Intel - EP4CE22F17I8LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1395
Number of Logic Elements/Cells	22320
Total RAM Bits	608256
Number of I/O	153
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce22f17i8ln

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter 11. Power Requirements for Cyclone IV Devices

External Power Supply Requirements	11–1
Hot-Socketing Specifications	
Devices Driven Before Power-Up	
I/O Pins Remain Tri-stated During Power-Up	
Hot-socketing Feature Implementation	11–3
Power-On Reset Circuitry	
Document Revision History	

Figure 5–14 shows a waveform example of the phase relationship of the PLL clocks in this mode.

Figure 5-14. Phase Relationship Between PLL Clocks in Normal Mode

Note to Figure 5-14:

(1) The external clock output can lead or lag the PLL internal clock signals.

Zero Delay Buffer Mode

In zero delay buffer (ZDB) mode, the external clock output pin is phase-aligned with the clock input pin for zero delay through the device. When using this mode, use the same I/O standard on the input clock and output clocks to guarantee clock alignment at the input and output pins.

Figure 5–15 shows an example waveform of the phase relationship of the PLL clocks in ZDB mode.

Figure 6–4 shows the single-ended I/O standards for OCT without calibration. The R_S shown is the intrinsic transistor impedance.

All I/O banks and I/O pins support impedance matching and series termination. Dedicated configuration pins and JTAG pins do not support impedance matching or series termination.

 R_S OCT is supported on any I/O bank. V_{CCIO} and V_{REF} must be compatible for all I/O pins to enable R_S OCT in a given I/O bank. I/O standards that support different R_S values can reside in the same I/O bank as long as their V_{CCIO} and V_{REF} do not conflict.

Impedance matching is implemented using the capabilities of the output driver and is subject to a certain degree of variation, depending on the process, voltage, and temperature.

For more information about tolerance specification, refer to the *Cyclone IV Device Datasheet* chapter.

I/O Standards

Cyclone IV devices support multiple single-ended and differential I/O standards. Cyclone IV devices support 3.3-, 3.0-, 2.5-, 1.8-, 1.5-, and 1.2-V I/O standards.

Table 6–3 summarizes I/O standards supported by Cyclone IV devices and which I/O pins support them.

Table 6-3.	. Cyclone IV Devices Supported I/O Standards a	nd Constraints	(Part 1 of 3)
------------	--	----------------	---------------

			V _{CCIO} Leve	el (in V)	C	olumn I/O P	Row I/O Pins ⁽¹⁾		
I/O Standard	Туре	Standard Support	Input	Output	CLK, DQS	PLL_OUT	User I/O Pins	CLK, DQS	User I/O Pins
3.3-V LVTTL, 3.3-V LVCMOS <i>(2)</i>	Single-ended	JESD8-B	3.3/3.0/2.5 <i>(3)</i>	3.3	~	~	\checkmark	~	~
3.0-V LVTTL, 3.0-V LVCMOS <i>(2)</i>	Single-ended	JESD8-B	3.3/3.0/2.5 <i>(3)</i>	3.0	~	~	~	~	~

When designing LVTTL/LVCMOS inputs with Cyclone IV devices, refer to the following guidelines:

- All pins accept input voltage (V_I) up to a maximum limit (3.6 V), as stated in the recommended operating conditions provided in the *Cyclone IV Device Datasheet* chapter.
- Whenever the input level is higher than the bank V_{CCIO}, expect higher leakage current.
- The LVTTL/LVCMOS I/O standard input pins can only meet the V_{IH} and V_{IL} levels according to bank voltage level.

Voltage-referenced standards are supported in an I/O bank using any number of single-ended or differential standards, as long as they use the same V_{REF} and V_{CCIO} values. For example, if you choose to implement both SSTL-2 and SSTL-18 in your Cyclone IV devices, I/O pins using these standards—because they require different V_{REF} values—must be in different banks from each other. However, the same I/O bank can support SSTL-2 and 2.5-V LVCMOS with the V_{CCIO} set to 2.5 V and the V_{REF} set to 1.25 V.

- When using Cyclone IV devices as a receiver in 3.3-, 3.0-, or 2.5-V LVTTL/LVCMOS systems, you are responsible for managing overshoot or undershoot to stay in the absolute maximum ratings and the recommended operating conditions, provided in the *Cyclone IV Device Datasheet* chapter.
- The PCI clamping diode is enabled by default in the Quartus II software for input signals with bank V_{CCIO} at 2.5, 3.0, or 3.3 V.

High-Speed Differential Interfaces

Cyclone IV devices can send and receive data through LVDS signals. For the LVDS transmitter and receiver, the input and output pins of Cyclone IV devices support serialization and deserialization through internal logic.

The BLVDS extends the benefits of LVDS to multipoint applications such as bidirectional backplanes. The loading effect and the need to terminate the bus at both ends for multipoint applications require BLVDS to drive out a higher current than LVDS to produce a comparable voltage swing. All the I/O banks of Cyclone IV devices support BLVDS for user I/O pins.

The RSDS and mini-LVDS standards are derivatives of the LVDS standard. The RSDS and mini-LVDS I/O standards are similar in electrical characteristics to LVDS, but have a smaller voltage swing and therefore provide increased power benefits and reduced electromagnetic interference (EMI).

The PPDS standard is the next generation of the RSDS standard introduced by National Semiconductor Corporation. Cyclone IV devices meet the National Semiconductor Corporation PPDS Interface Specification and support the PPDS standard for outputs only. All the I/O banks of Cyclone IV devices support the PPDS standard for output pins only.

The LVDS standard does not require an input reference voltage, but it does require a 100- Ω termination resistor between the two signals at the input buffer. An external resistor network is required on the transmitter side for the top and bottom I/O banks.

PS Configuration Using an External Host

In the PS configuration scheme, you can use an intelligent host such as a MAX II device or microprocessor that controls the transfer of configuration data from a storage device, such as flash memory, to the target Cyclone IV device. You can store the configuration data in **.rbf**, **.hex**, or **.ttf** format.

Figure 8–13 shows the configuration interface connections between a Cyclone IV device and an external host device for single-device configuration.

Figure 8–13. Single-Device PS Configuration Using an External Host

Notes to Figure 8-13:

- (1) Connect the pull-up resistor to a supply that provides an acceptable input signal for the device. V_{CC} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host.
- (2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA [0] and DCLK must fit the maximum overshoot outlined in Equation 8–1 on page 8–5.

To begin the configuration, the external host device must generate a low-to-high transition on the nCONFIG pin. When nSTATUS is pulled high, the external host device must place the configuration data one bit at a time on DATA[0]. If you use configuration data in **.rbf**, **.ttf**, or **.hex**, you must first send the LSB of each data byte. For example, if the **.rbf** contains the byte sequence 02 1B EE 01 FA, the serial bitstream you must send to the device is:

0100-0000 1101-1000 0111-0111 1000-0000 0101-1111

Cyclone IV devices receive configuration data on DATA[0] and the clock is received on DCLK. Data is latched into the device on the rising edge of DCLK. Data is continuously clocked into the target device until CONF_DONE goes high and the device enters initialization state.

Two DCLK falling edges are required after CONF_DONE goes high to begin the initialization of the device.

INIT_DONE is released and pulled high when initialization is complete. The external host device must be able to detect this low-to-high transition which signals the device has entered user mode. When initialization is complete, the device enters user mode. In user mode, the user I/O pins no longer have weak pull-up resistors and function as assigned in your design.

To ensure DCLK and DATA [0] are not left floating at the end of configuration, the MAX II device must drive them either high or low, whichever is convenient on your board. The DATA [0] pin is available as a user I/O pin after configuration. In the PS scheme, the DATA [0] pin is tri-stated by default in user mode and must be driven by the external host device. To change this default option in the Quartus II software, select the **Dual-Purpose Pins** tab of the **Device and Pin Options** dialog box.

The configuration clock (DCLK) speed must be below the specified system frequency to ensure correct configuration. No maximum DCLK period exists, which means you can pause configuration by halting DCLK for an indefinite amount of time.

The external host device can also monitor CONF_DONE and INIT_DONE to ensure successful configuration. The CONF_DONE pin must be monitored by the external device to detect errors and to determine when programming is complete. If all configuration data is sent, but CONF_DONE or INIT_DONE has not gone high, the external device must reconfigure the target device.

Figure 8–14 shows how to configure multiple devices using an external host device. This circuit is similar to the PS configuration circuit for a single device, except that Cyclone IV devices are cascaded for multi-device configuration.

Figure 8–14. Multi-Device PS Configuration Using an External Host

Notes to Figure 8-14:

- (1) The pull-up resistor must be connected to a supply that provides an acceptable input signal for all devices in the chain. V_{CC} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host.
- (2) Connect the pull-up resistor to the V_{CCIO} supply voltage of the I/O bank in which the nCE pin resides.
- (3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (5) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA [0] and DCLK must fit the maximum overshoot outlined in Equation 8–1 on page 8–5.

For device using V_{CCIO} of 2.5, 3.0, and 3.3 V, refer to Figure 8–23. All I/O inputs must maintain a maximum AC voltage of 4.1 V because JTAG pins do not have the internal PCI clamping diodes to prevent voltage overshoot when using V_{CCIO} of 2.5, 3.0, and 3.3 V. You must power up the V_{CC} of the download cable with a 2.5-V supply from V_{CCA}. For device using V_{CCIO} of 1.2, 1.5, and 1.8 V, refer to Figure 8–24. You can power up the V_{CC} of the download cable with the supply from V_{CCIO}.

Notes to Figure 8-23:

- (1) Connect these pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use JTAG configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
- (3) Pin 6 of the header is a V₁₀ reference voltage for the MasterBlaster output driver. V₁₀ must match the device's V_{CCA}. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*. When using the USB-Blaster, ByteBlaster II, ByteBlasterMV, and EthernetBlaster cables, this pin is a no connect.
- (4) The nCE pin must be connected to GND or driven low for successful JTAG configuration.
- (5) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (6) Power up the V_{CC} of the EthernetBlaster, ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V supply from V_{CCA} . Third-party programmers must switch to 2.5 V. Pin 4 of the header is a V_{CC} power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the *MasterBlaster Serial/USB Communications Cable User Guide*.
- (7) Resistor value can vary from 1 k Ω to 10 k Ω ..

Bonded Channel Configuration

In bonded channel configuration, the low-speed clock for the bonded channels share a common bonded clock path that reduces clock skew between the bonded channels. The phase compensation FIFOs in bonded channels share a set of pointers and control logic that results in equal FIFO latency between the bonded channels. These features collectively result in lower channel-to-channel skew when implementing multi-channel serial interface in bonded channel configuration.

In a transceiver block, the high-speed clock for each bonded channels is distributed independently from one of the two multipurpose PLLs directly adjacent to the block. The low-speed clock for bonded channels is distributed from a common bonded clock path that selects from one of the two multipurpose PLLs directly adjacent to the block. Transceiver channels for devices in F484 and larger packages support additional clocking flexibility for ×2 bonded channels. In these packages, the ×2 bonded channels support high-speed and low-speed bonded clock distribution from PLLs beyond the two multipurpose PLLs directly adjacent to the block. Table 1–10 lists the high- and low-speed clock sources for the bonded channels.

Dookogo	Transceiver	Pondod Chonnolo	High- and Low-Speed Clocks Source				
гаскауе	Block	ansceiver BlockBonded ChannelsGXBL0×2 in channels 0, 1 ×4 in all channelsGXBL0×2 in channels 0, 1 ×4 in all channelsGXBL0×2 in channels 0, 1 ×4 in all channelsKBL1 (1)×2 in channels 0, 1 ×4 in all channels	Option 1	Option 2			
F324 and smaller	GXBL0	×2 in channels 0, 1 ×4 in all channels	MPLL_1	MPLL_2			
	GXBL0	×2 in channels 0, 1	MPLL_5/ GPLL_1	MPLL_6			
F/8/ and larger	Transceiver Block Bonded Channels Hig GXBL0 *2 in channels 0, 1 ×4 in all channels *2 GXBL0 *2 in channels 0, 1 ×4 in all channels *2 GXBL0 *2 in channels 0, 1 *2 GXBL0 *2 in channels 0, 1 *4 GXBL1 (1) *2 in channels 0, 1 *2 *4 in all channels *4 *4 GXBL1 (1) *4 in all channels *4	MPLL_5	MPLL_6				
F484 and larger	GXBL1 (1)	×2 in channels 0, 1	MPLL_7/ MPLL_6	MPLL_8			
		×4 in all channels	MPLL_7	MPLL_8			

Table 1–10. High- and Low-Speed Clock Sources for Bonded Channels in Bonded Channel Configuration

Note to Table 1-10:

(1) GXBL1 is not available for transceivers in F484 package.

When implementing ×2 bonded channel configuration in a transceiver block, remaining channels 2 and 3 are available to implement other non-bonded channel configuration.

Clock Name	Clock Description	Interface Direction					
cal_blk_clk ⁽²⁾	Transceiver calibration block clock	FPGA fabric to transceiver					

Table 1–11. FPGA Fabric-Transceiver Interface Clocks (Part 2 of 2)

Notes to Table 1-11:

(1) Offset cancellation process that is executed after power cycle requires reconfig_clk clock. The reconfig_clk must be driven with a free-running clock and not derived from the transceiver blocks.

(2) For the supported clock frequency range, refer to the *Cyclone IV Device Data Sheet*.

In the transmitter datapath, TX phase compensation FIFO forms the FPGA fabric-transmitter interface. Data and control signals for the transmitter are clocked with the FIFO write clock. The FIFO write clock supports automatic clock selection by the Quartus II software (depending on channel configuration), or user-specified clock from tx_coreclk port. Table 1–12 details the automatic TX phase compensation FIFO write clock selection by the Quartus II software.

The Quartus II software assumes automatic clock selection for TX phase compensation FIFO write clock if you do not enable the tx_coreclk port.

Table 1–12. Automatic TX Phase Compensation FIFO Write Clock Selection

Channel Configuration	Quartus II Selection
Non-bonded	tx_clkout clock feeds the FIFO write clock. tx_clkout is forwarded through the transmitter channel from low-speed clock, which also feeds the FIFO read clock.
Bonded	coreclkout clock feeds the FIFO write clock for the bonded channels. coreclkout clock is the common bonded low-speed clock, which also feeds the FIFO read clock in the bonded channels.

When using user-specified clock option, ensure that the clock feeding tx_coreclk port has 0 ppm difference with the TX phase compensation FIFO read clock.

In the receiver datapath, RX phase compensation FIFO forms the receiver-FPGA fabric interface. Data and status signals from the receiver are clocked with the FIFO read clock. The FIFO read clock supports automatic clock selection by the Quartus II software (depending on channel configuration), or user-specified clock from rx_coreclk port. Table 1–13 details the automatic RX phase compensation FIFO read clock selection by the Quartus II software.

The Quartus II software assumes automatic clock selection for RX phase compensation FIFO read clock if you do not enable the rx_coreclk port.

Table 1–13. Automatic RX Phas	e Compensation FIFO I	Read Clock Selection	(Part 1 of 2)
-------------------------------	-----------------------	----------------------	---------------

Chann	el Configuration	Quartus II Selection
Non bonded	With rate match FIFO ⁽¹⁾	tx_clkout clock feeds the FIFO read clock. tx_clkout is forwarded through the receiver channel from low-speed clock, which also feeds the FIFO write clock and transmitter PCS.
Non-bonded	Without rate match FIFO	$\tt rx_clkout$ clock feeds the FIFO read clock. $\tt rx_clkout$ is forwarded through the receiver channel from low-speed recovered clock, which also feeds the FIFO write clock.

- transmitter in electrical idle
- receiver signal detect
- receiver spread spectrum clocking

Low-Latency PCS Operation

When configured in low-latency PCS operation, the following blocks in the transceiver PCS are bypassed, resulting in a lower latency PCS datapath:

- 8B/10B encoder and decoder
- word aligner
- rate match FIFO
- byte ordering

Figure 1–47 shows the transceiver channel datapath in Basic mode with low-latency PCS operation.

Figure 1–47. Transceiver Channel Datapath in Basic Mode with Low-Latency PCS Operation

Transmitter in Electrical Idle

The transmitter buffer supports electrical idle state, where when enabled, the differential output buffer driver is tri-stated. During electrical idle, the output buffer assumes the common mode output voltage levels. For details about the electrical idle features, refer to "PCI Express (PIPE) Mode" on page 1–52.

F

² The transmitter in electrical idle feature is required for compliance to the version 2.00 of PHY Interface for the PCI Express (PIPE) Architecture specification for PCIe protocol implementation.

Signal Detect at Receiver

Signal detect at receiver is only supported when 8B/10B encoder/decoder block is enabled.

Figure 1–60 shows the transceiver channel datapath and clocking when configured in Serial RapidIO mode.

Notes to Figure 1–60:

- (1) Optional rate match FIFO.
- (2) High-speed recovered clock.
- (3) Low-speed recovered clock.

Clock Rate Compensation

In XAUI mode, the rate match FIFO compensates up to ± 100 ppm (200 ppm total) difference between the upstream transmitter and the local receiver reference clock. The XAUI protocol requires the transmitter to send /R/ (/K28.0/) code groups simultaneously on all four lanes (denoted as ||R|| column) during inter-packet gaps, adhering to rules listed in the IEEE P802.3ae specification.

The rate match operation begins after rx_syncstatus and rx_channelaligned are asserted. The rx_syncstatus signal is from the word aligner, indicating that synchronization is acquired on all four channels, while rx_channelaligned signal is from the deskew FIFO, indicating channel alignment.

The rate match FIFO looks for the ||R|| column (simultaneous /R/ code groups on all four channels) and deletes or inserts ||R|| columns to prevent the rate match FIFO from overflowing or under running. The rate match FIFO can insert or delete as many ||R|| columns as necessary to perform the rate match operation.

The rx_rmfifodatadeleted and rx_rmfifodatainserted flags that indicate rate match FIFO deletion and insertion events, respectively, are forwarded to the FPGA fabric. If an ||R|| column is deleted, the rx_rmfifodeleted flag from each of the four channels goes high for one clock cycle per deleted ||R|| column. If an ||R|| column is inserted, the rx_rmfifoinserted flag from each of the four channels goes high for one clock cycle per deleted ||R|| column. If an ||R|| column is inserted, the rx_rmfifoinserted flag from each of the four channels goes high for one clock cycle per inserted ||R|| column.

The rate match FIFO does not insert or delete code groups automatically to overcome FIFO empty or full conditions. In this case, the rate match FIFO asserts the rx_rmfifofull and rx_rmfifoempty flags for at least three recovered clock cycles to indicate rate match FIFO full and empty conditions, respectively. You must then assert the rx_digitalreset signal to reset the receiver PCS blocks.

Deterministic Latency Mode

Deterministic Latency mode provides the transceiver configuration that allows no latency uncertainty in the datapath and features to strictly control latency variation. This mode supports non-bonded (×1) and bonded (×4) channel configurations, and is typically used to support CPRI and OBSAI protocols that require accurate delay measurements along the datapath. The Cyclone IV GX transceivers configured in Deterministic Latency mode provides the following features:

- registered mode phase compensation FIFO
- receive bit-slip indication
- transmit bit-slip control
- PLL PFD feedback

- 4. Wait for at least t_{LTR_LTD_Manual} (the time between markers 6 and 7), then deassert the rx_locktorefclk signal. At the same time, assert the rx_locktodata signal (marker 7). At this point, the receiver CDR enters lock-to-data mode and the receiver CDR starts locking to the received data.
- 5. Deassert rx_digitalreset at least t_{LTD_Manual} (the time between markers 7 and 8) after asserting the rx_locktodata signal. At this point, the transmitter and receiver are ready for data traffic.

Reset Sequence in Loss of Link Conditions

Loss of link can occur due to loss of local reference clock source or loss of the link due to an unplugged cable. Other adverse conditions like loss of power could also cause the loss of signal from the other device or link partner.

Loss of Local REFCLK or Other Reference Clock Condition

Should local reference clock input become disabled or unstable, take the following steps:

- 1. Monitor pll_locked signal. Pll_locked is de-asserted if local reference clock source becomes unavailable.
- 2. Pll_locked assertion indicates a stable reference clock because TX PLL locks to the incoming clock. You can follow appropriate reset sequence provided in the device handbook, starting from pll_locked assertion.

Loss of Link Due To Unplugged Cable or Far End Shut-off Condition

Use one or more of the following methods to identify whether link partner is alive:

- Signal detect is available in PCIe and Basic modes. You can monitor rx_signaldetect signal as loss of link indicator. rx_signaldetect is asserted when the link partner comes back up.
- You can implement a ppm detector in device core for modes that do not have signal detect to monitor the link. Ppm detector helps in identifying whether the link is alive.
- Data corruption or RX phase comp FIFO overflow or underflow condition in user logic may indicate a loss of link condition.

Apply the following reset sequences when loss of link is detected:

- For Automatic CDR lock mode:
 - a. Monitor rx_freqlocked signal. Loss of link causes rx_freqlocked to be deasserted when CDR moves back to lock-to-data (LTD) mode.
 - b. Assert rx_digitalreset.
 - c. rx_freqlocked toggles over time when CDR switches between lock-to-reference (LTR) and LTD modes.
 - d. If rx_freqlocked goes low at any point, re-assert rx_digitalreset.
 - e. If data corruption or RX phase comp FIFO overflow or underflow condition is observed in user logic, assert rx_digitalreset for 2 parallel clock cycles, then de-assert the signal.

Port Name	Input/ Output		Description						
		This is an optional pre-emphasis write control for the transmit buffer. Depending on what value you set at this input, the controller dynamically writes the value to the pre-emphasis control register of the transmit buffer.							
		The width of this signal is fixed to 5 bits if you enable either the Use 'logical_channel_address' port for Analog controls reconfiguration option or the Use same control signal for all the channels option in the Analog controls screen. Otherwise, the width of this signal is 5 bits per channel.							
		tx_preemp[40]	Corresponding ALTGX instance settings	Corresponding pre- emphasis setting (mA)					
		00000	0	Disabled					
		00001	1	0.5					
tx preemp[40] (1)	Input	00101	5	1.0					
		01001	9	1.5					
		01101	13	2.0					
		10000	16	2.375					
		10001	17	2.5					
		10010	18	2.625					
		10011	19	2.75					
		10100	20	2.875					
		10101	21	3.0					
		All other values => N/A							
		This is an optional wr the PMA.	ite control to write an equalization cont	rol value for the receive side of					
		The width of this sigr 'logical_channel_ad same control signal the width of this sign	the Use iguration option or the Use og controls screen. Otherwise,						
rx_eqctrl[30] ⁽¹⁾	Input	<pre>rx_eqctrl[30]</pre>	Corresponding ALTGX instance setting	ngs					
		0001	Low						
		0101 Medium Low							
		0100	Medium High						
		0111	High						
		All other values $=> N_{i}$	Ά						

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 5 of 7)

Table 3–4 describes the tx_datainfull[21..0] FPGA fabric-transceiver channel interface signals.

FPGA Fabric-Transceiver Channel Interface Description	Transmit Signal Description (Based on Cyclone IV GX Supported FPGA Fabric-Transceiver Channel Interface Widths)						
	<pre>tx_datainfull[7:0]: 8-bit data (tx_datain)</pre>						
	The following signals are used only in 8B/10B modes:						
	<pre>tx_datainfull[8]: Control bit (tx_ctrlenable)</pre>						
	tx_datainfull[9]						
8-bit FPGA fabric-Transceiver Channel Interface	Transmitter force disparity Compliance (PCI Express [PIPE]) (tx_forcedisp) in all modes except PCI Express (PIPE) functional mode. For PCI Express (PIPE) functional mode, (tx_forcedispcompliance) is used.						
	For non-PIPE:						
	<pre>tx_datainfull[10]: Forced disparity value (tx_dispval)</pre>						
	■ For PCIe:						
	<pre>tx_datainfull[10]: Forced electrical idle (tx_forceelecidle)</pre>						
10-bit FPGA fabric-Transceiver Channel Interface	tx_datainfull[9:0]:10-bit data(tx_datain)						
	Two 8-bit Data (tx_datain)						
	<pre>tx_datainfull[7:0] - tx_datain (LSByte) and tx_datainfull[18:11] - tx_datain (MSByte)</pre>						
	The following signals are used only in 8B/10B modes:						
	<pre>tx_datainfull[8] - tx_ctrlenable (LSB) and tx_datainfull[19] - tx_ctrlenable (MSB)</pre>						
	Force Disparity Enable						
	■ For non-PIPE:						
16-bit FPGA fabric-Transceiver Channel Interface with PCS-PMA set	<pre>tx_datainfull[9] - tx_forcedisp (LSB) and tx_datainfull[20] - tx_forcedisp (MSB)</pre>						
to 8/10 bits	■ For PCIe:						
	<code>tx_datainfull[9]</code> - <code>tx_forcedispcompliance</code> and <code>tx_datainfull[20]</code> - 0						
	Force Disparity Value						
	■ For non-PIPE:						
	tx_datainfull[10] - tx_dispval (LSB) and tx_datainfull[21] - tx_dispval (MSB)						
	■ For PCIe:						
	<pre>tx_datainfull[10] - tx_forceelecidle and tx_datainfull[21] - tx_forceelecidle</pre>						
20-bit FPGA fabric-Transceiver	Two 10-bit Data (tx_datain)						
Channel Interface with PCS-PMA set to 10 bits	<pre>tx_datainfull[9:0] - tx_datain (LSByte) and tx_datainfull[20:11] - tx_datain (MSByte)</pre>						

Table 3–4. tx_datainfull[21..0] FPGA Fabric-Transceiver Channel Interface Signal Descriptions ⁽¹⁾

Note to Table 3-4:

(1) For all transceiver-related ports, refer to the "Transceiver Port Lists" section in the Cyclone IV GX Transceiver Architecture chapter.

Parameter			V _{CCI0} (V)											
	Condition	1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	—	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2)⁽¹⁾

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 1–8. Series OCT Without Calibration Specifications for Cyclone IV Devices

		Resistance		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
	2.5	±30	±40	%
Series OCT without calibration	1.8	±40	±50	%
Suistation	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

Table 1–9.	Series OCT v	with Calibration	at Device Power-Up	o Specifications fo	r Cyclone IV
Devices ⁽¹⁾					

		Calibration Accuracy					
Description	V _{ccio} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit			
	3.0	±10	±10	%			
Series OCT with	2.5	±10	±10	%			
calibration at device	1.8	±10	±10	%			
power-up	1.5	±10	±10	%			
	1.2	±10	±10	%			

Note to Table 1-9:

(1) This specification is not applicable to EP4CGX15, EP4CGX22, and EP4CGX30 devices.

Example 1–1 shows how to calculate the change of 50- Ω I/O impedance from 25°C at 3.0 V to 85°C at 3.15 V.

Example 1–1. Impedance Change

$$\begin{split} \Delta R_V &= (3.15-3) \times 1000 \times -0.026 = -3.83 \\ \Delta R_T &= (85-25) \times 0.262 = 15.72 \\ \text{Because } \Delta R_V \text{ is negative,} \\ MF_V &= 1 \ / \ (3.83/100 + 1) = 0.963 \\ \text{Because } \Delta R_T \text{ is positive,} \\ MF_T &= 15.72/100 + 1 = 1.157 \\ MF &= 0.963 \times 1.157 = 1.114 \\ R_{\text{final}} &= 50 \times 1.114 = 55.71 \ \Omega \end{split}$$

Pin Capacitance

Table 1–11 lists the pin capacitance for Cyclone IV devices.

Table 1–11.	Pin Cap	acitance for	Cvclone I	V Devices	(1)
	i ili oup		0,0101101	I DUTIOUS	

Symbol	Parameter	Typical – Quad Flat Pack (QFP)	Typical – Quad Flat No Leads (QFN)	Typical – Ball-Grid Array (BGA)	Unit
CIOTB	Input capacitance on top and bottom I/O pins	7	7	6	pF
C _{IOLR}	Input capacitance on right I/O pins	7	7	5	pF
C _{LVDSLR}	Input capacitance on right I/O pins with dedicated LVDS output	8	8	7	pF
C _{VREFLR}	Input capacitance on right dual-purpose ${\tt VREF}$ pin when used as $V_{\sf REF}$ or user I/O pin	21	21	21	pF
C _{VREFTB}	Input capacitance on top and bottom dual-purpose \mathtt{VREF} pin when used as $V_{\textrm{REF}}$ or user I/O pin	23 <i>(3)</i>	23	23	pF
C _{CLKTB}	Input capacitance on top and bottom dedicated clock input pins	7	7	6	pF
C _{CLKLR}	Input capacitance on right dedicated clock input pins	6	6	5	pF

Notes to Table 1-11:

(1) The pin capacitance applies to FBGA, UBGA, and MBGA packages.

(2) When you use the vref pin as a regular input or output, you can expect a reduced performance of toggle rate and t_{CO} because of higher pin capacitance.

(3) C_{VREFTB} for the EP4CE22 device is 30 pF.

Symbol/	a	C6		C7, I7			C8			11	
Description	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Signal detect/loss threshold	PIPE mode	65	_	175	65	_	175	65	_	175	mV
t _{LTR} (10)	—		_	75		_	75	_	—	75	μs
t _{LTR-LTD_Manual} (11)	—	15	_	_	15	—		15	_	—	μs
t _{LTD} (12)	—	0	100	4000	0	100	4000	0	100	4000	ns
t _{LTD_Manual} <i>(13)</i>	—		_	4000			4000	_		4000	ns
t _{LTD_Auto} (14)	—	_	_	4000		—	4000		_	4000	ns
Receiver buffer and CDR offset cancellation time (per channel)		_	_	17000	_	_	17000	_	_	17000	recon fig_c lk cycles
	DC Gain Setting = 0		0	_	_	0	_	_	0	_	dB
Programmable DC gain	DC Gain Setting = 1	_	3	_	_	3	_	_	3	_	dB
	DC Gain Setting = 2	_	6	_	_	6	_	_	6	_	dB
Transmitter											
Supported I/O Standards	1.5 V PCML										
Data rate (F324 and smaller package)	_	600	_	2500	600	_	2500	600	_	2500	Mbps
Data rate (F484 and larger package)	_	600	_	3125	600	_	3125	600	_	2500	Mbps
V _{OCM}	0.65 V setting	_	650	_		650		_	650	_	mV
Differential on-chip	100– Ω setting	_	100	_		100		_	100	—	Ω
termination resistors	150– Ω setting	_	150	_	_	150		_	150	—	Ω
Differential and common mode return loss	PIPE, CPRI LV, Serial Rapid I/O SR, SDI, XAUI, SATA					Compliant	t				_
Rise time	—	50	_	200	50	—	200	50	—	200	ps
Fall time		50	_	200	50	—	200	50	—	200	ps
Intra-differential pair skew	_	_	_	15	_	_	15	_	_	15	ps
Intra-transceiver block skew	_	_	_	120	_	_	120	_	_	120	ps

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

er	Term	Definitions						
	t _C	High-speed receiver and transmitter input and output clock period.						
	Channel-to- channel-skew (TCCS)	High-speed I/O block: The timing difference between the fastest and slowest output edges, including t_{CO} variation and clock skew. The clock is included in the TCCS measurement.						
Ī	t _{cin}	Delay from the clock pad to the I/O input register.						
Ī	t _{co}	Delay from the clock pad to the I/O output.						
	t _{cout}	Delay from the clock pad to the I/O output register.						
	t _{DUTY}	High-speed I/O block: Duty cycle on high-speed transmitter output clock.						
	t _{FALL}	Signal high-to-low transition time (80–20%).						
	t _H	Input register hold time.						
	Timing Unit Interval (TUI)	High-speed I/O block: The timing budget allowed for skew, propagation delays, and data sampling window. (TUI = $1/(\text{Receiver Input Clock Frequency Multiplication Factor}) = t_C/w)$.						
	t _{INJITTER}	Period jitter on the PLL clock input.						
	t _{outjitter_dedclk}	Period jitter on the dedicated clock output driven by a PLL.						
	t _{outjitter_i0}	Period jitter on the general purpose I/O driven by a PLL.						
	t _{pllcin}	Delay from the PLL inclk pad to the I/O input register.						
	t _{plicout}	Delay from the PLL inclk pad to the I/O output register.						
		Transmitter output waveforms for the LVDS, mini-LVDS, PPDS and RSDS Differential I/O Standards: Single-Ended Waveform						
		Positive Channel (p) = V _{OH}						
	-	V _{ob} V _{os} Negative Channel (n) = V _{oL}						
	I ransmitter	Ground						
	Waveform							
		Differential Waveform (Mathematical Function of Positive & Negative Channel)						