Intel - EP4CE40F29C9L Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	2475
Number of Logic Elements/Cells	39600
Total RAM Bits	1161216
Number of I/O	532
Number of Gates	-
Voltage - Supply	0.97V ~ 1.03V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	780-BGA
Supplier Device Package	780-FBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce40f29c9l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Logic Elements and Logic Array Blocks in Cyclone IV Devices

CYIV-51002-1.0

This chapter contains feature definitions for logic elements (LEs) and logic array blocks (LABs). Details are provided on how LEs work, how LABs contain groups of LEs, and how LABs interface with the other blocks in Cyclone[®] IV devices.

Logic Elements

Logic elements (LEs) are the smallest units of logic in the Cyclone IV device architecture. LEs are compact and provide advanced features with efficient logic usage. Each LE has the following features:

- A four-input look-up table (LUT), which can implement any function of four variables
- A programmable register
- A carry chain connection
- A register chain connection
- The ability to drive the following interconnects:
 - Local
 - Row
 - Column
 - Register chain
 - Direct link
- Register packing support
- Register feedback support

Figure 3–3 and Figure 3–4 show the address clock enable waveform during read and write cycles, respectively.

Figure 3–3. Cyclone IV Devices Address Clock Enable During Read Cycle Waveform

Figure 3-4. Cyclone IV Devices Address Clock Enable During Write Cycle Waveform

Mixed-Width Support

M9K memory blocks support mixed data widths. When using simple dual-port, true dual-port, or FIFO modes, mixed width support allows you to read and write different data widths to an M9K memory block. For more information about the different widths supported per memory mode, refer to "Memory Modes" on page 3–7.

GCLK Network Clock	GCLK Networks																			
Sources	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
PLL_3_C1	—	—	—	—	—	_	\checkmark	—	—	\checkmark	-	-	—	—	—	—	\checkmark	_	—	\checkmark
PLL_3_C2	—	—		—	-	~		\checkmark	—		-	—	_	—	-	~	—	~	—	—
PLL_3_C3	—				_		\checkmark		>		_	—	_		_		>		\checkmark	—
PLL_3_C4	—				_			>		>	_	—	_		_			\checkmark	—	\checkmark
PLL_4_C0 (3)	—				_	\checkmark			>		\checkmark	—	_	>	_				—	—
PLL_4_C1 (3)	—		_		_	_	\checkmark			\checkmark	_	\checkmark	_		~			_	—	—
PLL_4_C2 (3)	—				_	\checkmark		>			~	—	\checkmark		_				—	—
PLL_4_C3 (3)	—		_		—	_	\checkmark		>	_	_	\checkmark	—	>	—	-		_	—	—
PLL_4_C4 (3)	—		_		_	_		$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$		\checkmark	_	_	~		~			_	—	—
DPCLK2	—				_						_	—	_		_		>		—	—
DPCLK3 (4)	—				_						_	—	_		_				\checkmark	—
DPCLK4 (4)	—				-						_	—	_		-			>	—	—
DPCLK5	-		_		-	_				_	-	-	—		-			_	—	\checkmark
DPCLK6 (4)	—	_		—				—	\checkmark			—	_	—			_		—	—
DPCLK7	—	_		_	—	_	\checkmark	_		_	—	—	—	_	—	—	_	_	_	—
DPCLK8	—	_		_	—	_		_		\checkmark	—	—	—	_	—	—	_	_	_	—
DPCLK9 (4)	—	—		—	—	—		\checkmark	_	—	—	—	—	_	—	—	—	—	—	—
DPCLK10	—	—		—	—	—			_	—	—	—	—	_	\checkmark	—	—	—	—	—
DPCLK11 (4)	—	—	—	—	—	—	—	—	—	—	—	—	\checkmark	—	—	—	—	—	—	—
DPCLK12 (4)	—	—		—	—				—		—	—	—	\checkmark	—	—	—		—	—
DPCLK13	—			—	—						—	\checkmark	—		—			—	—	—

Table 5–1. GCLK Network Connections for EP4CGX15, EP4CGX22, and EP4CGX30^{(1), (2)} (Part 2 of 2)

Notes to Table 5-1:

(1) EP4CGX30 information in this table refers to all EP4CGX30 packages except F484 package.

(2) PLL_1 and PLL_2 are multipurpose PLLs while PLL_3 and PLL_4 are general purpose PLLs.

(3) PLL_4 is only available in EP4CGX22 and EP4CGX30 devices in F324 package.

(4) This pin applies to EP4CGX22 and EP4CGX30 devices.

Figure 5–6 shows a simplified version of the five clock control blocks on each side of the Cyclone IV E device periphery.

Note to Figure 5–6:

(1) The left and right sides of the device have two DPCLK pins; the top and bottom of the device have four DPCLK pins.

GCLK Network Power Down

You can disable a Cyclone IV device's GCLK (power down) using both static and dynamic approaches. In the static approach, configuration bits are set in the configuration file generated by the Quartus II software, which automatically disables unused GCLKs. The dynamic clock enable or disable feature allows internal logic to control clock enable or disable the GCLKs in Cyclone IV devices.

When a clock network is disabled, all the logic fed by the clock network is in an off-state, thereby reducing the overall power consumption of the device. This function is independent of the PLL and is applied directly on the clock network, as shown in Figure 5–1 on page 5–11.

You can set the input clock sources and the clkena signals for the GCLK multiplexers through the Quartus II software using the ALTCLKCTRL megafunction.

For more information, refer to the *ALTCLKCTRL Megafunction User Guide.*

clkena Signals

Cyclone IV devices support clkena signals at the GCLK network level. This allows you to gate-off the clock even when a PLL is used. Upon re-enabling the output clock, the PLL does not need a resynchronization or re-lock period because the circuit gates off the clock at the clock network level. In addition, the PLL can remain locked independent of the clkena signals because the loop-related counters are not affected. Figure 5–14 shows a waveform example of the phase relationship of the PLL clocks in this mode.

Figure 5-14. Phase Relationship Between PLL Clocks in Normal Mode

Note to Figure 5-14:

(1) The external clock output can lead or lag the PLL internal clock signals.

Zero Delay Buffer Mode

In zero delay buffer (ZDB) mode, the external clock output pin is phase-aligned with the clock input pin for zero delay through the device. When using this mode, use the same I/O standard on the input clock and output clocks to guarantee clock alignment at the input and output pins.

Figure 5–15 shows an example waveform of the phase relationship of the PLL clocks in ZDB mode.

The IOE registers in each I/O block share the same source for the preset or clear features. You can program preset or clear for each individual IOE, but you cannot use both features simultaneously. You can also program the registers to power-up high or low after configuration is complete. If programmed to power-up low, an asynchronous clear can control the registers. If programmed to power-up high, an asynchronous preset can control the registers. This feature prevents the inadvertent activation of the active-low input of another device upon power-up. If one register in an IOE uses a preset or clear signal, all registers in the IOE must use that same signal if they require preset or clear. Additionally, a synchronous reset signal is available for the IOE registers.

***** For more information about the input and output pin delay settings, refer to the *Area and Timing Optimization* chapter in volume 2 of the *Quartus II Handbook*.

PCI-Clamp Diode

Cyclone IV devices provide an optional PCI-clamp diode enabled input and output for each I/O pin. Dual-purpose configuration pins support the diode in user mode if the specific pins are not used as configuration pins for the selected configuration scheme. For example, if you are using the active serial (AS) configuration scheme, you cannot use the clamp diode on the ASDO and nCSO pins in user mode. Dedicated configuration pins do not support the on-chip diode.

The PCI-clamp diode is available for the following I/O standards:

- 3.3-V LVTTL
- 3.3-V LVCMOS
- 3.0-V LVTTL
- 3.0-V LVCMOS
- 2.5-V LVTTL/LVCMOS
- PCI
- PCI-X

If the input I/O standard is one of the listed standards, the PCI-clamp diode is enabled by default in the Quartus II software.

OCT Support

Cyclone IV devices feature OCT to provide I/O impedance matching and termination capabilities. OCT helps prevent reflections and maintain signal integrity while minimizing the need for external resistors in high pin-count ball grid array (BGA) packages. Cyclone IV devices provide I/O driver on-chip impedance matching and R_S OCT for single-ended outputs and bidirectional pins.

When using R_S OCT, programmable current strength is not available.

There are two ways to implement OCT in Cyclone IV devices:

- OCT with calibration
- OCT without calibration

			V _{ccio} Leve	l (in V)	C	olumn I/O P	Row I/O Pins ⁽¹⁾		
I/O Standard	Туре	Standard Support	Input	Output	CLK, DQS	PLL_OUT	User I/O Pins	CLK, DQS	User I/O Pins
LVPECL (7)	Differential	_	2.5	_	\checkmark	—	_	\checkmark	—

Table 6–3. Cyclone IV Devices Supported I/O Standards and Constraints (Part 3 of 3)

Notes to Table 6-3:

(1) Cyclone IV GX devices only support right I/O pins.

(2) The PCI-clamp diode must be enabled for 3.3-V/3.0-V LVTTL/LVCMOS.

(3) The Cyclone IV architecture supports the MultiVolt I/O interface feature that allows Cyclone IV devices in all packages to interface with I/O systems that have different supply voltages.

(4) Cyclone IV GX devices do not support 1.2-V V_{CCIO} in banks 3 and 9. I/O pins in bank 9 are dual-purpose I/O pins that are used as configuration or GPIO pins. Configuration scheme is not support at 1.2 V, therefore bank 9 can not be powered up at 1.2-V V_{CCIO}.

(5) Differential HSTL and SSTL outputs use two single-ended outputs with the second output programmed as inverted. Differential HSTL and SSTL inputs treat differential inputs as two single-ended HSTL and SSTL inputs and only decode one of them. Differential HSTL and SSTL are only supported on CLK pins.

(6) PPDS, mini-LVDS, and RSDS are only supported on output pins.

- (7) LVPECL is only supported on clock inputs.
- (8) Bus LVDS (BLVDS) output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses LVDS input buffer.
- (9) 1.2-V HSTL input is supported at both column and row I/Os regardless of Class I or Class II.
- (10) True LVDS, RSDS, and mini-LVDS I/O standards are supported in left and right I/O pins, while emulated LVDS, RSDS, and mini-LVDS I/O standards are supported in the top, bottom, and right I/O pins.

Cyclone IV devices support PCI and PCI-X I/O standards at 3.0-V V_{CCIO}. The 3.0-V PCI and PCI-X I/O are fully compatible for direct interfacing with 3.3-V PCI systems without requiring any additional components. The 3.0-V PCI and PCI-X outputs meet the V_{IH} and V_{IL} requirements of 3.3-V PCI and PCI-X inputs with sufficient noise margin.

For more information about the 3.3/3.0/2.5-V LVTTL & LVCMOS multivolt I/O support, refer to AN 447: Interfacing Cyclone III and Cyclone IV Devices with 3.3/3.0/2.5-V LVTTL/LVCMOS I/O Systems.

Termination Scheme for I/O Standards

This section describes recommended termination schemes for voltage-referenced and differential I/O standards.

The 3.3-V LVTTL, 3.0-V LVTTL and LVCMOS, 2.5-V LVTTL and LVCMOS, 1.8-V LVTTL and LVCMOS, 1.5-V LVCMOS, 1.2-V LVCMOS, 3.0-V PCI, and PCI-X I/O standards do not specify a recommended termination scheme per the JEDEC standard

Figure 7–5 shows the location and numbering of the DQS, DQ, or CQ# pins in the Cyclone IV E device I/O banks.

Figure 7–5. DQS, CQ, or CQ# Pins in Cyclone IV E I/O Banks ⁽¹⁾

Note to Figure 7–5:

(1) The DQS, CQ, or CQ# pin locations in this diagram apply to all packages in Cyclone IV E devices except devices in 144-pin EQFP.

For more information about the USB-Blaster download cable, refer to the USB-Blaster *Download Cable User Guide*. For more information about the ByteBlaster II download cable, refer to the *ByteBlaster II Download Cable User Guide*.

Figure 8-6 shows the download cable connections to the serial configuration device.

Notes to Figure 8-6:

- (1) Connect these pull-up resistors to the V_{CCIO} supply of the bank in which the pin resides.
- (2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
- (3) Power up the V_{CC} of the ByteBlaster II or USB-Blaster download cable with the 3.3-V supply.
- (4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (5) The diodes and capacitors must be placed as close as possible to the Cyclone IV device. You must ensure that the diodes and capacitors maintain a maximum AC voltage of 4.1 V. The external diodes and capacitors are required to prevent damage to the Cyclone IV device AS configuration input pins due to possible overshoot when programming the serial configuration device with a download cable. Altera recommends using the Schottky diode, which has a relatively lower forward diode voltage (VF) than the switching and Zener diodes, for effective voltage clamping.
- (6) When cascading Cyclone IV devices in a multi-device AS configuration, connect the repeater buffers between the master and slave devices for DATA [0] and DCLK. All I/O inputs must maintain a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in "Configuration and JTAG Pin I/O Requirements" on page 8–5.
- (7) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA [1] pin in AP and FPP modes.
- (8) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.

After the first device completes configuration in a multi-device configuration chain, its nCEO pin drives low to activate the nCE pin of the second device, which prompts the second device to begin configuration. The second device in the chain begins configuration in one clock cycle. Therefore, the transfer of data destinations is transparent to the external host device. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF_DONE configuration pins are connected to every device in the chain. To ensure signal integrity and prevent clock skew problems, configuration signals may require buffering. Ensure that DCLK and DATA lines are buffered. All devices initialize and enter user mode at the same time because all CONF_DONE pins are tied together.

If any device detects an error, configuration stops for the entire chain and you must reconfigure the entire chain because all nSTATUS and CONF_DONE pins are tied together. For example, if the first device flags an error on nSTATUS, it resets the chain by pulling its nSTATUS pin low. This behavior is similar to a single device detecting an error.

You can have multiple devices that contain the same configuration data in your system. To support this configuration scheme, all device nCE inputs are tied to GND, while the nCEO pins are left floating. nCONFIG, nSTATUS, DCLK, DATA[0], and CONF_DONE configuration pins are connected to every device in the chain. To ensure signal integrity and prevent clock skew problems, configuration signals may require buffering. Ensure that the DCLK and DATA lines are buffered. Devices must be of the same density and package. All devices start and complete configuration at the same time.

Figure 8–15 shows a multi-device PS configuration when both Cyclone IV devices are receiving the same configuration data.

Figure 8-15. Multi-Device PS Configuration When Both Devices Receive the Same Data

Notes to Figure 8-15:

- (1) You must connect the pull-up resistor to a supply that provides an acceptable input signal for all devices in the chain. V_{CC} must be high enough to meet the V_{IH} specification of the I/O on the device and the external host.
- (2) The nCEO pins of both devices are left unconnected or used as user I/O pins when configuring the same configuration data into multiple devices.
- (3) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to V_{CCA} or GND.
- (4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. DATA [0] and DCLK must fit the maximum overshoot outlined in Equation 8–1 on page 8–5.

Dedicated Remote System Upgrade Circuitry

This section describes the implementation of the Cyclone IV device remote system upgrade dedicated circuitry. The remote system upgrade circuitry is implemented in hard logic. This dedicated circuitry interfaces with the user-defined factory application configurations implemented in the Cyclone IV device logic array to provide the complete remote configuration solution. The remote system upgrade circuitry contains the remote system upgrade registers, a watchdog timer, and state machines that control those components. Figure 8–33 shows the data path of the remote system upgrade block.

Figure 8–33. Remote System Upgrade Circuit Data Path (1)

Notes to Figure 8-33:

- (1) The RU_DOUT, RU_SHIFTnLD, RU_CAPTNUPDT, RU_CLK, RU_DIN, RU_nCONFIG, and RU_nRSTIMER signals are internally controlled by the ALTREMOTE_UPDATE megafunction.
- (2) The RU_CLK refers to the ALTREMOTE_UPDATE megafunction block "clock" input. For more information, refer to the *Remote Update Circuitry* (ALTREMOTE_UPDATE) Megafunction User Guide.

9. SEU Mitigation in Cyclone IV Devices

This chapter describes the cyclical redundancy check (CRC) error detection feature in user mode and how to recover from soft errors.

Configuration error detection is supported in all Cyclone[®] IV devices including Cyclone IV GX devices, Cyclone IV E devices with 1.0-V core voltage, and Cyclone IV E devices with 1.2-V core voltage. However, user mode error detection is only supported in Cyclone IV GX devices and Cyclone IV E devices with 1.2-V core voltage.

Dedicated circuitry built into Cyclone IV devices consists of a CRC error detection feature that can optionally check for a single-event upset (SEU) continuously and automatically.

In critical applications used in the fields of avionics, telecommunications, system control, medical, and military applications, it is important to be able to:

- Confirm the accuracy of the configuration data stored in an FPGA device
- Alert the system to an occurrence of a configuration error

Using the CRC error detection feature for Cyclone IV devices does not impact fitting or performance.

This chapter contains the following sections:

- "Configuration Error Detection" on page 9–1
- "User Mode Error Detection" on page 9–2
- "Automated SEU Detection" on page 9–3
- "CRC_ERROR Pin" on page 9–3
- "Error Detection Block" on page 9–4
- "Error Detection Timing" on page 9–5
- "Software Support" on page 9–6
- "Recovering from CRC Errors" on page 9–9

Configuration Error Detection

Configuration error detection is available in all Cyclone IV devices including Cyclone IV GX devices, Cyclone IV E devices with 1.0-V core voltage, and Cyclone IV E devices with 1.2-V core voltage.

^{© 2013} Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

EXTEST_PULSE

The instruction code for EXTEST_PULSE is 0010001111. The EXTEST_PULSE instruction generates three output transitions:

- Driver drives data on the falling edge of TCK in UPDATE_IR/DR.
- Driver drives inverted data on the falling edge of TCK after entering the RUN_TEST/IDLE state.
- Driver drives data on the falling edge of TCK after leaving the RUN_TEST/IDLE state.
- IF you use DC-coupling on HSSI signals, you must execute the EXTEST instruction. If you use AC-coupling on HSSI signals, you must execute the EXTEST_PULSE instruction. AC-coupled and DC-coupled HSSI are only supported in post-configuration mode.

EXTEST_TRAIN

The instruction code for EXTEST_TRAIN is 0001001111. The EXTEST_TRAIN instruction behaves the same as the EXTEST_PULSE instruction with one exception. The output continues to toggle on the TCK falling edge as long as the test access port (TAP) controller is in the RUN_TEST/IDLE state.

- These two instruction codes are only supported in post-configuration mode for Cyclone IV GX devices.
- When you perform JTAG boundary-scan testing before configuration, the nCONFIG pin must be held low.

I/O Voltage Support in a JTAG Chain

A Cyclone IV device operating in BST mode uses four required pins: TDI, TDO, TMS, and TCK. The TDO output pin and all JTAG input pins are powered by the V_{CCIO} power supply of I/O Banks (I/O Bank 9 for Cyclone IV GX devices and I/O Bank 1 for Cyclone IV E devices).

A JTAG chain can contain several different devices. However, you must use caution if the chain contains devices that have different V_{CCIO} levels. The output voltage level of the TDO pin must meet the specification of the TDI pin it drives. For example, a device with a 3.3-V TDO pin can drive a device with a 5.0-V TDI pin because 3.3 V meets the minimum TTL-level V_{IH} for the 5.0-V TDI pin.

For multiple devices in a JTAG chain with the 3.0-V/3.3-V I/O standard, you must connect a $25-\Omega$ series resistor on a TDO pin driving a TDI pin.

You can also interface the TDI and TDO lines of the devices that have different V_{CCIO} levels by inserting a level shifter between the devices. If possible, the JTAG chain should have a device with a higher V_{CCIO} level driving a device with an equal or lower V_{CCIO} level. This way, a level shifter may be required only to shift the TDO level to a level acceptable to the JTAG tester.

© 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and service at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Visual Cue	Meaning							
	Indicates signal, port, register, bit, block, and primitive names. For example, data1, tdi, and input. The suffix n denotes an active-low signal. For example, resetn.							
Courier type	Indicates command line commands and anything that must be typed exactly as it appears. For example, c:\qdesigns\tutorial\chiptrip.gdf.							
	Also indicates sections of an actual file, such as a Report File, references to parts of files (for example, the AHDL keyword SUBDESIGN), and logic function names (for example, TRI).							
4	An angled arrow instructs you to press the Enter key.							
1., 2., 3., and a., b., c., and so on	Numbered steps indicate a list of items when the sequence of the items is important, such as the steps listed in a procedure.							
	Bullets indicate a list of items when the sequence of the items is not important.							
Ĩ	The hand points to information that requires special attention.							
0	The question mark directs you to a software help system with related information.							
	The feet direct you to another document or website with related information.							
▋┯∎	The multimedia icon directs you to a related multimedia presentation.							
CAUTION	A caution calls attention to a condition or possible situation that can damage or destroy the product or your work.							
VIARNING	A warning calls attention to a condition or possible situation that can cause you injury.							
	The envelope links to the Email Subscription Management Center page of the Altera website, where you can sign up to receive update notifications for Altera documents.							

Figure 1–56 shows the transceiver configuration in GIGE mode.

Figure 1–56. Transceiver Configuration in GIGE Mode

When configured in GIGE mode, three encoded comma (/K28.5/) code groups are transmitted automatically after deassertion of tx_digitalreset and before transmitting user data on the tx_datain port. This could affect the synchronization state machine behavior at the receiver.

Depending on when you start transmitting the synchronization sequence, there could be an even or odd number of encoded data (/Dx.y/) code groups transmitted between the last of the three automatically sent /K28.5/ code groups and the first /K28.5/ code group of the synchronization sequence. If there is an even number of /Dx.y/ code groups received between these two /K28.5/ code groups, the first /K28.5/ code group of the synchronization sequence begins at an odd code group boundary. An IEEE802.3-compliant GIGE synchronization state machine treats this as an error condition and goes into the Loss-of-Sync state.

PCIe Initialization/Compliance Phase

After the device is powered up, a PCIe-compliant device goes through the compliance phase during initialization. The rx_digitalreset signal must be deasserted during this compliance phase to achieve transitions on the pipephydonestatus signal, as expected by the link layer. The rx_digitalreset signal is deasserted based on the assertion of the rx_freqlocked signal.

During the initialization/compliance phase, do not use the rx_freqlocked signal to trigger a deassertion of the rx_digitalreset signal. Instead, perform the following reset sequence:

- 1. After power up, assert pll_areset for a minimum period of 1 μ s (the time between markers 1 and 2). Keep the tx_digitalreset, rx_analogreset, and rx_digitalreset signals asserted during this time period. After you deassert the pll_areset signal, the multipurpose PLL starts locking to the input reference clock.
- 2. After the multipurpose PLL locks, as indicated by the pll_locked signal going high (marker 3), deassert tx_digitalreset. For a receiver operation, after deassertion of busy signal, wait for two parallel clock cycles to deassert the rx_analogreset signal. After rx_analogreset is deasserted, the receiver CDR starts locking to the receiver input reference clock.
- 3. Deassert both the rx_analogreset signal (marker 6) and rx_digitalreset signal (marker 7) together, as indicated in Figure 2–10. After deasserting rx_digitalreset, the pipephydonestatus signal transitions from the transceiver channel to indicate the status to the link layer. Depending on its status, pipephydonestatus helps with the continuation of the compliance phase. After successful completion of this phase, the device enters into the normal operation phase.

PCIe Normal Phase

For the normal PCIe phase:

- 1. After completion of the Initialization/Compliance phase, during the normal operation phase at the Gen1 data rate, when the rx_freqlocked signal is deasserted (marker 9 in Figure 2–10).
- 2. Wait for the rx_freqlocked signal to go high again. In this phase, the received data is valid (not electrical idle) and the receiver CDR locks to the incoming data. Proceed with the reset sequence after assertion of the rx_freqlocked signal.
- 3. After the rx_freqlocked signal goes high, wait for at least t_{LTD_Manual} before asserting rx_digitalreset (marker 12 in Figure 2–10) for two parallel receive clock cycles so that the receiver phase compensation FIFO is initialized. For bonded PCIe Gen 1 mode (×2 and ×4), wait for all the rx_freqlocked signals to go high, then wait for t_{LTD_Manual} before asserting rx_digitalreset for 2 parallel clock cycles.

cancellation process on the receiver channel.

The deassertion of the busy signal indicates proper completion of the offset

Figure 2–13. Sample Reset Sequence of a Receiver and Transmitter Channels-Receiver CDR in Automatic Lock Mode with the Optional gxb_powerdown Signal ⁽¹⁾

Notes to Figure 2-13:

- (1) The $gxb_powerdown$ signal must not be asserted during the offset cancellation sequence.
- (2) For t_{LTD_Auto} duration, refer to the *Cyclone IV Device Datasheet* chapter.
- (3) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

Simulation Requirements

The following are simulation requirements:

- The gxb_powerdown port is optional. In simulation, if the gxb_powerdown port is not instantiated, you must assert the tx_digitalreset, rx_digitalreset, and rx_analogreset signals appropriately for correct simulation behavior.
- If the gxb_powerdown port is instantiated, and the other reset signals are not used, you must assert the gxb_powerdown signal for at least 1 µs for correct simulation behavior.
- You can deassert the rx_digitalreset signal immediately after the rx_freqlocked signal goes high to reduce the simulation run time. It is not necessary to wait for t_{LTD_Auto} (as suggested in the actual reset sequence).
- The busy signal is deasserted after about 20 parallel reconfig_clk clock cycles in order to reduce simulation run time. For silicon behavior in hardware, you can follow the reset sequences described in the previous pages.

FPGA Fabric-Transceiver Channel Interface Description	Receive Signal Description (Based on Cyclone IV GX Supported FPGA Fabric-Transceiver Channel Interface Widths)							
	Two 8-bit unencoded Data (rx_dataout)							
	<pre>rx_dataoutfull[7:0] - rx_dataout (LSByte) and</pre>							
	<pre>rx_dataoutfull[23:16] - rx_dataout (MSByte)</pre>							
	The following signals are used in 16-bit 8B/10B modes:							
	Two Control Bits							
	<pre>rx_dataoutfull[8] - rx_ctrldetect (LSB) and</pre>							
	<pre>rx_dataoutfull[24] - rx_ctrldetect (MSB)</pre>							
	Two Receiver Error Detect Bits							
	<pre>rx_dataoutfull[9] - rx_errdetect (LSB) and</pre>							
16-bit FPGA fabric-Transceiver Channel Interface with PCS-PMA set to 8/10 bits	<pre>rx_dataoutfull[25] - rx_errdetect (MSB)</pre>							
	Two Receiver Sync Status Bits							
	<pre>rx_dataoutfull [10] - rx_syncstatus (LSB) and</pre>							
	<pre>rx_dataoutfull[26] - rx_syncstatus (MSB)</pre>							
	Two Receiver Disparity Error Bits							
	<pre>rx_dataoutfull [11] - rx_disperr (LSB) and</pre>							
	<pre>rx_dataoutfull[27] - rx_disperr (MSB)</pre>							
	Two Receiver Pattern Detect Bits							
	<pre>rx_dataoutfull[12] - rx_patterndetect (LSB) and</pre>							
	<pre>rx_dataoutfull[28] - rx_patterndetect (MSB)</pre>							
	rx_dataoutfull[13] and rx_dataoutfull[29]: Rate Match FIFO deletion status indicator (rx_rmfifodatadeleted) in non-PCI Express (PIPE) functional modes							
	<pre>rx_dataoutfull[14] and rx_dataoutfull[30]: Rate Match FIFO insertion status indicator (rx_rmfifodatainserted) in non-PCI Express (PIPE) functional modes</pre>							
	Two 2-bit PCI Express (PIPE) Functional Mode Status Bits							
	<pre>rx_dataoutfull[14:13] - rx_pipestatus (LSB) and rx_dataoutfull[30:29] - rx_pipestatus (MSB)</pre>							
	<pre>rx_dataoutfull[15] and rx_dataoutfull[31]: 8B/10B running disparity indicator (rx_runningdisp)</pre>							

Table 3–5. rx_dataoutfull[31..0] FPGA Fabric-Transceiver Channel Interface Signal Descriptions (Part 2 of 3)

Table 1-47. Document Revision History

Date	Version	Changes
February 2010	1.1	 Updated Table 1–3 through Table 1–44 to include information for Cyclone IV E devices and Cyclone IV GX devices for Quartus II software version 9.1 SP1 release. Minor text edits.
November 2009	1.0	Initial release.