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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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5–18 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLLs in Cyclone IV Devices
PLLs in Cyclone IV Devices
Cyclone IV GX devices offer two variations of PLLs: general purpose PLLs and 
multipurpose PLLs. Cyclone IV E devices only have the general purpose PLLs.

The general purpose PLLs are used for general-purpose applications in the FPGA 
fabric and periphery such as external memory interfaces. The multipurpose PLLs are 
used for clocking the transceiver blocks. When the multipurpose PLLs are not used 
for transceiver clocking, they can be used for general-purpose clocking.

f For more details about the multipurpose PLLs used for transceiver clocking, refer to 
the Cyclone IV Transceivers chapter.

Cyclone IV GX devices contain up to eight general purpose PLLs and multipurpose 
PLLs while Cyclone IV E devices have up to four general purpose PLLs that provide 
robust clock management and synthesis for device clock management, external 
system clock management, and high-speed I/O interfaces.

f For more information about the number of general purpose PLLs and multipurpose 
PLLs in each device density, refer to the Cyclone IV Device Family Overview chapter.

1 The general I/O pins cannot drive the PLL clock input pins.

Table 5–5 lists the features available in Cyclone IV GX PLLs.

Table 5–5. Cyclone IV GX PLL Features (Part 1 of 2)

Features

Availability

General Purpose PLLs Multipurpose PLLs

PLL_1 
(1), (10)

PLL_2 
(1), (10)

PLL_
3 (2)

PLL_
4 (3)

PLL_1
(4)

PLL_2
(4)

PLL_5 
(1), (10)

PLL_6 
(1), (10)

PLL_7
(1)

PLL_8
(1)

C (output counters) 5

M, N, C counter sizes 1 to 512 (5)

Dedicated clock outputs 1 single-ended or 1 differential pair

Clock input pins 12 single-ended or 6 differential pairs (6)

and 4 differential pairs (7)

Spread-spectrum input clock 
tracking v (8)

PLL cascading Through GCLK

Source-Synchronous Mode v v v v v v v — — v
No Compensation Mode v v v v v v v v v v
Normal Mode v v v v v v v — — v
Zero Delay Buffer Mode v v v v v v v — — v
Deterministic Latency 
Compensation Mode v v — — v v v v v v
Phase shift resolution (9) Down to 96 ps increments

Programmable duty cycle v 
Output counter cascading v 
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1
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5–32 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Programmable Bandwidth
Programmable Bandwidth
The PLL bandwidth is the measure of the PLL’s ability to track the input clock and its 
associated jitter. PLLs of Cyclone IV devices provide advanced control of the PLL 
bandwidth using the programmable characteristics of the PLL loop, including loop 
filter and charge pump. The closed-loop gain 3-dB frequency in the PLL determines 
the PLL bandwidth. The bandwidth is approximately the unity gain point for open 
loop PLL response.

Phase Shift Implementation
Phase shift is used to implement a robust solution for clock delays in Cyclone IV 
devices. Phase shift is implemented with a combination of the VCO phase output and 
the counter starting time. The VCO phase output and counter starting time are the 
most accurate methods of inserting delays, because they are based only on counter 
settings that are independent of process, voltage, and temperature.

You can phase shift the output clocks from the PLLs of Cyclone IV devices in one of 
two ways:

■ Fine resolution using VCO phase taps

■ Coarse resolution using counter starting time

Fine resolution phase shifts are implemented by allowing any of the output counters 
(C[4..0]) or the M counter to use any of the eight phases of the VCO as the reference 
clock. This allows you to adjust the delay time with a fine resolution. 

Equation 5–1 shows the minimum delay time that you can insert using this method.

in which fREF is the input reference clock frequency.

For example, if fREF is 100 MHz, N = 1, and M = 8, then fVCO = 800 MHz, and 
fine = 156.25 ps. The PLL operating frequency defines this phase shift, a value that 
depends on reference clock frequency and counter settings.

Coarse resolution phase shifts are implemented by delaying the start of the counters 
for a predetermined number of counter clocks. Equation 5–2 shows the coarse phase 
shift.

C is the count value set for the counter delay time (this is the initial setting in the PLL 
usage section of the compilation report in the Quartus II software). If the initial value 
is 1, C – 1 = 0° phase shift.

Equation 5–1. Fine Resolution Phase Shift

Equation 5–2. Coarse Resolution Phase Shift

fine
TVCO

8
-------------- 1

8fVCO
---------------- N

8MfREF
--------------------= = =

coarse
C 1–
fVCO
------------- C 1– N

MfREF
----------------------= =
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1
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PLL Reconfiguration
Bypassing a PLL Counter
Bypassing a PLL counter results in a divide (N, C0 to C4 counters) factor of one.

Table 5–11 lists the settings for bypassing the counters in PLLs of Cyclone IV devices.

To bypass any of the PLL counters, set the bypass bit to 1. The values on the other bits 
are then ignored.

Dynamic Phase Shifting
The dynamic phase shifting feature allows the output phase of individual PLL 
outputs to be dynamically adjusted relative to each other and the reference clock 
without sending serial data through the scan chain of the corresponding PLL. This 
feature simplifies the interface and allows you to quickly adjust tCO delays by 
changing output clock phase shift in real time. This is achieved by incrementing or 
decrementing the VCO phase-tap selection to a given C counter or to the M counter. 
The phase is shifted by 1/8 the VCO frequency at a time. The output clocks are active 
during this phase reconfiguration process.

Table 5–12 lists the control signals that are used for dynamic phase shifting.

Table 5–10. Loop Filter Control of High Frequency Capacitor

LFC[1] LFC[0] Setting (Decimal)

0 0 0

0 1 1

1 1 3

Table 5–11. PLL Counter Settings

PLL Scan Chain Bits [0..8] Settings 
Description

LSB MSB

X X X X X X X X 1 (1) PLL counter bypassed 

X X X X X X X X 0 (1) PLL counter not bypassed 

Note to Table 5–11:

(1) Bypass bit.

Table 5–12. Dynamic Phase Shifting Control Signals (Part 1 of 2)

Signal Name Description Source Destination

phasecounterselect[2..0]

Counter Select. Three bits decoded to select 
either the M or one of the C counters for 
phase adjustment. One address map to 
select all C counters. This signal is registered 
in the PLL on the rising edge of scanclk. 

Logic array or I/O 
pins 

PLL 
reconfiguration 
circuit

phaseupdown
Selects dynamic phase shift direction; 1= UP, 
0 = DOWN. Signal is registered in the PLL on 
the rising edge of scanclk.

Logic array or I/O 
pins 

PLL 
reconfiguration 
circuit

phasestep Logic high enables dynamic phase shifting. Logic array or I/O 
pins 

PLL 
reconfiguration 
circuit
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 6: I/O Features in Cyclone IV Devices 6–31
High-Speed I/O Standards Support
Figure 6–14 shows a typical BLVDS topology with multiple transmitter and receiver 
pairs. 

The BLVDS I/O standard is supported on the top, bottom, and right I/O banks of 
Cyclone IV devices. The BLVDS transmitter uses two single-ended output buffers 
with the second output buffer programmed as inverted, while the BLVDS receiver 
uses a true LVDS input buffer. The transmitter and receiver share the same pins. An 
output-enabled (OE) signal is required to tristate the output buffers when the LVDS 
input buffer receives a signal.

f For more information, refer to the Cyclone IV Device Datasheet chapter.

Designing with BLVDS
The BLVDS bidirectional communication requires termination at both ends of the bus 
in BLVDS. The termination resistor (RT) must match the bus differential impedance, 
which in turn depends on the loading on the bus. Increasing the load decreases the 
bus differential impedance. With termination at both ends of the bus, termination is 
not required between the two signals at the input buffer. A single series resistor (RS) is 
required at the output buffer to match the output buffer impedance to the 
transmission line impedance. However, this series resistor affects the voltage swing at 
the input buffer. The maximum data rate achievable depends on many factors.

1 Altera recommends that you perform simulation using the IBIS model while 
considering factors such as bus loading, termination values, and output and input 
buffer location on the bus to ensure that the required performance is achieved.

f For more information about BLVDS interface support in Altera devices, refer to 
AN 522: Implementing Bus LVDS Interface in Supported Altera Device Families.

Figure 6–14. BLVDS Topology with Cyclone IV Devices Transmitters and Receivers
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7–4 Chapter 7: External Memory Interfaces in Cyclone IV Devices
Cyclone IV Devices Memory Interfaces Pin Support
Table 7–1 lists the number of DQS or DQ groups supported on each side of the 
Cyclone IV GX device.

Table 7–1. Cyclone IV GX Device DQS and DQ Bus Mode Support for Each Side of the Device

Device Package Side
Number 

×8 
Groups

Number 
×9 

Groups

Number 
×16 

Groups

Number 
×18 

Groups

Number 
×32 

Groups

Number 
×36 

Groups

EP4CGX15 169-pin FBGA 

Right 1 0 0 0 — —

Top (1) 1 0 0 0 — —

Bottom (2) 1 0 0 0 — —

EP4CGX22

EP4CGX30

169-pin FBGA 

Right 1 0 0 0 — —

Top (1) 1 0 0 0 — —

Bottom (2) 1 0 0 0 — —

324-pin FBGA 

Right 2 2 1 1 — —

Top 2 2 1 1 — —

Bottom 2 2 1 1 — —

484-pin FBGA (3)

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

EP4CGX50

EP4CGX75

484-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

672-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

EP4CGX110

EP4CGX150

484-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

672-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

896-pin FBGA 

Right 6 3 2 2 1 1

Top 6 3 3 3 1 1

Bottom 6 3 3 3 1 1

Notes to Table 7–1:

(1) Some of the DQ pins can be used as RUP and RDN pins. You cannot use these groups if you are using these pins as RUP and RDN pins for 
OCT calibration.

(2) Some of the DQ pins can be used as RUP pins while the DM pins can be used as RDN pins. You cannot use these groups if you are using the 
RUP and RDN pins for OCT calibration.

(3) Only available for EP4CGX30 device.
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1
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8. Configuration and Remote System
Upgrades in Cyclone IV Devices
This chapter describes the configuration and remote system upgrades in Cyclone® IV 
devices. Cyclone IV (Cyclone IV GX and Cyclone IV E) devices use SRAM cells to 
store configuration data. You must download the configuration data to Cyclone IV 
devices each time the device powers up because SRAM memory is volatile.

Cyclone IV devices are configured using one of the following configuration schemes:

■ Active serial (AS)

■ Active parallel (AP) (supported in Cyclone IV E devices only)

■ Passive serial (PS)

■ Fast passive parallel (FPP) (not supported in EP4CGX15, EP4CGX22, and 
EP4CGX30 [except for the F484 package] devices)

■ JTAG

Cyclone IV devices offer the following configuration features: 

■ Configuration data decompression (“Configuration Data Decompression” on 
page 8–2)

■ Remote system upgrade (“Remote System Upgrade” on page 8–69)

System designers face difficult challenges, such as shortened design cycles, evolving 
standards, and system deployments in remote locations. Cyclone IV devices help 
overcome these challenges with inherent re-programmability and dedicated circuitry 
to perform remote system upgrades. Remote system upgrades help deliver feature 
enhancements and bug fixes without costly recalls, reduced time-to-market, and 
extended product life. 

Configuration
This section describes Cyclone IV device configuration and includes the following 
topics:

■ “Configuration Features” on page 8–2

■ “Configuration Requirement” on page 8–3

■ “Configuration Process” on page 8–6

■ “Configuration Scheme” on page 8–8

■ “AS Configuration (Serial Configuration Devices)” on page 8–10

■ “AP Configuration (Supported Flash Memories)” on page 8–21

■ “PS Configuration” on page 8–32
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. Patent and Trademark Office and in other countries. All other words and logos identified as 
e holders as described at www.altera.com/common/legal.html. Altera warrants performance of its 
 with Altera's standard warranty, but reserves the right to make changes to any products and 
ibility or liability arising out of the application or use of any information, product, or service 
tera. Altera customers are advised to obtain the latest version of device specifications before relying 
oducts or services.

Feedback Subscribe

ISO 
9001:2008 
Registered

http://www.altera.com/common/legal.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
https://www.altera.com/servlets/subscriptions/alert?id=CYIV-51008
mailto:TechDocFeedback@altera.com?subject=Feedback on CYIV51008-1.7 (CIV HB, Vol 1, Ch8: Configuration and Remote System Upgrades in Cyclone IV Devices)


8–8 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
Configuration Scheme
A configuration scheme with different configuration voltage standards is selected by 
driving the MSEL pins either high or low, as shown in Table 8–3, Table 8–4, and 
Table 8–5. 

1 Hardwire the MSEL pins to VCCA or GND without pull-up or pull-down resistors to 
avoid problems detecting an incorrect configuration scheme. Do not drive the MSEL 
pins with a microprocessor or another device.

Table 8–3. Configuration Schemes for Cyclone IV GX Devices (EP4CGX15, EP4CGX22, and EP4CGX30 [except for F484 
Package])

Configuration Scheme MSEL2 MSEL1 MSEL0 POR Delay Configuration Voltage Standard (V) (1)

AS

1 0 1 Fast 3.3

0 1 1 Fast 3.0, 2.5

0 0 1 Standard 3.3

0 1 0 Standard 3.0, 2.5

PS

1 0 0 Fast 3.3, 3.0, 2.5

1 1 0 Fast 1.8, 1.5

0 0 0 Standard 3.3, 3.0, 2.5

JTAG-based configuration (2) (3) (3) (3) — —

Notes to Table 8–3:

(1) Configuration voltage standard applied to the VCCIO supply of the bank in which the configuration pins reside.
(2) JTAG-based configuration takes precedence over other configuration schemes, which means the MSEL pin settings are ignored.
(3) Do not leave the MSEL pins floating. Connect them to VCCA or GND. These pins support the non-JTAG configuration scheme used in production. 

Altera recommends connecting the MSEL pins to GND if your device is only using JTAG configuration.

Table 8–4. Configuration Schemes for Cyclone IV GX Devices (EP4CGX30 [only for F484 package], EP4CGX50, 
EP4CGX75, EP4CGX110, and EP4CGX150) (Part 1 of 2)

Configuration Scheme MSEL3 MSEL2 MSEL1 MSEL0 POR Delay Configuration Voltage Standard (V) (1)

AS

1 1 0 1 Fast 3.3

1 0 1 1 Fast 3.0, 2.5

1 0 0 1 Standard 3.3

1 0 1 0 Standard 3.0, 2.5

PS

1 1 0 0 Fast 3.3, 3.0, 2.5

1 1 1 0 Fast 1.8, 1.5

1 0 0 0 Standard 3.3, 3.0, 2.5

0 0 0 0 Standard 1.8, 1.5

FPP

0 0 1 1 Fast 3.3, 3.0, 2.5

0 1 0 0 Fast 1.8, 1.5

0 0 0 1 Standard 3.3, 3.0, 2.5

0 0 1 0 Standard 1.8, 1.5
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Configuration
Programming Serial Configuration Devices In-System with the JTAG Interface
Cyclone IV devices in a single- or multiple-device chain support in-system 
programming of a serial configuration device with the JTAG interface through the SFL 
design. The intelligent host or download cable of the board can use the four JTAG pins 
on the Cyclone IV device to program the serial configuration device in system, even if 
the host or download cable cannot access the configuration pins (DCLK, DATA, ASDI, and 
nCS pins).

The SFL design is a JTAG-based in-system programming solution for Altera serial 
configuration devices. The SFL is a bridge design for the Cyclone IV device that uses 
their JTAG interface to access the EPCS JTAG Indirect Configuration Device 
Programming (.jic) file and then uses the AS interface to program the EPCS device. 
Both the JTAG interface and AS interface are bridged together inside the SFL design.

In a multiple device chain, you must only configure the master device that controls 
the serial configuration device. Slave devices in the multiple device chain that are 
configured by the serial configuration device do not have to be configured when 
using this feature. To successfully use this feature, set the MSEL pins of the master 
device to select the AS configuration scheme (Table 8–3 on page 8–8, Table 8–4 on 
page 8–8, and Table 8–5 on page 8–9). The serial configuration device in-system 
programming through the Cyclone IV device JTAG interface has three stages, which 
are described in the following sections:

■ “Loading the SFL Design”

■ “ISP of the Configuration Device” on page 8–56

■ “Reconfiguration” on page 8–57

Loading the SFL Design

The SFL design is a design inside the Cyclone IV device that bridges the JTAG 
interface and AS interface with glue logic.

The intelligent host uses the JTAG interface to configure the master device with a SFL 
design. The SFL design allows the master device to control the access of four serial 
configuration device pins, also known as the Active Serial Memory Interface (ASMI) 
pins, through the JTAG interface. The ASMI pins are serial clock input (DCLK), serial 
data output (DATA), AS data input (ASDI), and active-low chip select (nCS) pins.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Use the ACTIVE_DISENGAGE instruction with the CONFIG_IO instruction to interrupt 
configuration. Table 8–16 lists the sequence of instructions to use for various 
CONFIG_IO usage scenarios.

The CONFIG_IO instruction does not hold nSTATUS low until reconfiguration. You must 
disengage the AS or AP configuration controller by issuing the ACTIVE_DISENGAGE and 
ACTIVE_ENGAGE instructions when active configuration is interrupted. You must issue 
the ACTIVE_DISENGAGE instruction alone or prior to the CONFIG_IO instruction if the 
JTAG_PROGRAM instruction is to be issued later (Table 8–17). This puts the active 
configuration controllers into the idle state. The active configuration controller is re-
engaged after user mode is reached through JTAG programming (Table 8–17).

1 While executing the CONFIG_IO instruction, all user I/Os are tri-stated.

If reconfiguration after interruption is performed using configuration modes (rather 
than using JTAG_PROGRAM), it is not necessary to issue the ACTIVE_DISENGAGE 
instruction prior to CONFIG_IO. You can start reconfiguration by either pulling nCONFIG 
low for at least 500 ns or issuing the PULSE_NCONFIG instruction. If the 
ACTIVE_DISENGAGE instruction was issued and the JTAG_PROGRAM instruction fails to 
enter user mode, you must issue the ACTIVE_ENGAGE instruction to reactivate the active 
configuration controller. Issuing the ACTIVE_ENGAGE instruction also triggers 
reconfiguration in configuration modes; therefore, it is not necessary to pull nCONFIG 
low or issue the PULSE_NCONFIG instruction.

Table 8–16. JTAG CONFIG_IO (without JTAG_PROGRAM) Instruction Flows  (1)

JTAG Instruction

Configuration Scheme and Current State of the Cyclone IV Device 

Prior to User Mode 
(Interrupting Configuration) User Mode Power Up

PS FPP AS AP PS FPP AS AP PS FPP AS AP

ACTIVE_DISENGAGE O O O 0 O O O 0 — — — —

CONFIG_IO R R R R R R R R NA NA NA NA

JTAG Boundary Scan 
Instructions (no 
JTAG_PROGRAM)

O O O 0 O O O 0 — — — —

ACTIVE_ENGAGE

A A

R (2) R (2)

A A

R (2) R (2) — — — —

PULSE_NCONFIG A (3) A (3) O 0 — — — —

Pulse nCONFIG pin A (3) A (3) O 0 — — — —

JTAG TAP Reset R R R R R R R R — — — —

Notes to Table 8–16:

(1) You must execute “R” indicates that the instruction before the next instruction, “O” indicates the optional instruction, “A” indicates 
that the instruction must be executed, and “NA” indicates that the instruction is not allowed in this mode.

(2) Required if you use ACTIVE_DISENGAGE.
(3) Neither of the instruction is required if you use ACTIVE_ENGAGE.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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EN_ACTIVE_CLK

The EN_ACTIVE_CLK instruction causes the CLKUSR pin signal to replace the internal 
oscillator as the clock source. When using the EN_ACTIVE_CLK instruction, you must 
enable the internal oscillator for the clock change to occur. After this instruction is 
issued, other JTAG instructions can be issued while the CLKUSR pin signal remains as 
the clock source. The clock source is only reverted back to the internal oscillator by 
issuing the DIS_ACTIVE_CLK instruction or a POR.

DIS_ACTIVE_CLK

The DIS_ACTIVE_CLK instruction breaks the CLKUSR enable latch set by the 
EN_ACTIVE_CLK instruction and causes the clock source to revert back to the internal 
oscillator. After the DIS_ACTIVE_CLK instruction is issued, you must continue to clock 
the CLKUSR pin for 10 clock cycles.

Changing the Start Boot Address of the AP Flash

In the AP configuration scheme (for Cyclone IV E devices only), you can change the 
default configuration boot address of the parallel flash memory to any desired 
address using the APFC_BOOT_ADDR JTAG instruction.

APFC_BOOT_ADDR

The APFC_BOOT_ADDR instruction is for Cyclone IV E devices only and allows you to 
define a start boot address for the parallel flash memory in the AP configuration 
scheme. 

This instruction shifts in a start boot address for the AP flash. When this instruction 
becomes the active instruction, the TDI and TDO pins are connected through a 22-bit 
active boot address shift register. The shifted-in boot address bits get loaded into the 
22-bit AP boot address update register, which feeds into the AP controller. The content 
of the AP boot address update register can be captured and shifted-out of the active 
boot address shift register from TDO. 

The boot address in the boot address shift register and update register are shifted to 
the right (in the LSB direction) by two bits versus the intended boot address. The 
reason for this is that the two LSB of the address are not accessible. When this boot 
address is fed into the AP controller, two 0s are attached in the end as LSB, thereby 
pushing the shifted-in boot address to the left by two bits, which become the actual 
AP boot address the AP controller gets.

If you have enabled the remote update feature, the APFC_BOOT_ADDR instruction sets 
the boot address for the factory configuration only.

1 The APFC_BOOT_ADDR instruction is retained after reconfiguration while the system 
board is still powered on. However, you must reprogram the instruction whenever 
you restart the system board.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Remote System Upgrade
Remote System Upgrade Registers
The remote system upgrade block contains a series of registers that stores the 
configuration addresses, watchdog timer settings, and status information. Table 8–22 
lists these registers.

The control and status registers of the remote system upgrade are clocked by the 
10-MHz internal oscillator (the same oscillator that controls the user watchdog timer) 
or the CLKUSR. However, the shift and update registers of the remote system upgrade 
are clocked by the maximum frequency of 40-MHz user clock input (RU_CLK). There is 
no minimum frequency for RU_CLK.

Remote System Upgrade Control Register

The remote system upgrade control register stores the application configuration 
address, the user watchdog timer settings, and option bits for a application 
configuration. In remote update mode for the AS configuration scheme, the control 
register address bits are set to all zeros (24'b0) at power up to load the AS factory 
configuration. In remote update mode for the AP configuration scheme, the control 
register address bits are set to 24'h010000 (24'b1 0000 0000 0000 0000) at power up to 
load the AP default factory configuration. However, for the AP configuration scheme, 
you can change the default factory configuration address to any desired address using 
the APFC_BOOT_ADDR JTAG instruction. Additionally, a factory configuration in remote 
update mode has write access to this register. 

Table 8–22. Remote System Upgrade Registers 

Register Description

Shift 
register

This register is accessible by the logic array and allows the update, status, and control registers to be written 
and sampled by user logic. Write access is enabled in remote update mode for factory configurations to allow 
writing to the update register. Write access is disabled for all application configurations in remote update 
mode. 

Control 
register

This register contains the current configuration address, the user watchdog timer settings, one option bit for 
checking early CONF_DONE, and one option bit for selecting the internal oscillator as the startup state machine 
clock. During a read operation in an application configuration, this register is read into the shift register. When 
a reconfiguration cycle is started, the contents of the update register are written into the control register.

Update 
register

This register contains data similar to that in the control register. However, it can only be updated by the factory 
configuration by shifting data into the shift register and issuing an update operation. When a reconfiguration 
cycle is triggered by the factory configuration, the control register is updated with the contents of the update 
register. During a read in a factory configuration, this register is read into the shift register.

Status 
register

This register is written by the remote system upgrade circuitry on every reconfiguration to record the cause of 
the reconfiguration. This information is used by the factory configuration to determine the appropriate action 
following a reconfiguration. During a capture cycle, this register is read into the shift register.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Remote System Upgrade
The remote system upgrade status register is updated by the dedicated error 
monitoring circuitry after an error condition, but before the factory configuration is 
loaded.

User Watchdog Timer
The user watchdog timer prevents a faulty application configuration from indefinitely 
stalling the device. The system uses the timer to detect functional errors after an 
application configuration is successfully loaded into the Cyclone IV device.

The user watchdog timer is a counter that counts down from the initial value loaded 
into the remote system upgrade control register by the factory configuration. The 
counter is 29 bits wide and has a maximum count value of 229. When specifying the 
user watchdog timer value, specify only the most significant 12 bits. The remote 
system upgrade circuitry appends 17'b1000 to form the 29-bits value for the watchdog 
timer. The granularity of the timer setting is 217 cycles. The cycle time is based on the 
frequency of the 10-MHz internal oscillator or CLKUSR (maximum frequency of 
40 MHz). 

Table 8–27 lists the operating range of the 10-MHz internal oscillator.

The user watchdog timer begins counting after the application configuration enters 
device user mode. This timer must be periodically reloaded or reset by the application 
configuration before the timer expires by asserting RU_nRSTIMER. If the application 
configuration does not reload the user watchdog timer before the count expires, a 
time-out signal is generated by the remote system upgrade dedicated circuitry. The 
time-out signal tells the remote system upgrade circuitry to set the user watchdog 
timer status bit (Wd) in the remote system upgrade status register and reconfigures the 
device by loading the factory configuration.

1 To allow the remote system upgrade dedicated circuitry to reset the watchdog timer, 
you must assert the RU_nRSTIMER signal active for a minimum of 250 ns. This is 
equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE 
megafunction high for a minimum of 250 ns.

Errors during configuration are detected by the CRC engine. Functional errors must 
not exist in the factory configuration because it is stored and validated during 
production and is never updated remotely.

Table 8–26. Control Register Contents After an Error or Reconfiguration Trigger Condition 

Reconfiguration Error/Trigger Control Register Setting In Remote Update

nCONFIG reset All bits are 0

nSTATUS error All bits are 0

CORE triggered reconfiguration Update register

CRC error All bits are 0

Wd time out All bits are 0

Table 8–27. 10-MHz Internal Oscillator Specifications  

Minimum Typical Maximum Unit

5 6.5 10 MHz
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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11–4 Chapter 11: Power Requirements for Cyclone IV Devices
Document Revision History
In some applications, it is necessary for a device to wake up very quickly to begin 
operation. Cyclone IV devices offer the Fast-On feature to support fast wake-up time 
applications. The MSEL pin settings determine the POR time (tPOR) of the device.

f For more information about the MSEL pin settings, refer to the Configuration and 
Remote System Upgrades in Cyclone IV Devices chapter.

f For more information about the POR specifications, refer to the Cyclone IV Device 
Datasheet chapter.

Document Revision History
Table 11–3 lists the revision history for this chapter.

Table 11–3. Document Revision History

Date Version Changes

May 2013 1.3 Updated Note (4) in Table 11–1.

July 2010 1.2

■ Updated for the Quartus II software version 10.0 release.

■ Updated “I/O Pins Remain Tri-stated During Power-Up” section.

■ Updated Table 11–1.

February 2010 1.1 Updated Table 11–1 and Table 11–2 for the Quartus II software version 9.1 SP1 
release.

November 2009 1.0 Initial release.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Transceiver Clocking Architecture

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

The CDR unit in each receiver channel gets the CDR clocks from one of the two 
multipurpose PLLs directly adjacent to the transceiver block. The CDR clocks 
distribution network is segmented by bidirectional tri-state buffers as shown in 
Figure 1–29 and Figure 1–30. This requires the CDR clocks from either one of the two 
multipurpose PLLs to drive a number of contiguous segmented paths to reach the 
intended receiver channel. Interleaving the CDR clocks from the two multipurpose 
PLLs is not supported. 

For example, based on Figure 1–29, a combination of MPLL_1 driving receiver channels 
0, 1, and 3, while MPLL_2 driving receiver channel 2 is not supported. In this case, only 
one multipurpose PLL can be used for the receiver channels.

Figure 1–29. CDR Clocking for Transceiver Channels in F324 and Smaller Packages

Note to Figure 1–29:

(1) Transceiver channels 2 and 3 are not available for devices in F169 and smaller packages.

Figure 1–30. CDR Clocking for Transceiver Channels in F484 and Larger Packages
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Transceiver Functional Modes

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Figure 1–59 shows an example of rate match FIFO insertion in the case where one 
symbol must be inserted. Because the rate match FIFO can only insert /I2/ ordered 
sets, it inserts one /I2/ ordered set (two symbols inserted). 

1 The rate match FIFO does not insert or delete code groups automatically to overcome 
FIFO empty or full conditions. In this case, the rate match FIFO asserts the 
rx_rmfifofull and rx_rmfifoempty flags for at least two recovered clock cycles to 
indicate rate match FIFO full and empty conditions, respectively. You must then assert 
the rx_digitalreset signal to reset the receiver PCS blocks.

Serial RapidIO Mode
Serial RapidIO mode provides the non-bonded (×1) transceiver channel datapath 
configuration for SRIO protocol implementation. The Cyclone IV GX transceiver 
provides the PMA and the following PCS functions:

■ 8B/10B encoding and decoding

■ lane synchronization state machine

1 Cyclone IV GX transceivers do not have built-in support for some PCS functions such 
as pseudo-random idle sequence generation and lane alignment in ×4 bonded 
channel configuration. If required, you must implement these functions in a user 
logics or external circuits.

The RapidIO Trade Association defines a high-performance, packet-switched 
interconnect standard to pass data and control information between microprocessors, 
digital signals, communications, network processes, system memories, and peripheral 
devices. The SRIO physical layer specification defines serial protocol running at 
1.25 Gbps, 2.5 Gbps, and 3.125 Gbps in either single-lane (×1) or bonded four-lane (×4) 
at each line rate. Cyclone IV GX transceivers support single-lane (×1) configuration at 
all three line rates. Four ×1 channels configured in Serial RapidIO mode can be 
instantiated to achieve one non-bonded ×4 SRIO link. When implementing four ×1 
SRIO channels, the receivers do not have lane alignment or deskew capability. 

Figure 1–59. Example of Rate Match FIFO Insertion in GIGE Mode
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Transceiver Reset Sequences

September 2014 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Transmitter Only Channel

This configuration contains only a transmitter channel. If you create a Transmitter 
Only instance in the ALTGX MegaWizard Plug-In Manager, use the same reset 
sequence shown in Figure 2–3 on page 2–7.

Receiver Only Channel—Receiver CDR in Automatic Lock Mode

This configuration contains only a receiver channel. If you create a Receiver Only 
instance in the ALTGX MegaWizard Plug-In Manager with the receiver CDR in 
automatic lock mode, use the reset sequence shown in Figure 2–6.

As shown in Figure 2–6, perform the following reset procedure for the receiver in 
CDR automatic lock mode:

1. After power up, wait for the busy signal to be deasserted. 

2. Keep the rx_digitalreset and rx_analogreset signals asserted during this time 
period.

3. After the busy signal is deasserted, wait for another two parallel clock cycles, then 
deassert the rx_analogreset signal.

4. Wait for the rx_freqlocked signal to go high.

5. When rx_freqlocked goes high (marker 3), from that point onwards, wait for 
at least tLTD_Auto, then de-assert the rx_digitalreset signal (marker 4). At this 
point, the receiver is ready to receive data.

Figure 2–6. Sample Reset Sequence of Receiver Only Channel—Receiver CDR in Automatic Lock Mode

Notes to Figure 2–6:

(1) For tLTD_Auto duration, refer to the Cyclone IV Device Datasheet chapter.
(2) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy 

signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

Reset Signals

2

Output Status Signals

3

4

1

Two parallel clock cycles

rx_analogreset

rx_digitalreset

busy (2)

rx_freqlocked

tLTD_Auto (1)
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Operating Conditions

1.375

—

—

1.4

1.4

1.5

1.5

1.4

1.4

(3)

Max
LVDS 
(Column 
I/Os)

2.375 2.5 2.625 100 —

0.05 DMAX  500 Mbps 1.80

247 — 600 1.125 1.250.55 500 Mbps  DMAX 
 700 Mbps 1.80

1.05 DMAX > 700 Mbps 1.55

BLVDS (Row 
I/Os) (4) 2.375 2.5 2.625 100 — — — — — — — — —

BLVDS 
(Column 
I/Os) (4)

2.375 2.5 2.625 100 — — — — — — — — —

mini-LVDS 
(Row I/Os) 
(5)

2.375 2.5 2.625 — — — — — 300 — 600 1.0 1.2

mini-LVDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 300 — 600 1.0 1.2

RSDS® (Row 
I/Os) (5) 2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

RSDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

PPDS (Row 
I/Os) (5) 2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

PPDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

Notes to Table 1–20:

(1) For an explanation of terms used in Table 1–20, refer to “Glossary” on page 1–37.
(2) VIN range: 0 V  VIN  1.85 V.
(3) RL range: 90  RL  110  .
(4) There are no fixed VIN, VOD, and VOS specifications for BLVDS. They depend on the system topology.
(5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.
(6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 2 of 2)

I/O Standard
VCCIO (V) VID (mV) VIcM (V) (2) VOD (mV) (3) VOS (V) 

Min Typ Max Min Max Min Condition Max Min Typ Max Min Typ
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3
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Switching Characteristics
Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX 
devices.

Table 1–44. IOE Programmable Delay on Column Pins for Cyclone IV GX Devices (1), (2)

Parameter Paths 
Affected

Number 
of 

Settings

Min 
Offset

Max Offset

UnitFast Corner Slow Corner

C6 I7 C6 C7 C8 I7

Input delay from pin to 
internal cells

Pad to I/O 
dataout to 
core

7 0 1.313 1.209 2.184 2.336 2.451 2.387 ns

Input delay from pin to 
input register

Pad to I/O 
input register 8 0 1.312 1.208 2.200 2.399 2.554 2.446 ns

Delay from output 
register to output pin

I/O output 
register to 
pad

2 0 0.438 0.404 0.751 0.825 0.886 0.839 ns

Input delay from 
dual-purpose clock pin 
to fan-out destinations

Pad to global 
clock 
network

12 0 0.713 0.682 1.228 1.41 1.566 1.424 ns

Notes to Table 1–44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

Parameter Paths 
Affected

Number 
of 

Settings

Min 
Offset

Max Offset

UnitFast Corner Slow Corner

C6 I7 C6 C7 C8 I7

Input delay from pin to 
internal cells

Pad to I/O 
dataout to 
core

7 0 1.314 1.210 2.209 2.398 2.526 2.443 ns

Input delay from pin to 
input register

Pad to I/O 
input register 8 0 1.313 1.208 2.205 2.406 2.563 2.450 ns

Delay from output 
register to output pin

I/O output 
register to 
pad

2 0 0.461 0.421 0.789 0.869 0.933 0.884 ns

Input delay from 
dual-purpose clock pin 
to fan-out destinations

Pad to global 
clock network 12 0 0.712 0.682 1.225 1.407 1.562 1.421 ns

Notes to Table 1–45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software
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