-spectrum clocking. For more information about the SSC support in PCIe Express (PIPE) mode, refer to the *Cyclone IV Device Data Sheet*.

- Channel alignment is acquired if three additional aligned ||A|| columns are observed at the output of the deskew FIFOs of the four channels after alignment of the first ||A|| column.
- Channel alignment is indicated by the assertion of rx_channelaligned signal.
- After acquiring channel alignment, if four misaligned ||A|| columns are seen at the output of the deskew FIFOs in all four channels with no aligned ||A|| columns in between, the rx_channelaligned signal is deasserted, indicating loss of channel alignment.

Figure 1–65 shows lane skew at the receiver input and how the deskew FIFO uses the /A/ code group to align the channels.

Lane 0 Κ Κ R Κ R R Κ Κ R κ R Lane 1 Κ Κ R Κ R R Κ Κ R Κ R Lanes skew at receiver input Lane 2 Κ Κ R Κ R R Κ Κ R Κ R κ Κ R κ R R Κ κ R Κ R Lane 3 Lane 0 Κ Κ R Κ R R Κ Κ R Κ R Lane 1 Κ Κ R Κ R R κ Κ R Κ R Lanes are deskewed by lining up the "Align"/A/ code groups R κ R R κ к R R Lane 2 Κ Κ Κ R κ R R Κ Κ R R Κ Κ Κ Lane 3 /A/ column

Figure 1-65. Deskew FIFO-Lane Skew at the Receiver Input

Lane Synchronization

In XAUI mode, the word aligner is configured in automatic synchronization state machine mode that is compliant to the PCS synchronization state diagram specified in clause 48 of the IEEE P802.3ae specification. Table 1–23 lists the synchronization state machine parameters that implements the lane synchronization in XAUI mode.

Table 1–23. Synchronization State Machine Parameters ⁽¹⁾

Parameter	Value
Number of valid synchronization (/K28.5/) code groups received to achieve synchronization	4
Number of erroneous code groups received to lose synchronization	4
Number of continuous good code groups received to reduce the error count by one	4

Note to Table 1–23:

(1) The word aligner supports 7-bit and 10-bit pattern lengths in XAUI mode.

Receiver Only Channel—Receiver CDR in Manual Lock Mode

This configuration contains only a receiver channel. If you create a **Receiver Only** instance in the ALTGX MegaWizard Plug-In Manager with receiver CDR in manual lock mode, use the reset sequence shown in Figure 2–7.

Figure 2-7. Sample Reset Sequence of Receiver Only Channel—Receiver CDR in Manual Lock Mode

Notes to Figure 2–7:

- (1) For t_{LTR LTD Manual} duration, refer to the *Cyclone IV Device Datasheet* chapter.
- (2) For $t_{LTD Manual}$ duration, refer to the *Cyclone IV Device Datasheet* chapter.
- (3) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

As shown in Figure 2–7, perform the following reset procedure for the receiver CDR in manual lock mode:

- 1. After power up, wait for the busy signal to be asserted.
- 2. Keep the rx_digitalreset and rx_locktorefclk signals asserted and the rx_locktodata signal deasserted during this time period.
- 3. After deassertion of the busy signal (marker 1), wait for two parallel clock cycles to deassert the rx_analogreset signal (marker 2). After rx_analogreset deassert, rx_pll_locked will assert.
- 4. Wait for at least t_{LTR_LTD_Manual}, then deassert the rx_locktorefclk signal. At the same time, assert the rx_locktodata signal (marker 3).
- 5. Deassert rx_digital reset at least $t_{\rm LTD_Manual}$ (the time between markers 3 and 4) after asserting the rx_locktodata signal. At this point, the receiver is ready to receive data.

3. Cyclone IV Dynamic Reconfiguration

Cyclone[®] IV GX transceivers allow you to dynamically reconfigure different portions of the transceivers without powering down any part of the device. This chapter describes and provides examples about the different modes available for dynamic reconfiguration.

You can use the ALTGX_RECONFIG and ALTPLL_RECONFIG controller instance to reconfigure the physical medium attachment (PMA) controls, physical coding sublayer (PCS), multipurpose phase locked loops (PLLs), and general purpose PLLs.

This chapter contains the following sections:

- "Glossary of Terms" on page 3–1
- "Dynamic Reconfiguration Controller Architecture" on page 3–2
- "Dynamic Reconfiguration Modes" on page 3–12
- "Error Indication During Dynamic Reconfiguration" on page 3–36
- "Functional Simulation of the Dynamic Reconfiguration Process" on page 3–37

Glossary of Terms

Table 3–1 lists the terms used in this chapter:

Table 3-1. Glussary of Terms used in this chapter (Part 1 of 2	Table 3-1. Glossa	y of Terms Used in this Chapter	(Part 1 of 2)
--	-------------------	---------------------------------	---------------

Term	Description
ALTGX_RECONFIG Instance	Dynamic reconfiguration controller instance generated by the ALTGX_RECONFIG MegaWizard [™] Plug-In Manager.
ALTGX Instance	Transceiver instance generated by the ALTGX MegaWizard Plug-In Manager.
ALTPLL_RECONFIG Instance	Dynamic PLL reconfiguration controller instance generated by the ALTPLL_RECONFIG Megawizard Plug-In Manager
Logical Channel Addressing	Used whenever the concept of logical channel addressing is explained. This term does not refer to the logical_channel_address port available in the ALTGX_RECONFIG MegaWizard Plug-In Manager.

© 2011 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Port Name	Input/ Output	Description
FPGA Fabric and ALTGX	RECONFI	G Interface Signals
		Assert this signal for one reconfig_clk clock cycle to initiate a write transaction from the ALTGX_RECONFIG instance to the ALTGX instance.
		You can use this signal in two ways for . mif -based modes:
write_all	Input	Continuous write operation—select the Enable continuous write of all the words needed for reconfiguration option to pulse the write_all signal only once for writing a whole .mif. The What is the read latency of the MIF contents option is available for selection in this case only. Enter the desired latency in terms of the reconfig_clk cycles.
		Regular write operation—when the Enable continuous write of all the words needed for reconfiguration option is disabled, every word of the .mif requires its own write cycle.
		This signal is used to indicate the busy status of the dynamic reconfiguration controller during offset cancellation. After the device powers up, this signal remains low for the first reconfig_clk clock cycle. It then is asserted and remains high when the dynamic reconfiguration controller performs offset cancellation on all the receiver channels connected to the ALTGX_RECONFIG instance.
busy	Output	Deassertion of the ${\tt busy}$ signal indicates the successful completion of the offset cancellation process.
		 PMA controls reconfiguration mode—this signal is high when the dynamic reconfiguration controller performs a read or write transaction.
		 Channel reconfiguration modes—this signal is high when the dynamic reconfiguration controller writes the .mif into the transceiver channel.
read	Input	Assert this signal for one reconfig_clk clock cycle to initiate a read transaction. The read port is applicable only to the PMA controls reconfiguration mode. The read port is available when you select Analog controls in the Reconfiguration settings screen and select at least one of the PMA control ports in the Analog controls screen.
		Applicable only to PMA controls reconfiguration mode. This port indicates the validity of the data read from the transceiver by the dynamic reconfiguration controller.
data_valid	Output	The data on the output read ports is valid only when the data_valid is high.
		This signal is enabled when you enable at least one PMA control port used in read transactions, for example tx_vodctrl_out.
error	Output	This indicates that an unsupported operation was attempted. You can select this in the Error checks screen. The dynamic reconfiguration controller deasserts the busy signal and asserts the error signal for two reconfig_clk cycles when you attempt an unsupported operation. For more information, refer to "Error Indication During Dynamic Reconfiguration" on page 3–36.

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 2 of 7)

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

 Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
) <i>(</i> (3)	Supply voltage for internal logic, 1.2-V operation	_	1.15	1.2	1.25	V
VCCINT	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	Max Ur 1.25 1 1.03 1 3.465 1 3.15 1 2.625 1 1.89 1 1.26 1 1.89 1 1.26 1 1.275 1 1.26 1 1.275 1 1.26 1 1.275 1 1.26 1 1.26 1 1.275 1 1.28 1 1.25 1 1.03 1 1.03 1 1.03 1 1.25 1 1.00 1 1.25 1 1.25 1 1.25 1 1.25 1 1.25 1 1.25 1 1.25 1 1.25 1 1.25 1 <td>V</td>	V
	Supply voltage for output buffers, 3.3-V operation	—	3.135	3.3	3.465	V
	—	2.85	3	3.15	V	
	2.5	2.625	V			
	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	—	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	—	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	—	2.375	2.5	2.625	V
) ((3)	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
VCCD_PLL	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	1.0	yp Max Unit 1.2 1.25 V 1.0 1.03 V 3.3 3.465 V 3 3.15 V 2.5 2.625 V 1.8 1.89 V 1.5 1.575 V 1.2 1.26 V 1.2 1.25 V 1.0 1.03 V - 3.6 V - 3.6 V - 100 °C - 125 °C - 125 °C - 125 °C - 3 ms -	V
VI	Input voltage	—	-0.5		3.6	V
V ₀	Output voltage	—	0		V _{CCIO}	V
		For commercial use	0		85	°C
V _{CCD_PLL} (3)	Operating junction temperature	For industrial use	-40		100	°C
IJ		For extended temperature	-40	1.2 1.25 V 1.0 1.03 V 3.3 3.465 V 3 3.15 V 2.5 2.625 V 1.8 1.89 V 1.5 1.575 V 1.2 1.26 V 1.2 1.26 V 1.2 1.25 V 1.2 1.25 V 1.10 1.03 V 3.6 V 85 °C 125 °C 125 °C 50 ms 3 ms		
		For automotive use	-40		1.26 V 2.625 V 1.25 V 1.03 V 3.6 V V _{CCI0} V 85 °C 100 °C 125 °C 50 ms — 3 ms —	
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs	_	50 ms	_
		Fast POR (6)	50 µs		3 ms	

I/O	V _{CCIO} (V)				V _{TT} (V) ⁽²⁾				
Standard	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	1.19	1.25	1.31	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
SSTL-18 Class I, II	1.7	1.8	1.9	0.833	0.9	0.969	V _{REF} – 0.04	V _{REF}	V _{REF} + 0.04
HSTL-18 Class I, II	1.71	1.8	1.89	0.85	0.9	0.95	0.85 0.9		0.95
HSTL-15 Class I, II	1.425	1.5	1.575	0.71	0.75	0.79	0.79 0.71 0.75		0.79
HSTL-12	1 14	12	1 26	0.48 x V _{CCIO} <i>(</i> 3)	0.5 x V _{CCIO} <i>(3)</i>	0.52 x V _{CCI0} <i>(3)</i>		0.5 x	_
Class I, II	1.14	1.2	1.20	0.47 x V _{CCI0} (4)	0.5 x V _{CCIO} (4)	0.53 x V _{CCI0} (4)		V _{CCIO}	

Table 1–16.	Single-Ended SSTL and HSTL I/O Reference	Voltage Sr	necifications for C	vclone IV Devices ⁽¹⁾
		· · · · · · · · · · · · · · · · · · ·	poolitioutions for e	yolollo IY Borloos

Notes to Table 1–16:

(1) For an explanation of terms used in Table 1–16, refer to "Glossary" on page 1–37.

(2) $\,\,V_{TT}$ of the transmitting device must track V_{REF} of the receiving device.

(3) Value shown refers to DC input reference voltage, $V_{\text{REF(DC)}}.$

(4) Value shown refers to AC input reference voltage, $V_{REF(AC)}$.

Table 1–17.	Single-Ended SSTL	and HSTL I/O Standards Si	gnal Specifications for C	yclone IV Devices
-------------	-------------------	---------------------------	---------------------------	-------------------

I/0	VIL	V _{IL(DC)} (V)		_{I(DC)} (V)	(V) V _{IL(AC)} (V)		IL(AC) (V) V _{IH(AC)} (V) V _{OL} (V) V _{OH} (V) I _{OL} I _{OH}		I _{OH}			
Standard	Min	Max	Min	Max	Min	Max	Min	Max	Max	Min	(mĀ)	(mÄ)
SSTL-2 Class I	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _{TT} – 0.57	V _{TT} + 0.57	8.1	-8.1
SSTL-2 Class II	_	V _{REF} – 0.18	V _{REF} + 0.18	_	_	V _{REF} – 0.35	V _{REF} + 0.35	_	V _Π – 0.76	V _{TT} + 0.76	16.4	-16.4
SSTL-18 Class I	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	—	V _{TT} – 0.475	V _{TT} + 0.475	6.7	-6.7
SSTL-18 Class II	_	V _{REF} – 0.125	V _{REF} + 0.125	_	_	V _{REF} – 0.25	V _{REF} + 0.25	—	0.28	V _{CCI0} – 0.28	13.4	-13.4
HSTL-18 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	—	0.4	V _{CCIO} – 0.4	8	-8
HSTL-18 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16
HSTL-15 Class I	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	8	-8
HSTL-15 Class II	_	V _{REF} – 0.1	V _{REF} + 0.1	_	_	V _{REF} – 0.2	V _{REF} + 0.2	_	0.4	V _{CCI0} – 0.4	16	-16
HSTL-12 Class I	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	8	-8
HSTL-12 Class II	-0.15	V _{REF} - 0.08	V _{REF} + 0.08	V _{CCI0} + 0.15	-0.24	V _{REF} – 0.15	V _{REF} + 0.15	V _{CCI0} + 0.24	0.25 × V _{CCI0}	0.75 × V _{CCIO}	14	-14

Table 1-46. Glossary (Part 2 of 5)