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Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices 2–3
LE Operating Modes
In addition to the three general routing outputs, LEs in an LAB have register chain 
outputs, which allows registers in the same LAB to cascade together. The register 
chain output allows the LUTs to be used for combinational functions and the registers 
to be used for an unrelated shift register implementation. These resources speed up 
connections between LABs while saving local interconnect resources.

LE Operating Modes
Cyclone IV LEs operate in the following modes:

■ Normal mode

■ Arithmetic mode

The Quartus® II software automatically chooses the appropriate mode for common 
functions, such as counters, adders, subtractors, and arithmetic functions, in 
conjunction with parameterized functions such as the library of parameterized 
modules (LPM) functions. You can also create special-purpose functions that specify 
which LE operating mode to use for optimal performance, if required.

Normal Mode
Normal mode is suitable for general logic applications and combinational functions. 
In normal mode, four data inputs from the LAB local interconnect are inputs to a 
four-input LUT (Figure 2–2). The Quartus II Compiler automatically selects the 
carry-in (cin) or the data3 signal as one of the inputs to the LUT. LEs in normal mode 
support packed registers and register feedback.

Figure 2–2 shows LEs in normal mode.

Figure 2–2. Cyclone IV Device LEs in Normal Mode
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2–4 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
LE Operating Modes
Arithmetic Mode
Arithmetic mode is ideal for implementing adders, counters, accumulators, and 
comparators. An LE in arithmetic mode implements a 2-bit full adder and basic carry 
chain (Figure 2–3). LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output. Register feedback and register packing are supported 
when LEs are used in arithmetic mode.

Figure 2–3 shows LEs in arithmetic mode.

The Quartus II Compiler automatically creates carry chain logic during design 
processing. You can also manually create the carry chain logic during design entry. 
Parameterized functions, such as LPM functions, automatically take advantage of 
carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 LEs by automatically 
linking LABs in the same column. For enhanced fitting, a long carry chain runs 
vertically, which allows fast horizontal connections to M9K memory blocks or 
embedded multipliers through direct link interconnects. For example, if a design has a 
long carry chain in an LAB column next to a column of M9K memory blocks, any LE 
output can feed an adjacent M9K memory block through the direct link interconnect. 
If the carry chains run horizontally, any LAB which is not next to the column of M9K 
memory blocks uses other row or column interconnects to drive a M9K memory 
block. A carry chain continues as far as a full column.

Figure 2–3. Cyclone IV Device LEs in Arithmetic Mode
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Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices 2–7
Document Revision History
Each LAB can use two clocks and two clock enable signals. The clock and clock enable 
signals of each LAB are linked. For example, any LE in a particular LAB using the 
labclk1 signal also uses the labclkena1. If the LAB uses both the rising and falling 
edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock 
enable signal turns off the LAB-wide clock.

The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide 
control signals. The MultiTrack interconnect inherent low skew allows clock and 
control signal distribution in addition to data distribution.

Figure 2–6 shows the LAB control signal generation circuit.

LAB-wide signals control the logic for the clear signal of the register. The LE directly 
supports an asynchronous clear function. Each LAB supports up to two asynchronous 
clear signals (labclr1 and labclr2).

A LAB-wide asynchronous load signal to control the logic for the preset signal of the 
register is not available. The register preset is achieved with a NOT gate push-back 
technique. Cyclone IV devices only support either a preset or asynchronous clear 
signal.

In addition to the clear port, Cyclone IV devices provide a chip-wide reset pin 
(DEV_CLRn) that resets all registers in the device. An option set before compilation in 
the Quartus II software controls this pin. This chip-wide reset overrides all other 
control signals.

Document Revision History
Table 2–1 shows the revision history for this chapter.

Figure 2–6. Cyclone IV Device LAB-Wide Control Signals
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Table 2–1. Document Revision History

Date Version Changes

November 2009 1.0 Initial release.
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3–10 Chapter 3: Memory Blocks in Cyclone IV Devices
Memory Modes
In simple dual-port mode, M9K memory blocks support separate wren and rden 
signals. You can save power by keeping the rden signal low (inactive) when not 
reading. Read-during-write operations to the same address can either output “Don’t 
Care” data at that location or output “Old Data”. To choose the desired behavior, set 
the Read-During-Write option to either Don’t Care or Old Data in the RAM 
MegaWizard Plug-In Manager in the Quartus II software. For more information about 
this behavior, refer to “Read-During-Write Operations” on page 3–15.

Figure 3–9 shows the timing waveform for read and write operations in simple 
dual-port mode with unregistered outputs. Registering the outputs of the RAM 
simply delays the q output by one clock cycle.

512 × 16 v v v v v v — — —

256 × 32 v v v v v v — — —

1024 × 9 — — — — — — v v v
512 × 18 — — — — — — v v v
256 × 36 — — — — — — v v v

Table 3–3.  Cyclone IV Devices M9K Block Mixed-Width Configurations (Simple Dual-Port Mode) (Part 2 of 2)

Read Port
Write Port

8192 × 1 4096 × 2 2048 × 4 1024 × 8 512 × 16 256 × 32 1024 × 9 512 × 18 256 × 36

Figure 3–9. Cyclone IV Devices Simple Dual-Port Timing Waveform
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3–14 Chapter 3: Memory Blocks in Cyclone IV Devices
Clocking Modes
Clocking Modes
Cyclone IV devices M9K memory blocks support the following clocking modes:

■ Independent

■ Input or output

■ Read or write

■ Single-clock

When using read or write clock mode, if you perform a simultaneous read or write to 
the same address location, the output read data is unknown. If you require the output 
data to be a known value, use either single-clock mode or I/O clock mode and choose 
the appropriate read-during-write behavior in the MegaWizard Plug-In Manager.

1 Violating the setup or hold time on the memory block input registers might corrupt 
the memory contents. This applies to both read and write operations.

1 Asynchronous clears are available on read address registers, output registers, and 
output latches only.

Table 3–5 lists the clocking mode versus memory mode support matrix.

Independent Clock Mode
Cyclone IV devices M9K memory blocks can implement independent clock mode for 
true dual-port memories. In this mode, a separate clock is available for each port 
(port A and port B). clock A controls all registers on the port A side, while clock B 
controls all registers on the port B side. Each port also supports independent clock 
enables for port A and B registers.

Input or Output Clock Mode
Cyclone IV devices M9K memory blocks can implement input or output clock mode 
for FIFO, single-port, true, and simple dual-port memories. In this mode, an input 
clock controls all input registers to the memory block including data, address, 
byteena, wren, and rden registers. An output clock controls the data-output registers. 
Each memory block port also supports independent clock enables for input and 
output registers. 

Table 3–5. Cyclone IV Devices Memory Clock Modes 

Clocking Mode True Dual-Port 
Mode

Simple 
Dual-Port 

Mode

Single-Port 
Mode ROM Mode FIFO Mode

Independent v — — v —

Input or output v v v v —

Read or write — v — — v
Single-clock v v v v v
Cyclone IV Device Handbook, November 2011 Altera Corporation
Volume 1
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–35
PLL Reconfiguration
Figure 5–22 shows how to adjust PLL counter settings dynamically by shifting their 
new settings into a serial shift register chain or scan chain. Serial data shifts to the scan 
chain via the scandataport, and shift registers are clocked by scanclk. The maximum 
scanclk frequency is 100 MHz. After shifting the last bit of data, asserting the 
configupdate signal for at least one scanclk clock cycle synchronously updates the 
PLL configuration bits with the data in the scan registers.

1 The counter settings are updated synchronously to the clock frequency of the 
individual counters. Therefore, not all counters update simultaneously.

To reconfigure the PLL counters, perform the following steps:

1. The scanclkena signal is asserted at least one scanclk cycle prior to shifting in the 
first bit of scandata (D0).

2. Serial data (scandata) is shifted into the scan chain on the second rising edge of 
scanclk.

3. After all 144 bits have been scanned into the scan chain, the scanclkena signal is 
de-asserted to prevent inadvertent shifting of bits in the scan chain.

4. The configupdate signal is asserted for one scanclk cycle to update the PLL 
counters with the contents of the scan chain.

5. The scandone signal goes high indicating that the PLL is being reconfigured. A 
falling edge indicates that the PLL counters have been updated with new settings.

6. Reset the PLL using the areset signal if you make any changes to the M, N, 
post-scale output C counters, or the ICP , R, C settings.

7. You can repeat steps 1 through 5 to reconfigure the PLL any number of times.

Figure 5–22. PLL Reconfiguration Scan Chain
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Chapter 6: I/O Features in Cyclone IV Devices 6–17
I/O Banks
Figure 6–9 shows the overview of Cyclone IV E I/O banks.

Figure 6–9. Cyclone IV E I/O Banks (1), (2)

Notes to Figure 6–9:

(1) This is a top view of the silicon die. This is only a graphical representation. For exact pin locations, refer to the pin list and the Quartus II software.
(2) True differential (PPDS, LVDS, mini-LVDS, and RSDS I/O standards) outputs are supported in row I/O banks 1, 2, 5, and 6 only. External resistors 

are needed for the differential outputs in column I/O banks. 
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
(4) The HSTL-12 Class II is supported in column I/O banks 3, 4, 7, and 8 only.
(5) The differential SSTL-18 and SSTL-2, differential HSTL-18, and HSTL-15 I/O standards are supported only on clock input pins and phase-locked 

loops (PLLs) output clock pins. Differential SSTL-18, differential HSTL-18, and HSTL-15 I/O standards do not support Class II output.
(6) The differential HSTL-12 I/O standard is only supported on clock input pins and PLL output clock pins. Differential HSTL-12 Class II is supported 
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–73
Remote System Upgrade
When Cyclone IV devices successfully load the application configuration, they enter 
user mode. In user mode, the soft logic (the Nios II processor or state machine and the 
remote communication interface) assists the Cyclone IV device in determining when a 
remote system update is arriving. When a remote system update arrives, the soft logic 
receives the incoming data, writes it to the configuration memory device and triggers 
the device to load the factory configuration. The factory configuration reads the 
remote system upgrade status register, determines the valid application configuration 
to load, writes the remote system upgrade control register accordingly, and starts 
system reconfiguration.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



9–4 Chapter 9: SEU Mitigation in Cyclone IV Devices
Error Detection Block
1 WYSIWYG is an optimization technique that performs optimization on a VQM 
(Verilog Quartus Mapping) netlist in the Quartus II software.

Error Detection Block
Table 9–3 lists the types of CRC detection to check the configuration bits.

This section focuses on the first type—the 32-bit CRC when the device is in user 
mode.

Error Detection Registers
There are two sets of 32-bit registers in the error detection circuitry that store the 
computed CRC signature and pre-calculated CRC value. A non-zero value on the 
signature register causes the CRC_ERROR pin to set high. 

Figure 9–1 shows the block diagram of the error detection block and the two related 
32-bit registers: the signature register and the storage register.

Table 9–3. Types of CRC Detection to Check the Configuration Bits

First Type of CRC Detection Second Type of CRC Detection

■ CRAM error checking ability (32-bit CRC) 
during user mode, for use by the 
CRC_ERROR pin.

■ There is only one 32-bit CRC value. This 
value covers all the CRAM data.

■ 16-bit CRC embedded in every configuration data frame.

■ During configuration, after a frame of data is loaded into the device, the 
pre-computed CRC is shifted into the CRC circuitry.

■ Simultaneously, the CRC value for the data frame shifted-in is calculated. 
If the pre-computed CRC and calculated CRC values do not match, 
nSTATUS is set low.

■ Every data frame has a 16-bit CRC. Therefore, there are many 16-bit CRC 
values for the whole configuration bit stream.

■ Every device has a different length of configuration data frame.

Figure 9–1. Error Detection Block Diagram

Control SignalsError Detection
State Machine

32-bit Storage
Register

Compute & Compare
CRC

32-bit Signature
Register

32 32

32
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



CYIV-52001-3.7

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos 
are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as 
trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its 
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and 
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service 
described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying 
on any published information and before placing orders for products or services.

Cyclone IV Device Handbook,
Volume 2
February 2015

Feedback Subscribe

ISO 
9001:2008 
Registered

1. Cyclone IV Transceivers Architecture

Cyclone® IV GX devices include up to eight full-duplex transceivers at serial data 
rates between 600 Mbps and 3.125 Gbps in a low-cost FPGA. Table 1–1 lists the 
supported Cyclone IV GX transceiver channel serial protocols. 

You can implement these protocols through the ALTGX MegaWizard™ Plug-In 
Manager, which also offers the highly flexible Basic functional mode to implement 
proprietary serial protocols at the following serial data rates: 

■ 600 Mbps to 2.5 Gbps for devices in F324 and smaller packages

■ 600 Mbps to 3.125 Gbps for devices in F484 and larger packages 

For descriptions of the ports available when instantiating a transceiver using the 
ALTGX megafunction, refer to “Transceiver Top-Level Port Lists” on page 1–85. 

f For more information about Cyclone IV transceivers that run at 2.97 Gbps data rate, 
refer to the Cyclone IV Device Family Pin Connection Guidelines.

Table 1–1. Serial Protocols Supported by the Cyclone IV GX Transceiver Channels 

Protocol Data Rate (Gbps) F324 and smaller 
packages

F484 and larger 
packages

PCI Express® (PCIe®) (1) 2.5 v v
Gbps Ethernet (GbE) 1.25 v v
Common Public Radio Interface (CPRI) 0.6144, 1.2288, 2.4576, and 3.072 v (2) v
OBSAI 0.768, 1.536, and 3.072 v (2) v
XAUI 3.125 — v

Serial digital interface (SDI) 
HD-SDI at 1.485 and 1.4835 v v

3G-SDI at 2.97 and 2.967 —

Serial RapidIO® (SRIO) 1.25, 2.5, and 3.125 — v
Serial Advanced Technology Attachment 
(SATA) 1.5 and 3.0 — v
V-by-one 3.125 — v
Display Port 1.62 and 2.7 — v
Notes to Table 1–1:

(1) Provides the physical interface for PCI Express (PIPE)-compliant interface that supports Gen1 ×1, ×2, and ×4 initial lane width configurations. 
When implementing ×1 or ×2 interface, remaining channels in the transceiver block are available to implement other protocols.

(2) Supports data rates up to 2.5 Gbps only.
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Chapter 1: Cyclone IV Transceivers Architecture 1–47
Transceiver Functional Modes

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

The hard IP block supports 1, 2, or 4 initial lane configurations with a maximum 
payload of 256 bytes at Gen1 frequency. The application interface is 64 bits with a data 
width of 16 bits per channel running at up to 125 MHz. As a hard macro and a verified 
block, it uses very few FPGA resources, while significantly reducing design risk and 
the time required to achieve timing closure. It is compliant with the PCI Express Base 
Specification 1.1. You do not have to pay a licensing fee to use this module. 
Configuring the hard IP block requires using the PCI Express Compiler.

f For more information about the hard IP block, refer to the PCI Express Compiler User 
Guide.

Figure 1–43 shows the lane placement requirements when implementing PCIe with 
hard IP block.

Transceiver Functional Modes
The Cyclone IV GX transceiver supports the functional modes as listed in Table 1–14 
for protocol implementation.

Figure 1–43. PCIe with Hard IP Block Lane Placement Requirements (1)

Note to Figure 1–43:

(1) Applicable for PCIe ×1, ×2, and ×4 implementations with hard IP blocks only.
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Table 1–14. Transceiver Functional Modes for Protocol Implementation (Part 1 of 2)

Functional Mode Protocol Key Feature Reference

Basic Proprietary, SATA, V-
by-One, Display Port

Low latency PCS, transmitter in electrical idle, signal 
detect at receiver, wider spread asynchronous SSC

“Basic Mode” on 
page 1–48

PCI Express 
(PIPE)

PCIe Gen1 with PIPE 
Interface

PIPE ports, receiver detect, transmitter in electrical 
idle, electrical idle inference, signal detect at receiver, 
fast recovery, protocol-compliant word aligner and 
rate match FIFO, synchronous SSC

“PCI Express (PIPE) 
Mode” on page 1–52

GIGE GbE
Running disparity preservation, protocol-compliant 
word aligner, recovered clock port for applications 
such as Synchronous Ethernet

“GIGE Mode” on 
page 1–59

Serial RapidIO SRIO Protocol-compliant word aligner “Serial RapidIO Mode” 
on page 1–64

XAUI XAUI Deskew FIFO, protocol-compliant word aligner and 
rate match FIFO

“XAUI Mode” on 
page 1–67

http://www.altera.com/literature/ug/ug_pci_express.pdf
http://www.altera.com/literature/ug/ug_pci_express.pdf
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Figure 1–64 shows the transceiver configuration in XAUI mode.

XGMII and PCS Code Conversions
In XAUI mode, the 8B/10B encoder in the transmitter datapath maps various 8-bit 
XGMII codes to 10-bit PCS code groups as listed in Table 1–21.

Figure 1–64. Transceiver Configuration in XAUI Mode

Functional Mode

Channel Bonding

Low-Latency PCS

Word Aligner (Pattern Length)

8B/10B Encoder/Decoder

Deskew FIFO

Rate Match FIFO

Byte SERDES

Byte Ordering

FPGA Fabric-to-Transceiver
Interface Width 

FPGA Fabric-to-Transceiver
Interface Frequency (MHz) 

3.125

Disabled

Automatic Synchronization
State Machine (7-bit, 10-Bit)

16-Bit

XAUI

×4

Disabled

Enabled

Enabled

Enabled

Enabled

Data Rate (Gbps)

156.25

Table 1–21. XGMII Character to PCS Code Groups Mapping (Part 1 of 2)

XGMII TXC (1) XGMII TXD (2), (3) PCS Code Group Description

0 00 through FF Dxx,y Normal data transmission

1 07 K28.0, K28.3, or K28.5 Idle in ||I||

1 07 K28.5 Idle in ||T||

1 9C K28.4 Sequence

1 FB K27.7 Start

1 FD K29.7 Terminate

1 FE K30.7 Error
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Transceiver Reset Sequences

September 2014 Altera Corporation Cyclone IV Device Handbook,
Volume 2

4. Wait for at least tLTR_LTD_Manual (the time between markers 6 and 7), then deassert 
the rx_locktorefclk signal. At the same time, assert the rx_locktodata signal 
(marker 7). At this point, the receiver CDR enters lock-to-data mode and the 
receiver CDR starts locking to the received data.

5. Deassert rx_digitalreset at least tLTD_Manual (the time between markers 7 and 8) 
after asserting the rx_locktodata signal. At this point, the transmitter and receiver 
are ready for data traffic.

Reset Sequence in Loss of Link Conditions
Loss of link can occur due to loss of local reference clock source or loss of the link due 
to an unplugged cable. Other adverse conditions like loss of power could also cause 
the loss of signal from the other device or link partner.

Loss of Local REFCLK or Other Reference Clock Condition

Should local reference clock input become disabled or unstable, take the following 
steps:

1. Monitor pll_locked signal. Pll_locked is de-asserted if local reference clock 
source becomes unavailable. 

2. Pll_locked assertion indicates a stable reference clock because TX PLL locks to the 
incoming clock. You can follow appropriate reset sequence provided in the device 
handbook, starting from pll_locked assertion.

Loss of Link Due To Unplugged Cable or Far End Shut-off Condition

Use one or more of the following methods to identify whether link partner is alive:

■ Signal detect is available in PCIe and Basic modes. You can monitor 
rx_signaldetect signal as loss of link indicator. rx_signaldetect is asserted 
when the link partner comes back up.

■ You can implement a ppm detector in device core for modes that do not have 
signal detect to monitor the link. Ppm detector helps in identifying whether the 
link is alive.

■ Data corruption or RX phase comp FIFO overflow or underflow condition in user 
logic may indicate a loss of link condition.

Apply the following reset sequences when loss of link is detected:

■ For Automatic CDR lock mode:

a. Monitor rx_freqlocked signal. Loss of link causes rx_freqlocked to be de-
asserted when CDR moves back to lock-to-data (LTD) mode.

b. Assert rx_digitalreset.

c. rx_freqlocked toggles over time when CDR switches between lock-to-
reference (LTR) and LTD modes.

d. If rx_freqlocked goes low at any point, re-assert rx_digitalreset.

e. If data corruption or RX phase comp FIFO overflow or underflow condition is 
observed in user logic, assert rx_digitalreset for 2 parallel clock cycles, then 
de-assert the signal.
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■ In PCIe mode simulation, you must assert the tx_forceelecidle signal for at least 
one parallel clock cycle before transmitting normal data for correct simulation 
behavior.

Reference Information
For more information about some useful reference terms used in this chapter, refer to 
the links listed in Table 2–7.

Table 2–7. Reference Information 

Terms Used in this Chapter Useful Reference Points

Automatic Lock Mode page 2–8

Bonded channel configuration page 2–6

busy page 2–3

Dynamic Reconfiguration Reset Sequences page 2–19

gxb_powerdown page 2–3

LTD page 2–6

LTR page 2–6

Manual Lock Mode page 2–9

Non-Bonded channel configuration page 2–10

PCIe page 2–17

pll_locked page 2–3

pll_areset page 2–3

rx_analogreset page 2–2

rx_digitalreset page 2–2

rx_freqlocked page 2–3

tx_digitalreset page 2–2
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Figure 3–1 shows a conceptual view of the dynamic reconfiguration controller 
architecture. For a detailed description of the inputs and outputs of the 
ALTGX_RECONFIG instance, refer to “Error Indication During Dynamic 
Reconfiguration” on page 3–36.

1 Only PMA reconfiguration mode supports manual equalization controls.

1 You can use one ALTGX_RECONFIG instance to control multiple transceiver blocks. 
However, you cannot use multiple ALTGX_RECONFIG instances to control one 
transceiver block.

Figure 3–1. Dynamic Reconfiguration Controller 

Note to Figure 3–1:

(1) The PMA control ports consist of the VOD, pre-emphasis, DC gain, and manual equalization controls.
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Mbps

Mbps

V

V

V

V

mV





—

ppm

ppm

ppm

UI

dB

dB

dB

dB

Unit
Receiver

Supported I/O 
Standards

1.4 V PCML, 
1.5 V PCML, 
2.5 V PCML, 

LVPECL, LVDS

Data rate (F324 and 
smaller package) (15) — 600 — 2500 600 — 2500 600 — 2500

Data rate (F484 and 
larger package) (15) — 600 — 3125 600 — 3125 600 — 2500

Absolute VMAX for a 
receiver pin (3) — — — 1.6 — — 1.6 — — 1.6

Operational VMAX for 
a receiver pin — — — 1.5 — — 1.5 — — 1.5

Absolute VMIN for a 
receiver pin — –0.4 — — –0.4 — — –0.4 — —

Peak-to-peak 
differential input 
voltage VID (diff p-p)

VICM = 0.82 V 
setting, Data Rate 
= 600 Mbps to 
3.125 Gbps

0.1 — 2.7 0.1 — 2.7 0.1 — 2.7

VICM VICM = 0.82 V 
setting — 820 ± 

10% — — 820 ± 
10% — — 820 ± 

10% —

Differential on-chip 
termination resistors

100 setting — 100 — — 100 — — 100 —

150 setting — 150 — — 150 — — 150 —

Differential and 
common mode 
return loss

PIPE, Serial 
Rapid I/O SR, 
SATA, CPRI LV, 
SDI, XAUI

Compliant

Programmable ppm 
detector (4) — ± 62.5, 100, 125, 200,

250, 300

Clock data recovery 
(CDR) ppm 
tolerance (without 
spread-spectrum 
clocking enabled)

— — —
±300 (5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

CDR ppm tolerance 
(with synchronous 
spread-spectrum 
clocking enabled) (8)

— — —
350 to –

5350 
(7), (9)

— —
350 to 
–5350 
(7), (9)

— —
350 to –

5350 
(7), (9)

Run length — — 80 — — 80 — — 80 —

Programmable 
equalization

No Equalization — — 1.5 — — 1.5 — — 1.5

Medium Low — — 4.5 — — 4.5 — — 4.5

Medium High — — 5.5 — — 5.5 — — 5.5

High — — 7 — — 7 — — 7

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 2 of 4)

Symbol/
Description Conditions

C6 C7, I7 C8

Min Typ Max Min Typ Max Min Typ Max
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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Figure 1–2 shows the lock time parameters in manual mode. 

1 LTD = lock-to-data. LTR = lock-to-reference.

Figure 1–3 shows the lock time parameters in automatic mode.

Figure 1–2. Lock Time Parameters for Manual Mode
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Figure 1–3. Lock Time Parameters for Automatic Mode
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