Intel - EP4CE40F23C6N Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	2475
Number of Logic Elements/Cells	39600
Total RAM Bits	1161216
Number of I/O	328
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce40f23c6n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Chapter Revision Dates	ix
Additional Information	
How to Contact Altera	Info–1
Typographic Conventions	Info–1

Section I. Device Core

Chapter 1. Cyclone IV FPGA Device Family Overview

Cyclone IV Device Family Features	1–1
Device Resources	1–3
Package Matrix	1–5
Cyclone IV Device Family Speed Grades	1–7
Cyclone IV Device Family Architecture	1–8
FPGA Core Fabric	1–8
I/O Features	1–9
Clock Management	1–9
External Memory Interfaces	1–9
Configuration	1–10
High-Speed Transceivers (Cyclone IV GX Devices Only)	1–10
Hard IP for PCI Express (Cyclone IV GX Devices Only)	1–11
Reference and Ordering Information	1–12
Document Revision History	1–13

Chapter 2. Logic Elements and Logic Array Blocks in Cyclone IV Devices

Logic Elements	. 2–1
LE Features	. 2–2
LE Operating Modes	. 2–3
Normal Mode	. 2–3
Arithmetic Mode	. 2–4
Logic Array Blocks	. 2–5
Topology	. 2–5
LAB Interconnects	. 2–6
LAB Control Signals	. 2–6
Document Revision History	. 2–7

Chapter 3. Memory Blocks in Cyclone IV Devices

Overview	3–1
Control Signals	3–3
Parity Bit Support	3–3
Byte Enable Support	3–3
Packed Mode Support	3–4
Address Clock Enable Support	3–5
Mixed-Width Support	3–6
Asynchronous Clear	3–7
Memory Modes	3–7
Single-Port Mode	3–8
Simple Dual-Port Mode	3–9

1. Cyclone IV FPGA Device Family Overview

Altera's new Cyclone[®] IV FPGA device family extends the Cyclone FPGA series leadership in providing the market's lowest-cost, lowest-power FPGAs, now with a transceiver variant. Cyclone IV devices are targeted to high-volume, cost-sensitive applications, enabling system designers to meet increasing bandwidth requirements while lowering costs.

Built on an optimized low-power process, the Cyclone IV device family offers the following two variants:

- Cyclone IV E—lowest power, high functionality with the lowest cost
- Cyclone IV GX—lowest power and lowest cost FPGAs with 3.125 Gbps transceivers

Cyclone IV E devices are offered in core voltage of 1.0 V and 1.2 V.

To For more information, refer to the *Power Requirements for Cyclone IV Devices* chapter.

Providing power and cost savings without sacrificing performance, along with a low-cost integrated transceiver option, Cyclone IV devices are ideal for low-cost, small-form-factor applications in the wireless, wireline, broadcast, industrial, consumer, and communications industries.

Cyclone IV Device Family Features

The Cyclone IV device family offers the following features:

- Low-cost, low-power FPGA fabric:
 - 6K to 150K logic elements
 - Up to 6.3 Mb of embedded memory
 - Up to 360 18 × 18 multipliers for DSP processing intensive applications
 - Protocol bridging applications for under 1.5 W total power

^{© 2016} Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera asumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Reference and Ordering Information

Figure 1–2 shows the ordering codes for Cyclone IV GX devices.

Figure 1–2. Packaging Ordering Information for the Cyclone IV GX Device

Figure 1–3 shows the ordering codes for Cyclone IV E devices.

Table 5–2. GCLK Network Connections for EP4CGX30, EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 Devices ^{(1), (2)} (Part 4 of 4)

GCLK Network Clock														GCI	LK Ne	etwo	rks													
Sources	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
DPCLK17				_	—	—	_	—	—	—	—	—	_	—	—	—	—	—	-	\checkmark	—	—	_		_	—	—	—	—	—

Notes to Table 5-2:

(1) EP4CGX30 information in this table refers to only EP4CGX30 device in F484 package.

(2) PLL_1, PLL_2, PLL_3, and PLL_4 are general purpose PLLs while PLL_5, PLL_6, PLL_7, and PLL_8 are multipurpose PLLs.

(3) PLL_7 and PLL_8 are not available in EP4CXGX30, EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices in F484 package.

GCLK Network Clock		GCLK Networks																		
Sources	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
CLK1	—	\checkmark	\checkmark	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
CLK2/DIFFCLK_1p		\checkmark		\checkmark	\checkmark					_								_	-	—
CLK3/DIFFCLK_1n	\checkmark			\checkmark						_								_	_	_
CLK4/DIFFCLK_2p	-	_	-	-	-	\checkmark	-	>	-	<										_
CLK5/DIFFCLK_2n							\checkmark	\checkmark			—	—	—	—	—		—			—
CLK6/DIFFCLK_3p							~		\checkmark	\checkmark								_	_	_
CLK7/DIFFCLK_3n	-	_	-	-	-	\checkmark	-		\checkmark	Ι										_
CLK8/DIFFCLK_5n (2)								—			\checkmark	_	\checkmark	_	\checkmark		_	Ι	Ι	—
CLK9/DIFFCLK_5p (2)								—			—	\checkmark	\checkmark	—	—		—			—
CLK10/DIFFCLK_4n (2)	_	_	_	_	—	_	—	_	_	_		~	_	~	~	_		_	_	
CLK11/DIFFCLK_4p (2)	_	_	_	_	_	_	_	_	_	_	~	_	_	~	_	_	_	_	_	
CLK12/DIFFCLK_7n (2)	_		_	_	_	_	_		_	_	_			_		~	_	~	_	~
CLK13/DIFFCLK_7p (2)					_	_	_	_		_	_	_	_	_	_	_	\checkmark	~	_	
CLK14/DIFFCLK_6n (2)		_	—		—		—	_	—	_		_	_				~	_	~	\checkmark

Table 5-3. GCLK Network Connections for Cyclone IV E Devices (1) (Part 1 of 3)

Differential I/O Standard Termination

Differential I/O standards typically require a termination resistor between the two signals at the receiver. The termination resistor must match the differential load impedance of the bus (refer to Figure 6–7 and Figure 6–8).

Cyclone IV devices support differential SSTL-2 and SSTL-18, differential HSTL-18, HSTL-15, and HSTL-12, PPDS, LVDS, RSDS, mini-LVDS, and differential LVPECL.

Figure 6-7. Cyclone IV Devices Differential HSTL I/O Standard Class I and Class II Interface and Termination

Figure 6–8. Cyclone IV Devices Differential SSTL I/O Standard Class I and Class II Interface and Termination (1)

Note to Figure 6-8:

(1) Only Differential SSTL-2 I/O standard supports Class II output.

During device configuration, Cyclone IV E devices read configuration data using the parallel interface and configure their SRAM cells. This scheme is referred to as the AP configuration scheme because the device controls the configuration interface. This scheme contrasts with the FPP configuration scheme, where an external host controls the interface.

AP Configuration Supported Flash Memories

The AP configuration controller in Cyclone IV E devices is designed to interface with two industry-standard flash families—the Micron P30 Parallel NOR flash family and the Micron P33 Parallel NOR flash family. Unlike serial configuration devices, both of the flash families supported in AP configuration scheme are designed to interface with microprocessors. By configuring from an industry standard microprocessor flash which allows access to the flash after entering user mode, the AP configuration scheme allows you to combine configuration data and user data (microprocessor boot code) on the same flash memory.

The Micron P30 flash family and the P33 flash family support a continuous synchronous burst read mode at 40 MHz DCLK frequency for reading data from the flash. Additionally, the Micron P30 and P33 flash families have identical pin-out and adopt similar protocols for data access.

Cyclone IV E devices use a 40-MHz oscillator for the AP configuration scheme. The oscillator is the same oscillator used in the Cyclone IV E AS configuration scheme.

Table 8–10 lists the supported families of the commodity parallel flash for the AP configuration scheme.

Flash Memory Density	Micron P30 Flash Family ⁽²⁾	Micron P33 Flash Family ⁽³⁾				
64 Mbit	\checkmark	\checkmark				
128 Mbit	~	\checkmark				
256 Mbit	\checkmark	\checkmark				

Table 8–10. Supported Commodity Flash for AP Configuration Scheme for Cyclone IV E Devices $^{(1)}$

Notes to Table 8-10:

(1) The AP configuration scheme only supports flash memory speed grades of 40 MHz and above.

(2) 3.3-, 3.0-, 2.5-, and 1.8-V I/O options are supported for the Micron P30 flash family.

(3) 3.3-, 3.0- and 2.5-V I/O options are supported for the Micron P33 flash family.

Configuring Cyclone IV E devices from the Micron P30 and P33 family 512-Mbit flash memory is possible, but you must properly drive the extra address and FLASH_nCE pins as required by these flash memories.

•••

To check for supported speed grades and package options, refer to the respective flash datasheets.

The AP configuration scheme in Cyclone IV E devices supports flash speed grades of 40 MHz and above. However, AP configuration for all these speed grades must be capped at 40 MHz. The advantage of faster speed grades is realized when your design in the Cyclone IV E devices accesses flash memory in user mode.

After the first device completes configuration in a multi-device configuration chain, its nCEO pin drives low to activate the nCE pin of the second device, which prompts the second device to begin configuration. The second device in the chain begins configuration in one clock cycle. Therefore, the transfer of data destinations is transparent to the external host device. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF_DONE configuration pins are connected to every device in the chain. To ensure signal integrity and prevent clock skew problems, configuration signals may require buffering. Ensure that DCLK and DATA lines are buffered. All devices initialize and enter user mode at the same time because all CONF_DONE pins are tied together.

If any device detects an error, configuration stops for the entire chain and you must reconfigure the entire chain because all nSTATUS and CONF_DONE pins are tied together. For example, if the first device flags an error on nSTATUS, it resets the chain by pulling its nSTATUS pin low. This behavior is similar to a single device detecting an error.

You can have multiple devices that contain the same configuration data in your system. To support this configuration scheme, all device nCE inputs are tied to GND, while the nCEO pins are left floating. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF_DONE configuration pins are connected to every device in the chain. To ensure signal integrity and prevent clock skew problems, configuration signals may require buffering. Ensure that the DCLK and DATA lines are buffered. Devices must be of the same density and package. All devices start and complete configuration at the same time.

Figure 8–15 shows a multi-device PS configuration when both Cyclone IV devices are receiving the same configuration data.

Figure 8-15. Multi-Device PS Configuration When Both Devices Receive the Same Data

Notes to Figure 8-15:

- (1) You must connect the pull-up resistor to a supply that provides an acceptable input signal for all devices in the chain. V_{CC} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host.
- (2) The nCEO pins of both devices are left unconnected or used as user I/O pins when configuring the same configuration data into multiple devices.
- (3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA [0] and DCLK must fit the maximum overshoot outlined in Equation 8–1 on page 8–5.

Use the ACTIVE_DISENGAGE instruction with the CONFIG_IO instruction to interrupt configuration. Table 8–16 lists the sequence of instructions to use for various CONFIG_IO usage scenarios.

	Configuration Scheme and Current State of the Cyclone IV Device													
JTAG Instruction	l (Inte	Prior to U rrupting (ser Mod Configura	e ation)		User	Mode		Power Up					
	PS	FPP	AS	AP	PS	FPP	AS	AP	PS	FPP	AS	AP		
ACTIVE_DISENGAGE	0	0	0	0	0	0	0	0	—	—	—			
CONFIG_IO	R	R	R	R	R	R	R	R	NA	NA	NA	NA		
JTAG Boundary Scan Instructions (no JTAG_PROGRAM)	0	0	0	0	0	0	0	0	_	_	_	_		
ACTIVE_ENGAGE			R (2)	R (2)			R (2)	R (2)			—			
PULSE_NCONFIG	Α	А	A (3)	A (3)	А	Α	0	0						
Pulse nCONFIG pin			A (3)	A (3)			0	0	_					
JTAG TAP Reset	R	R	R	R	R	R	R	R	_		_			

Table 8–16. JTAG CONFIG_IO (without JTAG_PROGRAM) Instruction Flows (1)

Notes to Table 8-16:

(1) You must execute "R" indicates that the instruction before the next instruction, "O" indicates the optional instruction, "A" indicates that the instruction must be executed, and "NA" indicates that the instruction is not allowed in this mode.

(2) Required if you use ACTIVE_DISENGAGE.

(3) Neither of the instruction is required if you use ACTIVE ENGAGE.

The CONFIG_IO instruction does not hold nSTATUS low until reconfiguration. You must disengage the AS or AP configuration controller by issuing the ACTIVE_DISENGAGE and ACTIVE_ENGAGE instructions when active configuration is interrupted. You must issue the ACTIVE_DISENGAGE instruction alone or prior to the CONFIG_IO instruction if the JTAG_PROGRAM instruction is to be issued later (Table 8–17). This puts the active configuration controllers into the idle state. The active configuration controller is reengaged after user mode is reached through JTAG programming (Table 8–17).

While executing the CONFIG IO instruction, all user I/Os are tri-stated.

If reconfiguration after interruption is performed using configuration modes (rather than using JTAG_PROGRAM), it is not necessary to issue the ACTIVE_DISENGAGE instruction prior to CONFIG_IO. You can start reconfiguration by either pulling nCONFIG low for at least 500 ns or issuing the PULSE_NCONFIG instruction. If the ACTIVE_DISENGAGE instruction was issued and the JTAG_PROGRAM instruction fails to enter user mode, you must issue the ACTIVE_ENGAGE instruction to reactivate the active configuration controller. Issuing the ACTIVE_ENGAGE instruction also triggers reconfiguration in configuration modes; therefore, it is not necessary to pull nCONFIG low or issue the PULSE_NCONFIG instruction.

Remote System Upgrade

Cyclone IV devices support remote system upgrade in AS and AP configuration schemes. You can also implement remote system upgrade with advanced Cyclone IV features such as real-time decompression of configuration data in the AS configuration scheme.

Remote system upgrade is not supported in a multi-device configuration chain for any configuration scheme.

Functional Description

The dedicated remote system upgrade circuitry in Cyclone IV devices manages remote configuration and provides error detection, recovery, and status information. A Nios[®] II processor or a user logic implemented in the Cyclone IV device logic array provides access to the remote configuration data source and an interface to the configuration memory.

Configuration memory refers to serial configuration devices (EPCS) or supported parallel flash memory, depending on the configuration scheme that is used.

The remote system upgrade process of the Cyclone IV device consists of the following steps:

- 1. A Nios II processor (or user logic) implemented in the Cyclone IV device logic array receives new configuration data from a remote location. The connection to the remote source is a communication protocol, such as the transmission control protocol/Internet protocol (TCP/IP), peripheral component interconnect (PCI), user datagram protocol (UDP), universal asynchronous receiver/transmitter (UART), or a proprietary interface.
- 2. The Nios II processor (or user logic) writes this new configuration data into a configuration memory.
- 3. The Nios II processor (or user logic) starts a reconfiguration cycle with the new or updated configuration data.
- 4. The dedicated remote system upgrade circuitry detects and recovers from any error that might occur during or after the reconfiguration cycle and provides error status information to the user design.

Figure 8–30 shows the steps required for performing remote configuration updates (the numbers in Figure 8–30 coincide with steps 1–3).

Figure 8–30. Functional Diagram of Cyclone IV Device Remote System Upgrade

P

Figure 8–34 shows the control register bit positions. Table 8–23 defines the control register bit contents. The numbers in Figure 8–34 show the bit position of a setting in a register. For example, bit number 35 is the enable bit for the watchdog timer.

Figure 8-34. Remote System Upgrade Control Register

38	37	36	35	34	33	12	11	0
Rsv2	Cd_early	Osc_int	Wd_en	Rsv1	Ru_addr	ress[210]	Wd_timer[[110]

Table 8–23. Remote System Upgrade Control Register Contents

Control Register Bit	Value	Definition
Wd_timer[110]	12'b00000000000	User watchdog time-out value (most significant 12 bits of 29-bit count value: {Wd_timer[110],17'b1000})
Ru_address[210]	22'b00000000000000000000000000000000000	Configuration address (most significant 22 bits of 24-bit boot address value: boot_address[23:0] = {Ru_address[210],2'b0})
Rsv1	1'b0	Reserved bit
Wd_en	1'b1	User watchdog timer enable bit
Osc_int (1)	1'b1	Internal oscillator as startup state machine clock enable bit
Cd_early (1)	1'b1	Early CONF_DONE check
Rsv2	1'b1	Reserved bit

Note to Table 8-23:

(1) Option bit for the application configuration.

When enabled, the early CONF_DONE check (Cd_early) option bit ensures that there is a valid configuration at the boot address specified by the factory configuration and that it is of the proper size. If an invalid configuration is detected or the CONF_DONE pin is asserted too early, the device resets and then reconfigures the factory configuration image. The internal oscillator (as the startup state machine clock [Osc_int] option bit) ensures a functional startup clock to eliminate the hanging of startup. When all option bits are turned on, they provide complete coverage for the programming and startup portions of the application configuration. Altera recommends turning on both the Cd early and Osc int option bits.

The Cd_early and Osc_int option bits for the application configuration must be turned on by the factory configuration.

Remote System Upgrade Status Register

The remote system upgrade status register specifies the reconfiguration trigger condition. The various trigger and error conditions include:

- Cyclical redundancy check (CRC) error during application configuration
- nSTATUS assertion by an external device due to an error
- Cyclone IV device logic array triggers a reconfiguration cycle, possibly after downloading a new application configuration image

Device	Boundary-Scan Register Length
EP4CGX75	1006
EP4CGX110	1495
EP4CGX150	1495

Table 10–1. B	Boundarv-Scan Re	aister Lenath for (Cyclone IV Devices	(Part 2 of 2)
		giotoi mongtii ioi t	· · · · · · · · · · · · · · · · · · ·	(

Note to Table 10-1:

(1) For the F484 package of the EP4CGX30 device, the boundary-scan register length is 1006.

Table 10–2 lists the IDCODE information for Cyclone IV devices.

Table 10-2.	IDCODE Information	for 32-Bit C	yclone IV Devices
-------------	---------------------------	--------------	-------------------

		IDCODE (32 Bits) (1	0	
Device	Version (4 Bits)	Part Number (16 Bits)	Manufacturer Identity (11 Bits)	LSB (1 Bit) ⁽²⁾
EP4CE6	0000	0010 0000 1111 0001	000 0110 1110	1
EP4CE10	0000	0010 0000 1111 0001	000 0110 1110	1
EP4CE15	0000	0010 0000 1111 0010	000 0110 1110	1
EP4CE22	0000	0010 0000 1111 0011	000 0110 1110	1
EP4CE30	0000	0010 0000 1111 0100	000 0110 1110	1
EP4CE40	0000	0010 0000 1111 0100	000 0110 1110	1
EP4CE55	0000	0010 0000 1111 0101	000 0110 1110	1
EP4CE75	0000	0010 0000 1111 0110	000 0110 1110	1
EP4CE115	0000	0010 0000 1111 0111	000 0110 1110	1
EP4CGX15	0000	0010 1000 0000 0001	000 0110 1110	1
EP4CGX22	0000	0010 1000 0001 0010	000 0110 1110	1
EP4CGX30 (3)	0000	0010 1000 0000 0010	000 0110 1110	1
EP4CGX30 (4)	0000	0010 1000 0010 0011	000 0110 1110	1
EP4CGX50	0000	0010 1000 0001 0011	000 0110 1110	1
EP4CGX75	0000	0010 1000 0000 0011	000 0110 1110	1
EP4CGX110	0000	0010 1000 0001 0100	000 0110 1110	1
EP4CGX150	0000	0010 1000 0000 0100	000 0110 1110	1

Notes to Table 10-2:

(1) The MSB is on the left.

(2) The IDCODE LSB is always 1.

(3) The IDCODE is applicable for all packages except for the F484 package.

(4) The IDCODE is applicable for the F484 package only.

IEEE Std.1149.6 mandates the addition of two new instructions: EXTEST_PULSE and EXTEST_TRAIN. These two instructions enable edge-detecting behavior on the signal path containing the AC pins.

Configuring the hard IP module requires using the PCI Express Compiler. When configuring the transceiver for PCIe implementation with hard IP module, the byte serializer and deserializer are not enabled, providing an 8-bit transceiver-PIPE-hard IP data interface width running at 250 MHz clock frequency.

To For more information about PCIe implementation with hard IP module, refer to the *PCI Express Compiler User Guide*.

Figure 1–49 shows the transceiver configuration in PIPE mode.

	· · · · · · · · · · · · · · · · · · ·
Functional Mode	PCI Express (PIPE)
Channel Bonding	×1, ×2, ×4
Low-Latency PCS	Disabled
Word Aligner (Pattern Length)	Automatic Synchronization State Machine (10-Bit)
8B/10B Encoder/Decoder	Enabled
Rate Match FIFO	Enabled
Byte SERDES	Enabled
Data Rate (Gbps)	2.5
Byte Ordering	Disabled
FPGA Fabric-to-Transceiver Interface Width	16-Bit
FPGA Fabric-to-Transceiver Interface Frequency (MHz)	125

Figure 1–49. Transceiver Configuration in PIPE Mode

When configuring the transceiver into PIPE mode using ALTGX megafunction for PCIe implementation, the PHY-MAC, data link and transaction layers must be implemented in user logics. The PCIe hard IP block is bypassed in this configuration.

Figure 1–59 shows an example of rate match FIFO insertion in the case where one symbol must be inserted. Because the rate match FIFO can only insert /I2/ ordered sets, it inserts one /I2/ ordered set (two symbols inserted).

Figure 1–59. Example of Rate Match FIFO Insertion in GIGE Mode

The rate match FIFO does not insert or delete code groups automatically to overcome FIFO empty or full conditions. In this case, the rate match FIFO asserts the rx_rmfifofull and rx_rmfifoempty flags for at least two recovered clock cycles to indicate rate match FIFO full and empty conditions, respectively. You must then assert the rx_digitalreset signal to reset the receiver PCS blocks.

Serial RapidIO Mode

Serial RapidIO mode provides the non-bonded (×1) transceiver channel datapath configuration for SRIO protocol implementation. The Cyclone IV GX transceiver provides the PMA and the following PCS functions:

- 8B/10B encoding and decoding
- lane synchronization state machine

Cyclone IV GX transceivers do not have built-in support for some PCS functions such as pseudo-random idle sequence generation and lane alignment in ×4 bonded channel configuration. If required, you must implement these functions in a user logics or external circuits.

The RapidIO Trade Association defines a high-performance, packet-switched interconnect standard to pass data and control information between microprocessors, digital signals, communications, network processes, system memories, and peripheral devices. The SRIO physical layer specification defines serial protocol running at 1.25 Gbps, 2.5 Gbps, and 3.125 Gbps in either single-lane (×1) or bonded four-lane (×4) at each line rate. Cyclone IV GX transceivers support single-lane (×1) configuration at all three line rates. Four ×1 channels configured in Serial RapidIO mode can be instantiated to achieve one non-bonded ×4 SRIO link. When implementing four ×1 SRIO channels, the receivers do not have lane alignment or deskew capability.

Figure 3–1 shows a conceptual view of the dynamic reconfiguration controller architecture. For a detailed description of the inputs and outputs of the ALTGX_RECONFIG instance, refer to "Error Indication During Dynamic Reconfiguration" on page 3–36.

Figure 3–1. Dynamic Reconfiguration Controller

Note to Figure 3-1:

(1) The PMA control ports consist of the V_{0D}, pre-emphasis, DC gain, and manual equalization controls.

C C

^o Only PMA reconfiguration mode supports manual equalization controls.

You can use one ALTGX_RECONFIG instance to control multiple transceiver blocks. However, you cannot use multiple ALTGX_RECONFIG instances to control one transceiver block. The **Offset cancellation for Receiver channels** option is automatically enabled in both the ALTGX and ALTGX_RECONFIG MegaWizard Plug-In Managers for **Receiver and Transmitter** and **Receiver only** configurations. It is not available for **Transmitter only** configurations. For **Receiver and Transmitter** and **Receiver only** configurations, you must connect the necessary interface signals between the ALTGX_RECONFIG and ALTGX (with receiver channels) instances.

Offset cancellation is automatically executed once every time the device is powered on. The control logic for offset cancellation is integrated into the dynamic reconfiguration controller. You must connect the ALTGX_RECONFIG instance to the ALTGX instances (with receiver channels) in your design. You must connect the reconfig_fromgxb, reconfig_togxb, and necessary clock signals to both the ALTGX_RECONFIG and ALTGX (with receiver channels) instances.

When the device powers up, the dynamic reconfiguration controller initiates offset cancellation on the receiver channel by disconnecting the receiver input pins from the receiver data path. Subsequently, the offset cancellation process goes through different states and culminates in the offset cancellation of the receiver buffer.

Offset cancellation process only occurs one time after power up and does not occur when subsequent reconfig_reset is asserted. If you assert reconfig_reset after the offset cancellation process is completed, the offset cancellation process will not run again.

If you assert reconfig_reset upon power up; offset cancellation will not begin until reconfig_reset is deasserted. If you assert reconfig_reset after power up but before offset cancellation process is completed; offset cancellation will not complete and restart only when reconfig_reset is deasserted.

Figure 3–2 shows the connection for offset cancellation mode.

Figure 3–2. ALTGX and ALTGX_RECONFIG Connection for the Offset Cancellation Process

Note to Figure 3-2:

(1) This block is active during the offset cancellation process.

- The dynamic reconfiguration controller sends and receives data to the transceiver channel through the reconfig_togxb and reconfig_fromgxb signals.
- The gxb_powerdown signal must not be asserted during the offset cancellation sequence.

Figure 3–5 shows the read transaction waveform for Method 1.

Figure 3–5. Read Transaction Waveform—Use 'logical_channel_address port' Option

Notes to Figure 3-5:

- (1) In this waveform example, you want to read from only the transmitter portion of the channel.
- (2) In this waveform example, the number of channels connected to the dynamic reconfiguration controller is four. Therefore, the logical channel address port is 2 bits wide.

Simultaneous write and read transactions are not allowed.

Method 2: Writing the Same Control Signals to Control All the Transceiver Channels

This method does not require the logical_channel_address port. The PMA controls of all the transceiver channels connected to the ALTGX_RECONFIG instance are reconfigured.

The **Use the same control signal for all the channels** option is available on the **Analog controls** tab of the ALTGX_RECONFIG MegaWizard Plug-In Manager. If you enable this option, the width of the PMA control ports are fixed as follows:

PMA Control Ports Used in a Write Transaction

- tx_vodctrl is fixed to 3 bits
- tx preemp is fixed to 5 bits
- rx eqdcgain is fixed to 2 bits
- rx_eqctrl is fixed to 4 bits

The following are the channel reconfiguration mode options:

- Channel interface reconfiguration
- Data rate division at receiver channel

Channel Interface Reconfiguration Mode

Enable this option if the reconfiguration of the transceiver channel involves the following changes:

- The reconfigured channel has a changed FPGA fabric-Transceiver channel interface data width
- The reconfigured channel has changed input control signals and output status signals
- The reconfigured channel has enabled and disabled the static PCS blocks of the transceiver channel

The following are the new input signals available when you enable this option:

- tx_datainfull—the width of this input signal depends on the number of channels you set up in the ALTGX MegaWizard Plug-In Manager. It is 22 bits wide per channel. This signal is available only for Transmitter only and Receiver and Transmitter configurations. This port replaces the existing tx_datain port.
- rx_dataoutfull—the width of this output signal depends on the number of channels you set up in the ALTGX MegaWizard Plug-In Manager. It is 32 bits wide per channel. This signal is available only for **Receiver only** and **Receiver and Transmitter** configurations. This port replaces the existing rx_dataout port.

The Quartus II software has legality checks for the connectivity of tx_datainfull and rx_dataoutfull and the various control and status signals you enable in the **Clocking/Interface** screen. For example, the Quartus II software allows you to select and connect the pipestatus and powerdn signals. It assumes that you are planning to switch to and from PCI Express (PIPE) functional mode.

Parameter	Condition		V _{CCI0} (V)											
		1.2		1.5		1.8		2.5		3.0		3.3		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
Bus hold trip point	_	0.3	0.9	0.375	1.125	0.68	1.07	0.7	1.7	0.8	2	0.8	2	V

Table 1–7. Bus Hold Parameter for Cyclone IV Devices (Part 2 of 2)⁽¹⁾

Note to Table 1-7:

(1) Bus hold trip points are based on the calculated input voltages from the JEDEC standard.

OCT Specifications

Table 1–8 lists the variation of OCT without calibration across process, temperature, and voltage (PVT).

Table 1–8. Series OCT Without Calibration Specifications for Cyclone IV Devices

		Resistance		
Description	V _{CCIO} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±30	±40	%
	2.5	±30	±40	%
Series OCT without calibration	1.8	±40	±50	%
Suistation	1.5	±50	±50	%
	1.2	±50	±50	%

OCT calibration is automatically performed at device power-up for OCT-enabled I/Os.

Table 1–9 lists the OCT calibration accuracy at device power-up.

Table 1–9.	Series OCT v	with Calibration	at Device Power-Up	o Specifications fo	r Cyclone IV
Devices ⁽¹⁾					

		Calibration		
Description	V _{ccio} (V)	Commercial Maximum	Industrial, Extended industrial, and Automotive Maximum	Unit
	3.0	±10	±10	%
Series OCT with	2.5	±10	±10	%
calibration at device	1.8	±10	±10	%
power-up	1.5	±10	±10	%
	1.2	±10	±10	%

Note to Table 1-9:

(1) This specification is not applicable to EP4CGX15, EP4CGX22, and EP4CGX30 devices.

***** For more information about receiver input and transmitter output waveforms, and for other differential I/O standards, refer to the *I/O Features in Cyclone IV Devices* chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard	v	/ _{ccio} (V)	V _{Swing(DC)} (V)		V _{X(AC)} (V)			V _{Swing(AC)} (V)		V _{OX(AC)} (V)		
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Max	Min	Тур	Max
SSTL-2 Class I, II	2.375	2.5	2.625	0.36	V _{CCIO}	$V_{CC10}/2 - 0.2$	_	V _{CCI0} /2 + 0.2	0.7	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125
SSTL-18 Class I, II	1.7	1.8	1.90	0.25	V _{CCIO}	V _{CCIO} /2 – 0.175	_	V _{CCI0} /2 + 0.175	0.5	V _{CCI} 0	V _{CCIO} /2 – 0.125		V _{CCI0} /2 + 0.125

Note to Table 1-18:

(1) Differential SSTL requires a V_{REF} input.

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾

I/O Standard	١	/ _{ccio} (V)	V _{DIF(DC)} (V)		V _{X(AC)} (V)			V _{CM(DC)} (V)				V _{DIF(AC)} (V)	
	Min	Тур	Max	Min	Max	Min	Тур	Max	Min	Тур	Max	Mi n	Max	
HSTL-18 Class I, II	1.71	1.8	1.89	0.2	_	0.85	_	0.95	0.85		0.95	0.4		
HSTL-15 Class I, II	1.425	1.5	1.575	0.2	_	0.71	_	0.79	0.71		0.79	0.4	_	
HSTL-12 Class I, II	1.14	1.2	1.26	0.16	V _{CCIO}	$0.48 \times V_{CCIO}$	_	0.52 x V _{CCI0}	0.48 x V _{CCIO}		0.52 x V _{CCI0}	0.3	0.48 x V _{CCI0}	

Note to Table 1-19:

(1) Differential HSTL requires a V_{REF} input.

 Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices ⁽¹⁾ (Part 1 of 2)

1/0 Standard	V _{CCIO} (V)			V _{ID} (mV)			V _{ICM} (V) ⁽²⁾			V _{OD} (mV) ⁽³⁾			V _{0S} (V) ⁽³⁾		
i/U Stanuaru	Min	Тур	Max	Min	Min Max Min Condition		Max	Min	Тур	Max	Min	Тур	Max		
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
(Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{ D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	—	—	—	
()						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq ~500~Mbps$	1.80							
(Column	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq 700 \text{ Mbps} \end{array}$	1.80	_	_	_	_	—	—	
1,00)						1.05	D _{MAX} > 700 Mbps	1.55							
						0.05	$D_{MAX} \leq 500 \; Mbps$	1.80							
LVDS (Row I/Os)	2.375	2.5	2.625	100	_	0.55	$\begin{array}{l} 500 \text{ Mbps} \leq \text{D}_{\text{MAX}} \\ \leq \ 700 \text{ Mbps} \end{array}$	1.80	247	_	600	1.125	1.25	1.375	
						1.05	D _{MAX} > 700 Mbps	1.55							