Intel - EP4CE30F29C9LN Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	1803
Number of Logic Elements/Cells	28848
Total RAM Bits	608256
Number of I/O	532
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce30f29c9In

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

March 2016

Altera Corporation

Each Cyclone IV I/O bank has a VREF bus to accommodate voltage-referenced I/O standards. Each VREF pin is the reference source for its V_{REF} group. If you use a V_{REF} group for voltage-referenced I/O standards, connect the VREF pin for that group to the appropriate voltage level. If you do not use all the V_{REF} groups in the I/O bank for voltage-referenced I/O standards, you can use the VREF pin in the unused voltage-referenced groups as regular I/O pins. For example, if you have SSTL-2 Class I input pins in I/O bank 1 and they are all placed in the VREFB1N[0] group, VREFB1N[0] must be powered with 1.25 V, and the remaining VREFB1N[1..3] pins (if available) are used as I/O pins. If multiple V_{REF} groups are used in the same I/O bank, the VREF pins must all be powered by the same voltage level because the VREF pins are shorted together within the same I/O bank.

- When VREF pins are used as regular I/Os, they have higher pin capacitance than regular user I/O pins. This has an impact on the timing if the pins are used as inputs and outputs.
- **For more information about VREF pin capacitance**, refer to the pin capacitance section in the *Cyclone IV Device Datasheet* chapter.
- For information about how to identify V_{REF} groups, refer to the Cyclone IV Device Pin-Out files or the Quartus II Pin Planner tool.

Table 6–4 and Table 6–5 summarize the number of VREF pins in each I/O bank for the Cyclone IV device family.

Table 6-4. Number of VREF Pins Per I/O Bank for Cyclone IV E Devices (Part 1 of 2)

Device		EP4CE6			EP4CE10				EDADE1E	E146E13				EP4CE22			EP4CE30				Er46E40			EP4CE55			EP4CE75		ED APE11E	EL46E113
i/0 Bank (1)	144-EQPF	256-UBGA	256-FBGA	144-EQPF	256-UBGA	256-FBGA	144-EQPF	164-MBGA	256-MBGA	256-UBGA	256-FBGA	484-FBGA	144-EQPF	256-UBGA	256-FBGA	324-FBGA	484-FBGA	780-FBGA	324-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-FBGA	780-FBGA
1	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
2	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
3	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
4	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
5	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
6	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3
7	1	1	1	1	1	1	2	2	2	2	2	2	1	1	1	4	4	4	4	4	4	4	2	2	2	3	3	3	3	3

Table 7–2 lists the number of DQS or DQ groups supported on each side of the Cyclone IV E device.

Device	Package	Side	Number ×8 Groups	Number ×9 Groups	Number ×16 Groups	Number ×18 Groups	Number ×32 Groups	Number ×36 Groups
		Left	0	0	0	0	—	—
	144 pip EOED	Right	0	0	0	0	—	—
	144-pill EQFP	Bottom (1), (3)	1	0	0	0	—	—
Device EP4CE6 EP4CE10 EP4CE15		Top (1), (4)	1	0	0	0	—	—
		Left (1)	1	1	0	0	—	—
	256-pip LIBGA	Right ⁽²⁾	1	1	0	0	—	—
EP4CE10	250-piil 080A	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	ber 8 Number x32 Number x36 Image: Signal state sta	
		Left (1)	1	1	0	0	—	—
	256 pip EPCA	Right ⁽²⁾	1	1	0	0	—	—
	250-piii FBGA	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	—	—
		Left	0	0	0	0	—	—
	144-pin EQFP	Right	0	0	0	0	—	—
		Bottom (1), (3)	1	0	0	0	—	—
		Top (1), (4)	1	0	0	0	—	—
	164-pin MBGA	Left	0	0	0	0	—	—
		Right	0	0	0	0	—	—
		Bottom (1), (3)	1	0	0	0	—	—
		Top (1), (4)	1	0	0	0	—	—
		Left	1	1	0	0	—	—
	256 pip MPCA	Right	1	1	0	0	—	—
EP4CE15		Bottom (1), (3)	2	2	1	1	—	—
		Top (1), (4)	$\times 8$ $\times 9$ $\times 16$ $\times 18$ $\times 32$ 0 0 0 0	—				
EF40E15		Left (1)	1	1	0	0	—	—
	256 pip LIPCA	Right (2)	1	1	0	0	—	—
	250-piil 080A	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	—	—
		Left (1)	1	1	0	0	—	—
	256 pip EPCA	Right ⁽²⁾	1	1	0	0	—	—
	250-piii FBGA	Bottom	2	2	1	1	—	—
		Тор	2	2	1	1	—	—
		Left	4	4	2	2	1	1
	484-nin EPCA	Right	4	4	2	2	1	1
	чоч-ріп град	Bottom	4	4	2	2	1	1
		Тор	4	4	2	2	1	1

Remote System Upgrade Registers

The remote system upgrade block contains a series of registers that stores the configuration addresses, watchdog timer settings, and status information. Table 8–22 lists these registers.

 Table 8–22.
 Remote System Upgrade Registers

Register	Description
Shift register	This register is accessible by the logic array and allows the update, status, and control registers to be written and sampled by user logic. Write access is enabled in remote update mode for factory configurations to allow writing to the update register. Write access is disabled for all application configurations in remote update mode.
Control register	This register contains the current configuration address, the user watchdog timer settings, one option bit for checking early CONF_DONE, and one option bit for selecting the internal oscillator as the startup state machine clock. During a read operation in an application configuration, this register is read into the shift register. When a reconfiguration cycle is started, the contents of the update register are written into the control register.
Update register	This register contains data similar to that in the control register. However, it can only be updated by the factory configuration by shifting data into the shift register and issuing an update operation. When a reconfiguration cycle is triggered by the factory configuration, the control register is updated with the contents of the update register. During a read in a factory configuration, this register is read into the shift register.
Status register	This register is written by the remote system upgrade circuitry on every reconfiguration to record the cause of the reconfiguration. This information is used by the factory configuration to determine the appropriate action following a reconfiguration. During a capture cycle, this register is read into the shift register.

The control and status registers of the remote system upgrade are clocked by the 10-MHz internal oscillator (the same oscillator that controls the user watchdog timer) or the CLKUSR. However, the shift and update registers of the remote system upgrade are clocked by the maximum frequency of 40-MHz user clock input (RU_CLK). There is no minimum frequency for RU_CLK.

Remote System Upgrade Control Register

The remote system upgrade control register stores the application configuration address, the user watchdog timer settings, and option bits for a application configuration. In remote update mode for the AS configuration scheme, the control register address bits are set to all zeros (24'b0) at power up to load the AS factory configuration. In remote update mode for the AP configuration scheme, the control register address bits are set to 24'h010000 (24'b1 0000 0000 0000) at power up to load the AP default factory configuration. However, for the AP configuration scheme, you can change the default factory configuration address to any desired address using the APFC_BOOT_ADDR JTAG instruction. Additionally, a factory configuration in remote update mode has write access to this register. Table 8–25 lists the contents of previous state register 1 and previous state register 2 in the status register. The status register bit in Table 8–25 shows the bit positions in a 3-bit register. The previous state register 1 and previous state register 2 have the same bit definitions. The previous state register 1 reflects the current application configuration and the previous state register 2 reflects the previous application configuration.

 Table 8–25. Remote System Upgrade Previous State Register 1 and Previous State Register 2 Contents in Status

 Register

Status Register Bit	Definition	Description			
30	nCONFIG SOURCE	One hat active high field that describes the reconfiguration source			
29	CRC error source	that caused the Cyclone IV device to leave the previous application			
28	nSTATUS SOUICE	configuration. If there is a tie, the higher bit order indicates			
27	User watchdog timer source	precedence. For example, if nCONFIG and remote system upgrade			
26	Remote system upgrade nCONFIG source	the nCONFIG precedes the remote system upgrade nCONFIG.			
25:24	Master state machine current state	The state of the master state machine during reconfiguration causes the Cyclone IV device to leave the previous application configuration.			
23:0	Boot address	The address used by the configuration scheme to load the previous application configuration.			

If a capture is inappropriately done while capturing a previous state before the system has entered remote update application configuration for the first time, a value outputs from the shift register to indicate that the capture is incorrectly called.

Remote System Upgrade State Machine

The remote system upgrade control and update registers have identical bit definitions, but serve different roles (Table 8–22 on page 8–75). While both registers can only be updated when the device is loaded with a factory configuration image, the update register writes are controlled by the user logic, and the control register writes are controlled by the remote system upgrade state machine.

In factory configurations, the user logic should send the option bits (Cd_early and Osc_int), the configuration address, and watchdog timer settings for the next application configuration bit to the update register. When the logic array configuration reset (RU_nCONFIG) goes high, the remote system upgrade state machine updates the control register with the contents of the update register and starts system reconfiguration from the new application page.

To ensure the successful reconfiguration between the pages, assert the RU_nCONFIG signal for a minimum of 250 ns. This is equivalent to strobing the reconfig input of the ALTREMOTE_UPDATE megafunction high for a minimum of 250 ns.

If there is an error or reconfiguration trigger condition, the remote system upgrade state machine directs the system to load a factory or application configuration (based on mode and error condition) by setting the control register accordingly.

Table 8–26 lists the contents of the control register after such an event occurs for all possible error or trigger conditions.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and service at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

The Cyclone IV GX device includes a hard intellectual property (IP) implementation of the PCIe MegaCore[®] functions, supporting Gen1 ×1, ×2, and ×4 initial lane widths configured in the root port or endpoint mode. For more information, refer to "PCI-Express Hard IP Block" on page 1–46.

Transceiver Architecture

Cyclone IV GX devices offer either one or two transceiver blocks per device, depending on the package. Each block consists of four full-duplex (transmitter and receiver) channels, located on the left side of the device (in a die-top view). Figure 1–1 and Figure 1–2 show the die-top view of the transceiver block and related resource locations in Cyclone IV GX devices.

Note to Figure 1–1:

(1) Channel 2 and Channel 3 are not available in the F169 and smaller packages.

Transmitter Channel Datapath

The following sections describe the Cyclone IV GX transmitter channel datapath architecture as shown in Figure 1–3:

- TX Phase Compensation FIFO
- Byte Serializer
- 8B/10B Encoder
- Serializer
- Transmitter Output Buffer

TX Phase Compensation FIFO

The TX phase compensation FIFO compensates for the phase difference between the low-speed parallel clock and the FPGA fabric interface clock, when interfacing the transmitter channel to the FPGA fabric (directly or through the PIPE and PCIe hard IP). The FIFO is four words deep, with latency between two to three parallel clock cycles. Figure 1–4 shows the TX phase compensation FIFO block diagram.

Figure 1–4. TX Phase Compensation FIFO Block Diagram

Note to Figure 1-4:

(1) The x refers to the supported 8-, 10-, 16-, or 20-bits transceiver channel width.

- The FIFO can operate in registered mode, contributing to only one parallel clock cycle of latency in Deterministic Latency functional mode. For more information, refer to "Deterministic Latency Mode" on page 1–73.
- **To** For more information about FIFO clocking, refer to "FPGA Fabric-Transceiver Interface Clocking" on page 1–43.

Byte Serializer

The byte serializer divides the input datapath width by two to allow transmitter channel operation at higher data rates while meeting the maximum FPGA fabric frequency limit. This module is required in configurations that exceed the maximum FPGA fabric-transceiver interface clock frequency limit and optional in configurations that do not.

To For the FPGA fabric-transceiver interface frequency specifications, refer to the *Cyclone IV Device Data Sheet*.

The high-speed serial link can be AC- or DC-coupled, depending on the serial protocol implementation. In an AC-coupled link, the AC-coupling capacitor blocks the transmitter DC common mode voltage as shown in Figure 1–12. Receiver OCT and on-chip biasing circuitry automatically restores the common mode voltage. The biasing circuitry is also enabled by enabling OCT. If you disable the OCT, then you must externally terminate and bias the receiver. AC-coupled links are required for PCIe, GbE, Serial RapidIO, SDI, XAUI, SATA, V-by-One and Display Port protocols.

Figure 1–12. AC-Coupled Link with OCT

Rate Match FIFO

In asynchronous systems, the upstream transmitter and local receiver can be clocked with independent reference clocks. Frequency differences in the order of a few hundred ppm can corrupt the data when latching from the recovered clock domain (the same clock domain as the upstream transmitter reference clock) to the local receiver reference clock domain. Figure 1–21 shows the rate match FIFO block diagram.

Figure 1–21. Rate Match FIFO Block Diagram

The rate match FIFO compensates for small clock frequency differences of up to ± 300 ppm (600 ppm total) between the upstream transmitter and the local receiver clocks by performing the following functions:

- Insert skip symbols when the local receiver reference clock frequency is greater than the upstream transmitter reference clock frequency
- Delete skip symbols when the local receiver reference clock frequency is less than the upstream transmitter reference clock frequency

The 20-word deep rate match FIFO and logics control insertion and deletion of skip symbols, depending on the ppm difference. The operation begins after the word aligner synchronization status (rx_syncstatus) is asserted.

P

Rate match FIFO is only supported with 8B/10B encoded data and the word aligner in automatic synchronization state machine mode.

8B/10B Decoder

The 8B/10B decoder receives 10-bit data and decodes it into an 8-bit data and a 1-bit control identifier. The decoder is compliant with Clause 36 of the IEEE 802.3 specification.

Figure 1–22 shows the 8B/10B decoder block diagram.

Figure 1–22. 8B/10B Decoder Block Diagram

Figure 1–27 shows an example of the termination scheme for AC-coupled connections for REFCLK pins.

Note to Figure 1-27:

(1) For more information about the V_{ICM} value, refer to the *Cyclone IV Device Datasheet* chapter.

Figure 1–28 shows an example termination scheme for the REFCLK pin when configured as a **HCSL** input.

Figure 1–28. Termination Scheme for a Reference Clock When Configured as HCSL⁽¹⁾

Notes to Figure 1-28:

- (1) No biasing is required if the reference clock signals are generated from a clock source that conforms to the PCIe specification.
- (2) Select values as recommended by the PCIe clock source vendor.

Transceiver Channel Datapath Clocking

Channel datapath clocking varies with channel configuration options and PCS configurations. This section describes the clock distribution from the left PLLs for transceiver channels and the datapath clocking in various supported configurations.

Table 1–7 lists the clocks generated by the PLLs for transceiver datapath.

 Table 1–7.
 PLL Clocks for Transceiver Datapath

Clock	Usage
CDR clocks	Receiver CDR unit
High-speed clock	Transmitter serializer block in PMA
Low-speed clock	Transmitter PCS blocks
	Receiver PCS blocks when rate match FIFO enabled

Signal Detect at Receiver

In PIPE mode, signal detection is supported with the built-in signal threshold detection circuitry. When electrical idle inference is not enabled, the rx_signaldetect signal is inverted and available as pipeelecidle port in the PIPE interface.

Lane Synchronization

In PIPE mode, the word aligner is configured in automatic synchronization state machine mode that complies with the PCIe specification. Table 1–16 lists the synchronization state machine parameters that implement the PCIe-compliant synchronization.

Table 1–16. Synchronization State Machine Parameters (1)

Parameter	Value
Number of valid synchronization (/K28.5/) code groups received to achieve synchronization	4
Number of erroneous code groups received to lose synchronization	17
Number of continuous good code groups received to reduce the error count by one	16

Note to Table 1-16:

(1) The word aligner supports 10-bit pattern lengths in PIPE mode.

Clock Rate Compensation

In PIPE mode, the rate match FIFO compensates up to ±300 ppm (600 ppm total) difference between the upstream transmitter and the local receiver reference clock. In PIPE mode, the rate match FIFO operation is compliant to the version 2.0 of the PCIe Base Specification. The PCIe protocol requires the receiver to recognize a skip (SKP) ordered set, and inserts or deletes only one SKP symbol per SKP ordered set received to prevent the rate match FIFO from overflowing or underflowing. The SKP ordered set is a /K28.5/ comma (COM) symbol followed by one to five consecutive /K28.0/ SKP symbols, which are sent by transmitter during the inter-packet gap.

The rate match operation begins after the synchronization state machine in the word aligner indicates synchronization is acquired, as indicated with logic high on rx_syncstatus signal. Rate match FIFO insertion and deletion events are communicated to FPGA fabric on the pipestatus [2..0] port from each channel.

Low-Latency Synchronous PCIe

In PIPE mode, the Cyclone IV GX transceiver supports a lower latency in synchronous PCIe by reducing the latency across the rate match FIFO. In synchronous PCIe, the system uses a common reference clocking that gives a 0 ppm difference between the upstream transmitter's and local receiver's reference clock.

When using common reference clocking, the transceiver supports spread-spectrum clocking. For more information about the SSC support in PCIe Express (PIPE) mode, refer to the *Cyclone IV Device Data Sheet*.

In Serial RapidIO mode, the rate match FIFO compensates up to ± 100 ppm (200 ppm total) difference between the upstream transmitter and the local receiver reference clock.

Rate matcher is an optional block available for selection in Serial RapidIO mode. However, this block is not fully compliant to the SRIO specification. When enabled in the ALTGX MegaWizard Plug-In Manager, the default settings are:

- control pattern 1 = K28.5 with positive disparity
- skip pattern 1 = K29.7 with positive disparity
- control pattern 2 = K28.5 with negative disparity
- skip pattern 2 = K29.7 with negative disparity

When enabled, the rate match FIFO operation begins after the link is synchronized (indicated by assertion of rx_syncstatus from the word aligner). When the rate matcher receives either of the two 10-bit control patterns followed by the respective 10-bit skip pattern, it inserts or deletes the 10-bit skip pattern as necessary to avoid the rate match FIFO from overflowing or under-running. The rate match FIFO can delete/insert a maximum of one skip pattern from a cluster.

The rate match FIFO may perform multiple insertion or deletion if the ppm difference is more than the allowable 200 ppm range. Ensure that the ppm difference in your system is less than 200 ppm.

XAUI Mode

XAUI mode provides the bonded (×4) transceiver channel datapath configuration for XAUI protocol implementation. The Cyclone IV GX transceivers configured in XAUI mode provides the following functions:

- XGMII-to-PCS code conversion at transmitter datapath
- PCS-to-XGMII code conversion at receiver datapath
- channel deskewing of four lanes
- 8B/10B encoding and decoding
- IEEE P802.3ae-compliant synchronization state machine
- clock rate compensation

The XAUI is a self-managed interface to transparently extend the physical reach of the XGMII between the reconciliation sublayer and the PHY layer in the 10 Gbps LAN as shown in Figure 1–62. The XAUI interface consists of four lanes, each running at 3.125 Gbps with 8B/10B encoded data for a total of actual 10 Gbps data throughput. At the transmit side of the XAUI interface, the data and control characters are

Figure 1–72 shows the two paths in reverse serial loopback mode.

Figure 1–72. Reverse Serial Loopback ⁽¹⁾

Notes to Figure 1-72:

- (1) Grayed-Out Blocks are Not Active in this mode.
- (2) Post-CDR reverse serial loopback path.
- (3) Pre-CDR reverse serial loopback path.

Self Test Modes

Each transceiver channel in the Cyclone IV GX device contains modules for pattern generator and verifier. Using these built-in features, you can verify the functionality of the functional blocks in the transceiver channel without requiring user logic. The self test functionality is provided as an optional mechanism for debugging transceiver channels.

There are three types of supported pattern generators and verifiers:

- Built-in self test (BIST) incremental data generator and verifier—test the complete transmitter PCS and receiver PCS datapaths for bit errors with parallel loopback before the PMA blocks.
- Pseudo-random binary sequence (PRBS) generator and verifier—the PRBS generator and verifier interface with the serializer and deserializer in the PMA blocks. The advantage of using a PRBS data stream is that the randomness yields an environment that stresses the transmission medium. In the data stream, you can observe both random jitter and deterministic jitter using a time interval analyzer, bit error rate tester, or oscilloscope.
- High frequency and low frequency pattern generator—the high frequency patterns generate alternate ones and zeros and the low frequency patterns generate five ones and five zeroes. These patterns do not have a corresponding verifier.

The self-test features are only supported in Basic mode.

All Supported Functional Modes Except the PCIe Functional Mode

This section describes reset sequences for transceiver channels in bonded and non-bonded configurations. Timing diagrams of some typical configurations are shown to facilitate proper reset sequence implementation. In these functional modes, you can set the receiver CDR either in automatic lock or manual lock mode.

In manual lock mode, the receiver CDR locks to the reference clock (lock-to-reference) or the incoming serial data (lock-to-data), depending on the logic levels on the rx_locktorefclk and rx_locktodata signals. With the receiver CDR in manual lock mode, you can either configure the transceiver channels in the Cyclone IV GX device in a non-bonded configuration or a bonded configuration. In a bonded configuration, for example in XAUI mode, four channels are bonded together.

Table 2–4 lists the lock-to-reference (LTR) and lock-to-data (LTD) controller lock modes for the rx_locktorefclk and rx_locktodata signals.

rx_locktorefclk	rx_locktodata	LTR/LTD Controller Lock Mode
1	0	Manual, LTR Mode
—	1	Manual, LTD Mode
0	0	Automatic Lock Mode

Table 2–4. Lock-To-Reference and Lock-To-Data Modes

Bonded Channel Configuration

In a bonded channel configuration, you can reset all the bonded channels simultaneously. Examples of bonded channel configurations are the XAUI, PCIe Gen1 ×2 and ×4, and Basic ×2 and ×4 functional modes. In Basic ×2 and ×4 functional mode, you can bond **Transmitter Only** channels together.

In XAUI mode, the receiver and transmitter channels are bonded. Each of the receiver channels in this mode has its own rx_freqlocked output status signals. You must consider the timing of these signals in the reset sequence.

Table 2–5 lists the reset and power-down sequences for bonded configurations under the stated functional modes.

Table 2–5.	Reset and	Power-Down	Sequences 1	for Bonded	Channel	Configurations
------------	-----------	------------	-------------	------------	---------	----------------

Channel Set Up	Receiver CDR Mode	Refer to				
Transmitter Only	Basic ×2 and ×4	"Transmitter Only Channel" on page 2–7				
Receiver and Transmitter	Automatic lock mode for XAUI functional mode	"Receiver and Transmitter Channel—Receiver CDR in Automatic Lock Mode" on page 2–8				
Receiver and Transmitter	Manual lock mode for XAUI functional mode	"Receiver and Transmitter Channel—Receiver CDR in Manual Lock Mode" on page 2–9				

Read Transaction

If you want to read the existing values from a specific channel connected to the ALTGX_RECONFIG instance, observe the corresponding byte positions of the PMA control output port after the read transaction is completed.

For example, if the number of channels controlled by the ALTGX_RECONFIG is two, the tx_vodctrl_out is 6 bits wide. The tx_vodctrl_out[2:0] signal corresponds to channel 1 and the tx vodctrl_out[5:3] signal corresponds to channel 2.

To complete a read transaction to the $\rm V_{OD}$ values of the second channel, perform the following steps:

- 1. Before you initiate a read transaction, set the rx_tx_duplex_sel port to **2'b10** so that only the transmit PMA controls are read from the transceiver channel.
- 2. Ensure that the busy signal is low before you start a read transaction.
- 3. Assert the read signal for one reconfig_clk clock cycle. This initiates the read transaction.
- 4. The busy output status signal is asserted high to indicate that the dynamic reconfiguration controller is busy reading the PMA control settings.
- 5. When the read transaction has completed, the busy signal goes low. The data_valid signal is asserted, indicating that the data available at the read control signal is valid.
- 6. To read the current V_{OD} values in channel 2, observe the values in <code>tx_vodctrl_out[5:3]</code>.

In the waveform example shown in Figure 3–7, the transmit V_{OD} settings written in channels 1 and 2 prior to the read transaction are 3'b001 and 3'b010, respectively.

Figure 3-7. Read Transaction Waveform—Use the same control signal for all the channels Option Enabled

Note to Figure 3-7:

(1) In this waveform example, you want to read from only the transmitter portion of all the channels.

Simultaneous write and read transactions are not allowed.

Device	Performance												
Device	C6	C7	C8	C8L ⁽¹⁾	C9L ⁽¹⁾	17	I8L ⁽¹⁾	A7	Unit				
EP4CE55	500	437.5	402	362	265	437.5	362	—	MHz				
EP4CE75	500	437.5	402	362	265	437.5	362	—	MHz				
EP4CE115	—	437.5	402	362	265	437.5	362	—	MHz				
EP4CGX15	500	437.5	402			437.5	—	—	MHz				
EP4CGX22	500	437.5	402	—	—	437.5	—	—	MHz				
EP4CGX30	500	437.5	402	—	—	437.5	—	—	MHz				
EP4CGX50	500	437.5	402			437.5	—	—	MHz				
EP4CGX75	500	437.5	402	—	—	437.5	—	—	MHz				
EP4CGX110	500	437.5	402			437.5	—	_	MHz				
EP4CGX150	500	437.5	402	—	—	437.5	—	—	MHz				

Table 1–24. Clock Tree Performance for Cyclone IV Devices (Part 2 of 2)

Note to Table 1-24:

(1) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades.

PLL Specifications

Table 1–25 lists the PLL specifications for Cyclone IV devices when operating in the commercial junction temperature range (0°C to 85°C), the industrial junction temperature range (–40°C to 100°C), the extended industrial junction temperature range (–40°C to 125°C), and the automotive junction temperature range (–40°C to 125°C). For more information about the PLL block, refer to "Glossary" on page 1–37.

Table 1–25. PLL Specifications for Cyclone IV Devices ^{(1), (2)} (Part 1 of 2)

Symbol	Parameter	Min	Тур	Max	Unit
	Input clock frequency (-6, -7, -8 speed grades)	5	_	472.5	MHz
f _{IN} (3)	Input clock frequency (-8L speed grade)	5	_	362	MHz
	Input clock frequency (-9L speed grade)	5	_	265	MHz
f _{INPFD}	PFD input frequency	5		325	MHz
f _{VCO} (4)	PLL internal VCO operating range	600	_	1300	MHz
f _{INDUTY}	Input clock duty cycle	40	_	60	%
t _{INJITTER CCJ} (5)	Input clock cycle-to-cycle jitter $F_{REF} \geq 100 \mbox{ MHz}$	_	_	0.15	UI
	F _{REF} < 100 MHz	—		±750	ps
f _{OUT_EXT} (external clock output) ⁽³⁾	PLL output frequency	_	_	472.5	MHz
	PLL output frequency (-6 speed grade)	_	_	472.5	MHz
	PLL output frequency (-7 speed grade)	—	_	450	MHz
f _{OUT} (to global clock)	PLL output frequency (-8 speed grade)	_	_	402.5	MHz
	PLL output frequency (-8L speed grade)	_	_	362	MHz
	PLL output frequency (-9L speed grade)	—	_	265	MHz
t _{outduty}	Duty cycle for external clock output (when set to 50%)	45	50	55	%
t _{LOCK}	Time required to lock from end of device configuration			1	ms

Symbol	Parameter	Min	Тур	Max	Unit
t _{DLOCK}	Time required to lock dynamically (after switchover, reconfiguring any non-post-scale counters/delays or areset is deasserted)	_	_	1	ms
t _{outjitter_period_dedclk} (6)	Dedicated clock output period jitter $F_{OUT} \ge 100 \text{ MHz}$	_		300	ps
	F _{OUT} < 100 MHz	—	_	30	mUI
toutjitter_ccj_dedclk <i>(6)</i>	Dedicated clock output cycle-to-cycle jitter $F_{\text{OUT}} \geq 100 \text{ MHz}$	_	_	300	ps
	F _{OUT} < 100 MHz	_	—	30	mUI
toutjitter period 10 <i>(6)</i>	Regular I/O period jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	—	75	mUI
toutjitter ccj 10 (6)	Regular I/O cycle-to-cycle jitter $F_{OUT} \ge 100 \text{ MHz}$	_	_	650	ps
	F _{OUT} < 100 MHz	—	—	75	mUI
t _{PLL_PSERR}	Accuracy of PLL phase shift		_	±50	ps
t _{ARESET}	Minimum pulse width on areset signal.	10	—	_	ns
t _{configpll}	Time required to reconfigure scan chains for PLLs	_	3.5 (7)	_	SCANCLK cycles
f _{scanclk}	scanclk frequency	_	_	100	MHz
t _{CASC_OUTJITTER_PERIOD_DEDCLK}	Period jitter for dedicated clock output in cascaded PLLs ($F_{OUT} \ge 100 \text{ MHz}$)	_		425	ps
(8), (9)	Period jitter for dedicated clock output in cascaded PLLs (F _{OUT} < 100 MHz)			42.5	mUI

Table 1–25.	PLL Specifications	for Cyclone IV Devices ^{(1), (2)}	(Part 2 of 2)
-------------	---------------------------	--	---------------

Notes to Table 1-25:

- (1) This table is applicable for general purpose PLLs and multipurpose PLLs.
- (2) You must connect $V_{CCD PLL}$ to V_{CCINT} through the decoupling capacitor and ferrite bead.
- (3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O standard.
- (4) The V_{C0} frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the V_{C0} post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the f_{VC0} specification.
- (5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less than 200 ps.
- (6) Peak-to-peak jitter with a probability level of 10⁻¹² (14 sigma, 99.9999999974404% confidence level). The output jitter specification applies to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
- (7) With 100-MHz scanclk frequency.

(8) The cascaded PLLs specification is applicable only with the following conditions:

- $\blacksquare \quad Upstream \ PLL 0.59 \ MHz \leq Upstream \ PLL \ bandwidth < 1 \ MHz$
- Downstream PLL—Downstream PLL bandwidth > 2 MHz
- (9) PLL cascading is not supported for transceiver applications.

Symbol	Madaa	C6		C7, 17		C8, A7		C8L, 18L		C9L		Ilmit
Symbol	modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	420	5	370	5	320	5	320	5	250	MHz
	×8	5	420	5	370	5	320	5	320	5	250	MHz
f _{HSCLK} (input	×7	5	420	5	370	5	320	5	320	5	250	MHz
frequency)	×4	5	420	5	370	5	320	5	320	5	250	MHz
	×2	5	420	5	370	5	320	5	320	5	250	MHz
	×1	5	420	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	840	100	740	100	640	100	640	100	500	Mbps
	×8	80	840	80	740	80	640	80	640	80	500	Mbps
	×7	70	840	70	740	70	640	70	640	70	500	Mbps
חטוטח	×4	40	840	40	740	40	640	40	640	40	500	Mbps
	×2	20	840	20	740	20	640	20	640	20	500	Mbps
	×1	10	420	10	402.5	10	402.5	10	362	10	265	Mbps
t _{DUTY}	—	45	55	45	55	45	55	45	55	45	55	%
TCCS	—	_	200		200	_	200	_	200	_	200	ps
Output jitter (peak to peak)	_	_	500	_	500	_	550	_	600	_	700	ps
t _{LOCK} (2)	—		1		1		1		1		1	ms

Table 1–34. True LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)}

Notes to Table 1-34:

(1) Cyclone IV E—true LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Cyclone IV GX—true LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6.

(2) t_{LOCK} is the time required for the PLL to lock from the end-of-device configuration.

(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, C8, I7, and A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–35. Emulated LVDS Transmitter Timing Specifications for Cyclone IV Devices ^{(1), (3)} (Part 1 of 2)

Ormulaal	Medee	C6		C7, I7		C8, A7		C8L, 18L		C9L		11
Symbol	modes	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Unit
	×10	5	320	5	320	5	275	5	275	5	250	MHz
	×8	5	320	5	320	5	275	5	275	5	250	MHz
f _{HSCLK} (input	×7	5	320	5	320	5	275	5	275	5	250	MHz
frequency)	×4	5	320	5	320	5	275	5	275	5	250	MHz
	×2	5	320	5	320	5	275	5	275	5	250	MHz
	×1	5	402.5	5	402.5	5	402.5	5	362	5	265	MHz
	×10	100	640	100	640	100	550	100	550	100	500	Mbps
	×8	80	640	80	640	80	550	80	550	80	500	Mbps
	×7	70	640	70	640	70	550	70	550	70	500	Mbps
HSIUDK	×4	40	640	40	640	40	550	40	550	40	500	Mbps
	×2	20	640	20	640	20	550	20	550	20	500	Mbps
	×1	10	402.5	10	402.5	10	402.5	10	362	10	265	Mbps

Table 1–44 and Table 1–45 list the IOE programmable delay for Cyclone IV GX devices.

Table 1-44.	IOE Programmable Dela	y on Column Pins for C	yclone IV GX Devices ^{(1), (2)}
-------------	-----------------------	------------------------	--

		Numbor	Min Offset	Max Offset							
Parameter	Paths Affected	of Settings		Fast (Corner		Unit				
				C6	17	C6	C7	C8	17		
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.313	1.209	2.184	2.336	2.451	2.387	ns	
Input delay from pin to input register	Pad to I/O input register	8	0	1.312	1.208	2.200	2.399	2.554	2.446	ns	
Delay from output register to output pin	I/O output register to pad	2	0	0.438	0.404	0.751	0.825	0.886	0.839	ns	
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.713	0.682	1.228	1.41	1.566	1.424	ns	

Notes to Table 1-44:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of the Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software.

		Numbor	Min Offset	Max Offset							
Parameter	Paths Affected	of		Fast (Corner		Unit				
		Settings		C6	17	C6	C7	C8	17		
Input delay from pin to internal cells	Pad to I/O dataout to core	7	0	1.314	1.210	2.209	2.398	2.526	2.443	ns	
Input delay from pin to input register	Pad to I/O input register	8	0	1.313	1.208	2.205	2.406	2.563	2.450	ns	
Delay from output register to output pin	I/O output register to pad	2	0	0.461	0.421	0.789	0.869	0.933	0.884	ns	
Input delay from dual-purpose clock pin to fan-out destinations	Pad to global clock network	12	0	0.712	0.682	1.225	1.407	1.562	1.421	ns	

Table 1–45. IOE Programmable Delay on Row Pins for Cyclone IV GX Devices (1), (2)

Notes to Table 1-45:

(1) The incremental values for the settings are generally linear. For exact values of each setting, use the latest version of Quartus II software.

(2) The minimum and maximum offset timing numbers are in reference to setting **0** as available in the Quartus II software