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Chapter 3: Memory Blocks in Cyclone IV Devices 3–3
Overview
Control Signals
The clock-enable control signal controls the clock entering the input and output 
registers and the entire M9K memory block. This signal disables the clock so that the 
M9K memory block does not see any clock edges and does not perform any 
operations.

The rden and wren control signals control the read and write operations for each port 
of M9K memory blocks. You can disable the rden or wren signals independently to 
save power whenever the operation is not required.

Parity Bit Support
Parity checking for error detection is possible with the parity bit along with internal 
logic resources. Cyclone IV devices M9K memory blocks support a parity bit for each 
storage byte. You can use this bit as either a parity bit or as an additional data bit. No 
parity function is actually performed on this bit.

Byte Enable Support
Cyclone IV devices M9K memory blocks support byte enables that mask the input 
data so that only specific bytes of data are written. The unwritten bytes retain the 
previous written value. The wren signals, along with the byte-enable (byteena) 
signals, control the write operations of the RAM block. The default value of the 
byteena signals is high (enabled), in which case writing is controlled only by the wren 
signals. There is no clear port to the byteena registers. M9K blocks support byte 
enables when the write port has a data width of ×16, ×18, ×32, or ×36 bits.

Byte enables operate in one-hot manner, with the LSB of the byteena signal 
corresponding to the least significant byte of the data bus. For example, if 
byteena = 01 and you are using a RAM block in ×18 mode, data[8..0] is enabled 
and data[17..9] is disabled. Similarly, if byteena = 11, both data[8..0] and 
data[17..9] are enabled. Byte enables are active high.

Table 3–2 lists the byte selection.

Table 3–2. byteena for Cyclone IV Devices M9K Blocks (1) 

byteena[3..0]
Affected Bytes

datain ×16 datain ×18 datain ×32 datain ×36

[0] = 1 [7..0] [8..0] [7..0] [8..0]

[1] = 1 [15..8] [17..9] [15..8] [17..9]

[2] = 1 — — [23..16] [26..18]

[3] = 1 — — [31..24] [35..27]

Note to Table 3–2:

(1) Any combination of byte enables is possible.
November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 3: Memory Blocks in Cyclone IV Devices 3–17
Design Considerations
In this mode, you also have two output choices: Old Data mode or Don't Care mode. 
In Old Data mode, a read-during-write operation to different ports causes the RAM 
outputs to reflect the old data at that address location. In Don't Care mode, the same 
operation results in a “Don't Care” or unknown value on the RAM outputs.

f For more information about how to implement the desired behavior, refer to the RAM 
Megafunction User Guide.

Figure 3–16 shows a sample functional waveform of mixed port read-during-write 
behavior for Old Data mode. In Don't Care mode, the old data is replaced with 
“Don't Care”.

1 For mixed-port read-during-write operation with dual clocks, the relationship 
between the clocks determines the output behavior of the memory. If you use the 
same clock for the two clocks, the output is the old data from the address location. 
However, if you use different clocks, the output is unknown during the mixed-port 
read-during-write operation. This unknown value may be the old or new data at the 
address location, depending on whether the read happens before or after the write.

Conflict Resolution
When you are using M9K memory blocks in true dual-port mode, it is possible to 
attempt two write operations to the same memory location (address). Because there is 
no conflict resolution circuitry built into M9K memory blocks, this results in unknown 
data being written to that location. Therefore, you must implement conflict-resolution 
logic external to the M9K memory block.

Figure 3–16. Mixed Port Read-During-Write: Old Data Mode
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5–14 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Clock Networks
The inputs to the clock control blocks on each side of the Cyclone IV GX device must 
be chosen from among the following clock sources:

■ Four clock input pins

■ Ten PLL counter outputs (five from each adjacent PLLs)

■ Two, four, or six DPCLK pins from the top, bottom, and right sides of the device

■ Five signals from internal logic

Figure 5–4. Clock Networks and Clock Control Block Locations in Cyclone IV E Devices

Notes to Figure 5–4:
(1) There are five clock control blocks on each side.
(2) Only one of the corner CDPCLK pins in each corner can feed the clock control block at a time. You can use the other CDPCLK pins as 

general-purpose I/O (GPIO) pins.

(3) Dedicated clock pins can feed into this PLL. However, these paths are not fully compensated.
(4) PLL_3 and PLL_4 are not available in EP4CE6 and EP4CE10 devices.
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–17
Clock Networks
Figure 5–7 shows how to implement the clkena signal with a single register.

1 The clkena circuitry controlling the output C0 of the PLL to an output pin is 
implemented with two registers instead of a single register, as shown in Figure 5–7.

Figure 5–8 shows the waveform example for a clock output enable. The clkena signal 
is sampled on the falling edge of the clock (clkin).

1 This feature is useful for applications that require low power or sleep mode.

The clkena signal can also disable clock outputs if the system is not tolerant to 
frequency overshoot during PLL resynchronization.

Altera recommends using the clkena signals when switching the clock source to the 
PLLs or the GCLK. The recommended sequence is:

1. Disable the primary output clock by de-asserting the clkena signal.

2. Switch to the secondary clock using the dynamic select signals of the clock control 
block.

3. Allow some clock cycles of the secondary clock to pass before reasserting the 
clkena signal. The exact number of clock cycles you must wait before enabling the 
secondary clock is design-dependent. You can build custom logic to ensure 
glitch-free transition when switching between different clock sources.

Figure 5–7. clkena Implementation
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5–26 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Hardware Features
Deterministic Latency Compensation Mode
The deterministic latency mode compensates for the delay of the multipurpose PLLs 
through the clock network and serializer in Common Public Radio Interface (CPRI) 
applications. In this mode, the PLL PFD feedback path compensates the latency 
uncertainty in Tx dataout and Tx clkout paths relative to the reference clock.

Hardware Features
Cyclone IV PLLs support several features for general-purpose clock management. 
This section discusses clock multiplication and division implementation, 
phase shifting implementations, and programmable duty cycles. 

Clock Multiplication and Division
Each Cyclone IV PLL provides clock synthesis for PLL output ports using 
M/(N*post-scale counter) scaling factors. The input clock is divided by a pre-scale 
factor, N, and is then multiplied by the M feedback factor. The control loop drives the 
VCO to match fIN (M/N). Each output port has a unique post-scale counter that 
divides down the high-frequency VCO. For multiple PLL outputs with different 
frequencies, the VCO value is the least common multiple of the output frequencies 
that meets its frequency specifications. For example, if output frequencies required 
from one PLL are 33 and 66 MHz, the Quartus II software sets the VCO to 660 MHz 
(the least common multiple of 33 and 66 MHz in the VCO range). Then, the post-scale 
counters scale down the VCO frequency for each output port.

There is one pre-scale counter, N, and one multiply counter, M, per PLL, with a range 
of 1 to 512 for both M and N. The N counter does not use duty cycle control because 
the purpose of this counter is only to calculate frequency division. There are five 
generic post-scale counters per PLL that can feed GCLKs or external clock outputs. 
These post-scale counters range from 1 to 512 with a 50% duty cycle setting. The 
post-scale counters range from 1 to 256 with any non-50% duty cycle setting. The sum 
of the high/low count values chosen for a design selects the divide value for a given 
counter.

The Quartus II software automatically chooses the appropriate scaling factors 
according to the input frequency, multiplication, and division values entered into the 
ALTPLL megafunction.

1 Phase alignment between output counters is determined using the tPLL_PSERR 
specification.
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1



5–30 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Hardware Features
In this mode, the activeclock signal mirrors the clkswitch signal. As both blocks are 
still functional during the manual switch, neither clkbad signals go high. Because the 
switchover circuit is positive edge-sensitive, the falling edge of the clkswitch signal 
does not cause the circuit to switch back from inclk1 to inclk0. When the clkswitch 
signal goes high again, the process repeats. The clkswitch signal and the automatic 
switch only works depending on the availability of the clock that is switched to. If the 
clock is unavailable, the state machine waits until the clock is available.

1 When CLKSWITCH = 1, it overrides the automatic switch-over function. As long as 
clkswitch signal is high, further switch-over action is blocked.

Manual Clock Switchover
PLLs of Cyclone IV devices support manual switchover, in which the clkswitch 
signal controls whether inclk0 or inclk1 is the input clock to the PLL. The 
characteristics of a manual switchover are similar to the manual override feature in an 
automatic clock switchover, in which the switchover circuit is edge-sensitive. When 
the clkswitch signal goes high, the switchover sequence starts. The falling edge of the 
clkswitch signal does not cause the circuit to switch back to the previous input clock. 

f For more information about PLL software support in the Quartus II software, refer to 
the ALTPLL Megafunction User Guide.

Guidelines
Use the following guidelines to design with clock switchover in PLLs:

■ Clock loss detection and automatic clock switchover require the inclk0 and 
inclk1 frequencies be within 20% of each other. Failing to meet this requirement 
causes the clkbad0 and clkbad1 signals to function improperly.

Figure 5–19. Clock Switchover Using the clkswitch Control (1)

Note to Figure 5–19:

(1) Both inclk0 and inclk1 must be running when the clkswitch signal goes high to start a manual clock switchover 
event.
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activeclock
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Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1

http://www.altera.com/literature/ug/ug_altpll.pdf


5–38 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLL Reconfiguration
Figure 5–25 shows the scan chain bit order sequence for one PLL post-scale counter in 
PLLs of Cyclone IV devices. 

Charge Pump and Loop Filter
You can reconfigure the charge pump and loop filter settings to update the PLL 
bandwidth in real time. Table 5–8 through Table 5–10 list the possible settings for 
charge pump current (ICP), loop filter resistor (R), and capacitor (C) values for PLLs of 
Cyclone IV devices.

Figure 5–25. Scan Chain Bit Order
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Table 5–8. Charge Pump Bit Control

CP[2] CP[1] CP[0] Setting (Decimal)

0 0 0 0

1 0 0 1

1 1 0 3

1 1 1 7

Table 5–9. Loop Filter Resistor Value Control

LFR[4] LFR[3] LFR[2] LFR[1] LFR[0] Setting 
(Decimal)

0 0 0 0 0 0

0 0 0 1 1 3

0 0 1 0 0 4

0 1 0 0 0 8

1 0 0 0 0 16

1 0 0 1 1 19

1 0 1 0 0 20

1 1 0 0 0 24

1 1 0 1 1 27

1 1 1 0 0 28

1 1 1 1 0 30
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1



Chapter 6: I/O Features in Cyclone IV Devices 6–13
Termination Scheme for I/O Standards
Cyclone IV devices support PCI and PCI-X I/O standards at 3.0-V VCCIO. The 3.0-V 
PCI and PCI-X I/O are fully compatible for direct interfacing with 3.3-V PCI systems 
without requiring any additional components. The 3.0-V PCI and PCI-X outputs meet 
the VIH and VIL requirements of 3.3-V PCI and PCI-X inputs with sufficient noise 
margin.

f For more information about the 3.3/3.0/2.5-V LVTTL & LVCMOS multivolt I/O 
support, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V 
LVTTL/LVCMOS I/O Systems.

Termination Scheme for I/O Standards
This section describes recommended termination schemes for voltage-referenced and 
differential I/O standards.

The 3.3-V LVTTL, 3.0-V LVTTL and LVCMOS, 2.5-V LVTTL and LVCMOS, 1.8-V 
LVTTL and LVCMOS, 1.5-V LVCMOS, 1.2-V LVCMOS, 3.0-V PCI, and PCI-X 
I/O standards do not specify a recommended termination scheme per the JEDEC 
standard

LVPECL (7) Differential — 2.5 — v — — v —

Notes to Table 6–3:

(1) Cyclone IV GX devices only support right I/O pins.
(2) The PCI-clamp diode must be enabled for 3.3-V/3.0-V LVTTL/LVCMOS. 
(3) The Cyclone IV architecture supports the MultiVolt I/O interface feature that allows Cyclone IV devices in all packages to interface with I/O 

systems that have different supply voltages.
(4) Cyclone IV GX devices do not support 1.2-V VCCIO in banks 3 and 9. I/O pins in bank 9 are dual-purpose I/O pins that are used as configuration 

or GPIO pins. Configuration scheme is not support at 1.2 V, therefore bank 9 can not be powered up at 1.2-V VCCIO. 
(5) Differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed as inverted. Differential HSTL and SSTL 

inputs treat differential inputs as two single-ended HSTL and SSTL inputs and only decode one of them. Differential HSTL and SSTL are only 
supported on CLK pins.

(6) PPDS, mini-LVDS, and RSDS are only supported on output pins. 
(7) LVPECL is only supported on clock inputs.
(8) Bus LVDS (BLVDS) output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses LVDS input 

buffer.
(9) 1.2-V HSTL input is supported at both column and row I/Os regardless of Class I or Class II.
(10) True LVDS, RSDS, and mini-LVDS I/O standards are supported in left and right I/O pins, while emulated LVDS, RSDS, and mini-LVDS I/O 

standards are supported in the top, bottom, and right I/O pins.

Table 6–3. Cyclone IV Devices Supported I/O Standards and Constraints (Part 3 of 3)

I/O Standard Type Standard 
Support

VCCIO Level (in V) Column I/O Pins Row I/O Pins (1)

Input Output CLK, 
DQS PLL_OUT

User 
I/O 

Pins

CLK, 
DQS

User I/O 
Pins
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Chapter 7: External Memory Interfaces in Cyclone IV Devices 7–13
Cyclone IV Devices Memory Interfaces Features
Figure 7–7 illustrates Cyclone IV DDR input registers.

These DDR input registers are implemented in the core of devices. The DDR data is 
first fed to two registers, input register AI and input register BI. 

■ Input register AI captures the DDR data present during the rising edge of the clock

■ Input register BI captures the DDR data present during the falling edge of the clock

■ Register CI aligns the data before it is synchronized with the system clock

The data from the DDR input register is fed to two registers, sync_reg_h and 
sync_reg_l, then the data is typically transferred to a FIFO block to synchronize the 
two data streams to the rising edge of the system clock. Because the read-capture 
clock is generated by the PLL, the read-data strobe signal (DQS or CQ) is not used 
during read operation in Cyclone IV devices; hence, postamble is not a concern in this 
case. 

Figure 7–7. Cyclone IV DDR Input Registers
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–53
Configuration
1 The .rbf used by the JRunner software driver cannot be a compressed .rbf because the 
JRunner software driver uses JTAG-based configuration. During JTAG-based 
configuration, the real-time decompression feature is not available.

f For more information about the JRunner software driver, refer to AN 414: JRunner 
Software Driver: An Embedded Solution for PLD JTAG Configuration and the source files 
on the Altera website at (www.altera.com).

Combining JTAG and AS Configuration Schemes
You can combine the AS configuration scheme with the JTAG-based configuration 
(Figure 8–28). This setup uses two 10-pin download cable headers on the board. One 
download cable is used in JTAG mode to configure the Cyclone IV device directly 
through the JTAG interface. The other download cable is used in AS mode to program 
the serial configuration device in-system through the AS programming interface. If 
you try configuring the device using both schemes simultaneously, JTAG 
configuration takes precedence and AS configuration terminates.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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8–78 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Remote System Upgrade
Table 8–25 lists the contents of previous state register 1 and previous state register 2 in 
the status register. The status register bit in Table 8–25 shows the bit positions in a 
3-bit register. The previous state register 1 and previous state register 2 have the same 
bit definitions. The previous state register 1 reflects the current application 
configuration and the previous state register 2 reflects the previous application 
configuration.

If a capture is inappropriately done while capturing a previous state before the system 
has entered remote update application configuration for the first time, a value outputs 
from the shift register to indicate that the capture is incorrectly called.

Remote System Upgrade State Machine
The remote system upgrade control and update registers have identical bit 
definitions, but serve different roles (Table 8–22 on page 8–75). While both registers 
can only be updated when the device is loaded with a factory configuration image, 
the update register writes are controlled by the user logic, and the control register 
writes are controlled by the remote system upgrade state machine. 

In factory configurations, the user logic should send the option bits (Cd_early and 
Osc_int), the configuration address, and watchdog timer settings for the next 
application configuration bit to the update register. When the logic array 
configuration reset (RU_nCONFIG) goes high, the remote system upgrade state machine 
updates the control register with the contents of the update register and starts system 
reconfiguration from the new application page.

1 To ensure the successful reconfiguration between the pages, assert the RU_nCONFIG 
signal for a minimum of 250 ns. This is equivalent to strobing the reconfig input of 
the ALTREMOTE_UPDATE megafunction high for a minimum of 250 ns.

If there is an error or reconfiguration trigger condition, the remote system upgrade 
state machine directs the system to load a factory or application configuration (based 
on mode and error condition) by setting the control register accordingly. 

Table 8–26 lists the contents of the control register after such an event occurs for all 
possible error or trigger conditions.

Table 8–25. Remote System Upgrade Previous State Register 1 and Previous State Register 2 Contents in Status 
Register 

Status Register Bit Definition Description

30 nCONFIG source
One-hot, active-high field that describes the reconfiguration source 
that caused the Cyclone IV device to leave the previous application 
configuration. If there is a tie, the higher bit order indicates 
precedence. For example, if nCONFIG and remote system upgrade 
nCONFIG reach the reconfiguration state machine at the same time, 
the nCONFIG precedes the remote system upgrade nCONFIG. 

29 CRC error source

28 nSTATUS source

27 User watchdog timer source

26
Remote system upgrade 
nCONFIG source

25:24
Master state machine 
current state

The state of the master state machine during reconfiguration causes 
the Cyclone IV device to leave the previous application configuration.

23:0 Boot address The address used by the configuration scheme to load the previous 
application configuration.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



9–4 Chapter 9: SEU Mitigation in Cyclone IV Devices
Error Detection Block
1 WYSIWYG is an optimization technique that performs optimization on a VQM 
(Verilog Quartus Mapping) netlist in the Quartus II software.

Error Detection Block
Table 9–3 lists the types of CRC detection to check the configuration bits.

This section focuses on the first type—the 32-bit CRC when the device is in user 
mode.

Error Detection Registers
There are two sets of 32-bit registers in the error detection circuitry that store the 
computed CRC signature and pre-calculated CRC value. A non-zero value on the 
signature register causes the CRC_ERROR pin to set high. 

Figure 9–1 shows the block diagram of the error detection block and the two related 
32-bit registers: the signature register and the storage register.

Table 9–3. Types of CRC Detection to Check the Configuration Bits

First Type of CRC Detection Second Type of CRC Detection

■ CRAM error checking ability (32-bit CRC) 
during user mode, for use by the 
CRC_ERROR pin.

■ There is only one 32-bit CRC value. This 
value covers all the CRAM data.

■ 16-bit CRC embedded in every configuration data frame.

■ During configuration, after a frame of data is loaded into the device, the 
pre-computed CRC is shifted into the CRC circuitry.

■ Simultaneously, the CRC value for the data frame shifted-in is calculated. 
If the pre-computed CRC and calculated CRC values do not match, 
nSTATUS is set low.

■ Every data frame has a 16-bit CRC. Therefore, there are many 16-bit CRC 
values for the whole configuration bit stream.

■ Every device has a different length of configuration data frame.

Figure 9–1. Error Detection Block Diagram
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Chapter 1: Cyclone IV Transceivers Architecture 1–17
Receiver Channel Datapath

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Word Aligner
Figure 1–16 shows the word aligner block diagram. The word aligner receives parallel 
data from the deserializer and restores the word boundary based on a pre-defined 
alignment pattern that must be received during link synchronization. The word 
aligner supports three operational modes as listed in Table 1–3.

Manual Alignment Mode

In manual alignment mode, the rx_enapatternalign port controls the word aligner 
with either an 8- or 10-bit data width setting.

The 8-bit word aligner is edge-sensitive to the rx_enapatternalign signal. A rising 
edge on rx_enapatternalign signal after deassertion of the rx_digitalreset signal 
triggers the word aligner to look for the word alignment pattern in the received data 
stream. It updates the word boundary if it finds the word alignment pattern in a new 
word boundary. Any word alignment pattern received thereafter in a different word 
boundary causes the word aligner to re-align to the new word boundary only if there 
is a rising edge in the rx_enapatternalign signal.

The 10-bit word aligner is level-sensitive to the rx_enapatternalign signal. The word 
aligner looks for the programmed 7-bit or 10-bit word alignment pattern or its 
complement in the received data stream, if the rx_enapatternalign signal is held 
high. It updates the word boundary if it finds the word alignment pattern in a new 
word boundary. If the rx_enapatternalign signal is deasserted, the word aligner 
maintains the current word boundary even when it receives the word alignment 
pattern in a new word boundary.

Figure 1–16. Word Aligner Block Diagram
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Table 1–3. Word Aligner Modes

Modes PMA-PCS Interface Widths Allowed Word Alignment 
Pattern Lengths

Manual Alignment
8-bit 16 bits

10-bit 7 or 10 bits

Bit-Slip
8-bit 16 bits

10-bit 7 or 10 bits

Automatic Synchronization State 
Machine 10-bit 7 or 10 bits
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Table 1–4 lists the synchronization state machine parameters for the word aligner in 
this mode.

After deassertion of the rx_digitalreset signal in automatic synchronization state 
machine mode, the word aligner starts looking for the synchronization code groups, 
word alignment pattern or its complement in the received data stream. When the 
programmed number of valid synchronization code groups or ordered sets are 
received, the rx_syncstatus signal is driven high to indicate that synchronization is 
acquired. The rx_syncstatus signal is constantly driven high until the programmed 
number of erroneous code groups are received without receiving intermediate good 
groups; after which the rx_syncstatus signal is driven low. The word aligner 
indicates loss of synchronization (rx_syncstatus signal remains low) until the 
programmed number of valid synchronization code groups are received again.

In addition to restoring word boundaries, the word aligner supports the following 
features:

■ Programmable run length violation detection—detects consecutive 1s or 0s in the 
data stream, and asserts run length violation signal (rx_rlv) when a preset run 
length threshold (maximum number of consecutive 1s or 0s) is detected. The 
rx_rlv signal in each channel is clocked by its parallel recovered clock and is 
asserted for a minimum of two recovered clock cycles to ensure that the FPGA 
fabric clock can latch the rx_rlv signal reliably because the FPGA fabric clock 
might have phase differences, ppm differences (in asynchronous systems), or both, 
with the recovered clock. Table 1–5 lists the run length violation circuit detection 
capabilities.

Table 1–4. Synchronization State Machine Parameters 

Parameter Allowed Values

Number of erroneous code groups received to lose synchronization 1–64

Number of continuous good code groups received to reduce the 
error count by one 1–256

Table 1–5. Run Length Violation Circuit Detection Capabilities

Supported Data Width
Detector Range Increment Step 

SettingsMinimum Maximum

8-bit 4 128 4

10-bit 5 160 5
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tx_preemp[4..0] (1) Input

This is an optional pre-emphasis write control for the transmit buffer. Depending on what 
value you set at this input, the controller dynamically writes the value to the pre-emphasis 
control register of the transmit buffer. 

The width of this signal is fixed to 5 bits if you enable either the Use 
'logical_channel_address' port for Analog controls reconfiguration option or the Use 
same control signal for all the channels option in the Analog controls screen. Otherwise, 
the width of this signal is 5 bits per channel.

tx_preemp[4..0] Corresponding ALTGX Corresponding pre-
instance settings emphasis setting (mA)

00000 0 Disabled

00001 1 0.5   

00101 5 1.0   

01001 9 1.5   

01101 13 2.0   

10000 16 2.375 

10001 17 2.5   

10010 18 2.625   

10011 19 2.75   

10100 20 2.875   

10101 21 3.0  

All other values => N/A

rx_eqctrl[3..0] (1) Input

This is an optional write control to write an equalization control value for the receive side of 
the PMA.

The width of this signal is fixed to 4 bits if you enable either the Use 
'logical_channel_address' port for Analog controls reconfiguration option or the Use 
same control signal for all the channels option in the Analog controls screen. Otherwise, 
the width of this signal is 4 bits per channel.

rx_eqctrl[3..0] Corresponding ALTGX instance settings

0001  Low

0101 Medium Low

0100 Medium High

0111 High

All other values => N/A

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 5 of 7)

Port Name Input/
Output Description
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There are three methods that you can use to dynamically reconfigure the PMA 
controls of a transceiver channel:

■ “Method 1: Using logical_channel_address to Reconfigure Specific Transceiver 
Channels” on page 3–14

■ “Method 2: Writing the Same Control Signals to Control All the Transceiver 
Channels” on page 3–16

■ “Method 3: Writing Different Control Signals for all the Transceiver Channels at 
the Same Time” on page 3–19

Method 1: Using logical_channel_address to Reconfigure Specific 
Transceiver Channels
Enable the logical_channel_address port by selecting the Use 
‘logical_channel_address’ port option on the Analog controls tab. This method is 
applicable only for a design where the dynamic reconfiguration controller controls 
more than one channel.

You can additionally reconfigure either the receiver portion, transmitter portion, or 
both the receiver and transmitter portions of the transceiver channel by setting the 
corresponding value on the rx_tx_duplex_sel input port. For more information, refer 
to Table 3–2 on page 3–4.

Connecting the PMA Control Ports 

The selected PMA control ports remain fixed in width, regardless of the number of 
channels controlled by the ALTGX_RECONFIG instance:

■ tx_vodctrl and tx_vodctrl_out are fixed to 3 bits

■ tx_preemp and tx_preemp_out are fixed to 5 bits

■ rx_eqdcgain and rx_eqdcgain_out are fixed to 2 bits

■ rx_eqctrl and rx_eqctrl_out are fixed to 4 bits

Write Transaction

To complete a write transaction, perform the following steps:

1. Set the selected PMA control ports to the desired settings (for example, 
tx_vodctrl = 3'b001). 

2. Set the logical_channel_address input port to the logical channel address of the 
transceiver channel whose PMA controls you want to reconfigure. 

3. Set the rx_tx_duplex_sel port to 2'b10 so that only the transmit PMA controls are 
written to the transceiver channel. 

4. Ensure that the busy signal is low before you start a write transaction. 

5. Assert the write_all signal for one reconfig_clk clock cycle. 

The busy output status signal is asserted high to indicate that the dynamic 
reconfiguration controller is busy writing the PMA control values. When the write 
transaction has completed, the busy signal goes low.
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Option 3: Use the Respective Channel Receiver Core Clocks

■ Enable this option if you want the individual channel’s rx_clkout signal to 
provide the read clock to its respective Receive Phase Compensation FIFO. 

■ This option is typically enabled when the channel is reconfigured from a Basic or 
Protocol configuration with or without rate matching to another Basic or Protocol 
configuration with or without rate matching.

Figure 3–15 shows the respective rx_clkout of each channel clocking the respective 
receiver channels of a transceiver block.

PLL Reconfiguration Mode
Cyclone IV GX device support the PLL reconfiguration support through the 
ALTPLL_RECONFIG MegaWizard. You can use this mode to reconfigure the 
multipurpose PLL or general purpose PLL used to clock the transceiver channel 
without affecting the remaining blocks of the channel. When you reconfigure the 
multipurpose PLL or general purpose PLL of a transceiver block to run at a different 
data rate, all the transceiver channels listening to this multipurpose PLL or general 
purpose PLL also get reconfigured to the new data rate. Channel settings are not 
affected. When you reconfigure the multipurpose PLL or general purpose PLL to support 
a different data rate, you must ensure that the functional mode of the transceiver channel 
supports the reconfigured data rate.

The PLL reconfiguration mode can be enabled by selecting the Enable PLL 
Reconfiguration option in the ALTGX MegaWizard under Reconfiguration Setting 
tab. For multipurpose PLL or general purpose PLL reconfiguration, .mif files are 
required to dynamically reconfigure the PLL setting in order to change the output 
frequency of the transceiver PLL to support different data rates.

Figure 3–15. Option 3 for Receiver Core Clocking (Channel Reconfiguration Mode)
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Mbps

Mbps

V

V

V

V

mV





—

ppm

ppm

ppm

UI

dB

dB

dB

dB

Unit
Receiver

Supported I/O 
Standards

1.4 V PCML, 
1.5 V PCML, 
2.5 V PCML, 

LVPECL, LVDS

Data rate (F324 and 
smaller package) (15) — 600 — 2500 600 — 2500 600 — 2500

Data rate (F484 and 
larger package) (15) — 600 — 3125 600 — 3125 600 — 2500

Absolute VMAX for a 
receiver pin (3) — — — 1.6 — — 1.6 — — 1.6

Operational VMAX for 
a receiver pin — — — 1.5 — — 1.5 — — 1.5

Absolute VMIN for a 
receiver pin — –0.4 — — –0.4 — — –0.4 — —

Peak-to-peak 
differential input 
voltage VID (diff p-p)

VICM = 0.82 V 
setting, Data Rate 
= 600 Mbps to 
3.125 Gbps

0.1 — 2.7 0.1 — 2.7 0.1 — 2.7

VICM VICM = 0.82 V 
setting — 820 ± 

10% — — 820 ± 
10% — — 820 ± 

10% —

Differential on-chip 
termination resistors

100 setting — 100 — — 100 — — 100 —

150 setting — 150 — — 150 — — 150 —

Differential and 
common mode 
return loss

PIPE, Serial 
Rapid I/O SR, 
SATA, CPRI LV, 
SDI, XAUI

Compliant

Programmable ppm 
detector (4) — ± 62.5, 100, 125, 200,

250, 300

Clock data recovery 
(CDR) ppm 
tolerance (without 
spread-spectrum 
clocking enabled)

— — —
±300 (5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

CDR ppm tolerance 
(with synchronous 
spread-spectrum 
clocking enabled) (8)

— — —
350 to –

5350 
(7), (9)

— —
350 to 
–5350 
(7), (9)

— —
350 to –

5350 
(7), (9)

Run length — — 80 — — 80 — — 80 —

Programmable 
equalization

No Equalization — — 1.5 — — 1.5 — — 1.5

Medium Low — — 4.5 — — 4.5 — — 4.5

Medium High — — 5.5 — — 5.5 — — 5.5

High — — 7 — — 7 — — 7

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 2 of 4)

Symbol/
Description Conditions

C6 C7, I7 C8

Min Typ Max Min Typ Max Min Typ Max
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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