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1–2 Chapter 1: Cyclone IV FPGA Device Family Overview
Cyclone IV Device Family Features
■ Cyclone IV GX devices offer up to eight high-speed transceivers that provide:

■ Data rates up to 3.125 Gbps

■ 8B/10B encoder/decoder

■ 8-bit or 10-bit physical media attachment (PMA) to physical coding sublayer 
(PCS) interface

■ Byte serializer/deserializer (SERDES)

■ Word aligner

■ Rate matching FIFO

■ TX bit slipper for Common Public Radio Interface (CPRI)

■ Electrical idle

■ Dynamic channel reconfiguration allowing you to change data rates and 
protocols on-the-fly

■ Static equalization and pre-emphasis for superior signal integrity

■ 150 mW per channel power consumption

■ Flexible clocking structure to support multiple protocols in a single transceiver 
block

■ Cyclone IV GX devices offer dedicated hard IP for PCI Express (PIPE) (PCIe) 
Gen 1:

■ ×1, ×2, and ×4 lane configurations

■ End-point and root-port configurations

■ Up to 256-byte payload

■ One virtual channel

■ 2 KB retry buffer

■ 4 KB receiver (Rx) buffer

■ Cyclone IV GX devices offer a wide range of protocol support:

■ PCIe (PIPE) Gen 1 ×1, ×2, and ×4 (2.5 Gbps)

■ Gigabit Ethernet (1.25 Gbps)

■ CPRI (up to 3.072 Gbps)

■ XAUI (3.125 Gbps)

■ Triple rate serial digital interface (SDI) (up to 2.97 Gbps)

■ Serial RapidIO (3.125 Gbps)

■ Basic mode (up to 3.125 Gbps)

■ V-by-One (up to 3.0 Gbps)

■ DisplayPort (2.7 Gbps)

■ Serial Advanced Technology Attachment (SATA) (up to 3.0 Gbps)

■ OBSAI (up to 3.072 Gbps)
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1



1–8 Chapter 1: Cyclone IV FPGA Device Family Overview
Cyclone IV Device Family Architecture
Cyclone IV Device Family Architecture
This section describes Cyclone IV device architecture and contains the following 
topics:

■ “FPGA Core Fabric”

■ “I/O Features”

■ “Clock Management”

■ “External Memory Interfaces”

■ “Configuration”

■ “High-Speed Transceivers (Cyclone IV GX Devices Only)”

■ “Hard IP for PCI Express (Cyclone IV GX Devices Only)”

FPGA Core Fabric
Cyclone IV devices leverage the same core fabric as the very successful Cyclone series 
devices. The fabric consists of LEs, made of 4-input look up tables (LUTs), memory 
blocks, and multipliers.

Each Cyclone IV device M9K memory block provides 9 Kbits of embedded SRAM 
memory. You can configure the M9K blocks as single port, simple dual port, or true 
dual port RAM, as well as FIFO buffers or ROM. They can also be configured to 
implement any of the data widths in Table 1–7.

The multiplier architecture in Cyclone IV devices is the same as in the existing 
Cyclone series devices. The embedded multiplier blocks can implement an 18 × 18 or 
two 9 × 9 multipliers in a single block. Altera offers a complete suite of DSP IP 
including finite impulse response (FIR), fast Fourier transform (FFT), and numerically 
controlled oscillator (NCO) functions for use with the multiplier blocks. The 
Quartus® II design software’s DSP Builder tool integrates MathWorks Simulink and 
MATLAB design environments for a streamlined DSP design flow. 

f For more information, refer to the Logic Elements and Logic Array Blocks in Cyclone IV 
Devices, Memory Blocks in Cyclone IV Devices, and Embedded Multipliers in Cyclone IV 
Devices chapters.

Table 1–7. M9K Block Data Widths for Cyclone IV Device Family

Mode Data Width Configurations

Single port or simple dual port ×1, ×2, ×4, ×8/9, ×16/18, and ×32/36

True dual port ×1, ×2, ×4, ×8/9, and ×16/18
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1

http://www.altera.com/literature/hb/cyclone-iv/cyiv-51002.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51002.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51003.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51004.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51004.pdf


2–4 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
LE Operating Modes
Arithmetic Mode
Arithmetic mode is ideal for implementing adders, counters, accumulators, and 
comparators. An LE in arithmetic mode implements a 2-bit full adder and basic carry 
chain (Figure 2–3). LEs in arithmetic mode can drive out registered and unregistered 
versions of the LUT output. Register feedback and register packing are supported 
when LEs are used in arithmetic mode.

Figure 2–3 shows LEs in arithmetic mode.

The Quartus II Compiler automatically creates carry chain logic during design 
processing. You can also manually create the carry chain logic during design entry. 
Parameterized functions, such as LPM functions, automatically take advantage of 
carry chains for the appropriate functions.

The Quartus II Compiler creates carry chains longer than 16 LEs by automatically 
linking LABs in the same column. For enhanced fitting, a long carry chain runs 
vertically, which allows fast horizontal connections to M9K memory blocks or 
embedded multipliers through direct link interconnects. For example, if a design has a 
long carry chain in an LAB column next to a column of M9K memory blocks, any LE 
output can feed an adjacent M9K memory block through the direct link interconnect. 
If the carry chains run horizontally, any LAB which is not next to the column of M9K 
memory blocks uses other row or column interconnects to drive a M9K memory 
block. A carry chain continues as far as a full column.

Figure 2–3. Cyclone IV Device LEs in Arithmetic Mode

clock (LAB Wide)

ena (LAB Wide)

aclr (LAB Wide)

CLRN

D
Q

ENA

sclear
(LAB Wide)

sload
(LAB Wide)

Register
Chain Output

Row, Column, and
Direct link routing

Row, Column, and
Direct link routing

Local Routing

Register Feedback

Three-Input
LUT

Three-Input
LUTcin (from cout

of previous LE)

data2
data1

cout

Register Bypass

data4

data3

Register Chain
Connection

Packed Register Input
Cyclone IV Device Handbook, November 2009 Altera Corporation
Volume 1



3–6 Chapter 3: Memory Blocks in Cyclone IV Devices
Overview
Figure 3–3 and Figure 3–4 show the address clock enable waveform during read and 
write cycles, respectively.

Mixed-Width Support
M9K memory blocks support mixed data widths. When using simple dual-port, true 
dual-port, or FIFO modes, mixed width support allows you to read and write 
different data widths to an M9K memory block. For more information about the 
different widths supported per memory mode, refer to “Memory Modes” on 
page 3–7.

Figure 3–3. Cyclone IV Devices Address Clock Enable During Read Cycle Waveform

Figure 3–4. Cyclone IV Devices Address Clock Enable During Write Cycle Waveform
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Chapter 3: Memory Blocks in Cyclone IV Devices 3–9
Memory Modes
Figure 3–7 shows a timing waveform for read and write operations in single-port 
mode with unregistered outputs. Registering the outputs of the RAM simply delays 
the q output by one clock cycle.

Simple Dual-Port Mode
Simple dual-port mode supports simultaneous read and write operations to different 
locations. Figure 3–8 shows the simple dual-port memory configuration.

Cyclone IV devices M9K memory blocks support mixed-width configurations, 
allowing different read and write port widths. Table 3–3 lists mixed-width 
configurations.

Figure 3–7. Cyclone IV Devices Single-Port Mode Timing Waveform

clk_a

wren_a

address_a

data_a

rden_a

q_a (old data)

a0 a1

A B C D E F

a0(old data) a1(old data)A B D E

q_a (new data) A DB C E F

Figure 3–8. Cyclone IV Devices Simple Dual-Port Memory (1)

Note to Figure 3–8:

(1) Simple dual-port RAM supports input or output clock mode in addition to the read or write clock mode shown. 

data[ ]
wraddress[ ]
wren
byteena[]
wr_addressstall
wrclock
wrclocken
aclr

rdaddress[ ]
rden

q[ ]
rd_addressstall

rdclock
rdclocken

Table 3–3.  Cyclone IV Devices M9K Block Mixed-Width Configurations (Simple Dual-Port Mode) (Part 1 of 2)

Read Port
Write Port

8192 × 1 4096 × 2 2048 × 4 1024 × 8 512 × 16 256 × 32 1024 × 9 512 × 18 256 × 36

8192 × 1 v v v v v v — — —

4096 × 2 v v v v v v — — —

2048 × 4 v v v v v v — — —

1024 × 8 v v v v v v — — —
November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 6: I/O Features in Cyclone IV Devices 6–31
High-Speed I/O Standards Support
Figure 6–14 shows a typical BLVDS topology with multiple transmitter and receiver 
pairs. 

The BLVDS I/O standard is supported on the top, bottom, and right I/O banks of 
Cyclone IV devices. The BLVDS transmitter uses two single-ended output buffers 
with the second output buffer programmed as inverted, while the BLVDS receiver 
uses a true LVDS input buffer. The transmitter and receiver share the same pins. An 
output-enabled (OE) signal is required to tristate the output buffers when the LVDS 
input buffer receives a signal.

f For more information, refer to the Cyclone IV Device Datasheet chapter.

Designing with BLVDS
The BLVDS bidirectional communication requires termination at both ends of the bus 
in BLVDS. The termination resistor (RT) must match the bus differential impedance, 
which in turn depends on the loading on the bus. Increasing the load decreases the 
bus differential impedance. With termination at both ends of the bus, termination is 
not required between the two signals at the input buffer. A single series resistor (RS) is 
required at the output buffer to match the output buffer impedance to the 
transmission line impedance. However, this series resistor affects the voltage swing at 
the input buffer. The maximum data rate achievable depends on many factors.

1 Altera recommends that you perform simulation using the IBIS model while 
considering factors such as bus loading, termination values, and output and input 
buffer location on the bus to ensure that the required performance is achieved.

f For more information about BLVDS interface support in Altera devices, refer to 
AN 522: Implementing Bus LVDS Interface in Supported Altera Device Families.

Figure 6–14. BLVDS Topology with Cyclone IV Devices Transmitters and Receivers
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8–46 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
JTAG instructions have precedence over any other configuration modes. Therefore, 
JTAG configuration can take place without waiting for other configuration modes to 
complete. For example, if you attempt JTAG configuration in Cyclone IV devices 
during PS configuration, PS configuration terminates and JTAG configuration begins. 
If the MSEL pins are set to AS mode, the Cyclone IV device does not output a DCLK 
signal when JTAG configuration takes place.

The four required pins for a device operating in JTAG mode are TDI, TDO, TMS, and TCK. 
All the JTAG input pins are powered by the VCCIO pin and support the LVTTL I/O 
standard only. All user I/O pins are tri-stated during JTAG configuration. Table 8–14 
explains the function of each JTAG pin.

You can download data to the device through the USB-Blaster, MasterBlaster, 
ByteBlaster II, or ByteBlasterMV download cable, or the EthernetBlaster 
communications cable during JTAG configuration. Configuring devices with a cable is 
similar to programming devices in-system. Figure 8–23 and Figure 8–24 show the 
JTAG configuration of a single Cyclone IV device. 

Table 8–14. Dedicated JTAG Pins 

Pin Name Pin Type Description

TDI
Test data 
input

Serial input pin for instructions as well as test and programming data. Data shifts in on the 
rising edge of TCK. If the JTAG interface is not required on the board, the JTAG circuitry is 
disabled by connecting this pin to VCC. TDI pin has weak internal pull-up resistors (typically 25 
k).

TDO
Test data 
output

Serial data output pin for instructions as well as test and programming data. Data shifts out on 
the falling edge of TCK. The pin is tri-stated if data is not being shifted out of the device. If the 
JTAG interface is not required on the board, the JTAG circuitry is disabled by leaving this pin 
unconnected.

TMS
Test mode 
select

Input pin that provides the control signal to determine the transitions of the TAP controller 
state machine. Transitions in the state machine occur on the rising edge of TCK. Therefore, 
TMS must be set up before the rising edge of TCK. TMS is evaluated on the rising edge of TCK. 
If the JTAG interface is not required on the board, the JTAG circuitry is disabled by connecting 
this pin to VCC. TMS pin has weak internal pull-up resistors (typically 25 k).

TCK
Test clock 
input

The clock input to the BST circuitry. Some operations occur at the rising edge, while others 
occur at the falling edge. If the JTAG interface is not required on the board, the JTAG circuitry 
is disabled by connecting this pin to GND. The TCK pin has an internal weak pull-down resistor.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



1–22 Chapter 1: Cyclone IV Transceivers Architecture
Receiver Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

synchronization state machine mode. In bit-slip mode, you can dynamically 
enable the receiver bit reversal using the rx_revbitorderwa port. When enabled, 
the 8-bit or 10-bit data D[7..0] or D[9..0] at the output of the word aligner is 
rewired to D[0..7] or D[0..9] respectively. Figure 1–20 shows the receiver bit 
reversal feature.

1 When using the receiver bit reversal feature to receive MSB-to-LSB 
transmission, reversal of the word alignment pattern is required.

■ Receiver bit-slip indicator—provides the number of bits slipped in the word 
aligner for synchronization with rx_bitslipboundaryselectout signal. For usage 
details, refer to “Receive Bit-Slip Indication” on page 1–76.

Deskew FIFO
This module is only available when used for the XAUI protocol and is used to align all 
four channels to meet the maximum skew requirement of 40 UI (12.8 ns) as seen at the 
receiver of the four lanes. The deskew operation is compliant to the PCS deskew state 
machine diagram specified in clause 48 of the IEEE P802.3ae specification. 

The deskew circuitry consists of a 16-word deep deskew FIFO in each of the four 
channels, and control logics in the central control unit of the transceiver block that 
controls the deskew FIFO write and read operations in each channel.

For details about the deskew FIFO operations for channel deskewing, refer to “XAUI 
Mode” on page 1–67.

Figure 1–20. Receiver Bit Reversal (1)

Note to Figure 1–20:

(1) The rx_revbitordwa port is dynamic and is only available when the word aligner is configured in bit-slip mode.
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Transceiver Clocking Architecture

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Bonded Channel Configuration
In bonded channel configuration, the low-speed clock for the bonded channels share a 
common bonded clock path that reduces clock skew between the bonded channels. 
The phase compensation FIFOs in bonded channels share a set of pointers and control 
logic that results in equal FIFO latency between the bonded channels. These features 
collectively result in lower channel-to-channel skew when implementing 
multi-channel serial interface in bonded channel configuration.

In a transceiver block, the high-speed clock for each bonded channels is distributed 
independently from one of the two multipurpose PLLs directly adjacent to the block. 
The low-speed clock for bonded channels is distributed from a common bonded clock 
path that selects from one of the two multipurpose PLLs directly adjacent to the block. 
Transceiver channels for devices in F484 and larger packages support additional 
clocking flexibility for ×2 bonded channels. In these packages, the ×2 bonded channels 
support high-speed and low-speed bonded clock distribution from PLLs beyond the 
two multipurpose PLLs directly adjacent to the block. Table 1–10 lists the high- and 
low-speed clock sources for the bonded channels.

1 When implementing ×2 bonded channel configuration in a transceiver block, 
remaining channels 2 and 3 are available to implement other non-bonded channel 
configuration.

Table 1–10. High- and Low-Speed Clock Sources for Bonded Channels in Bonded Channel 
Configuration

Package Transceiver 
Block Bonded Channels

High- and Low-Speed Clocks Source

Option 1 Option 2

F324 and smaller GXBL0
×2 in channels 0, 1
×4 in all channels MPLL_1 MPLL_2

F484 and larger

GXBL0
×2 in channels 0, 1 MPLL_5/

GPLL_1
MPLL_6

×4 in all channels MPLL_5 MPLL_6

GXBL1 (1)
×2 in channels 0, 1 MPLL_7/

MPLL_6
MPLL_8

×4 in all channels MPLL_7 MPLL_8

Note to Table 1–10:

(1) GXBL1 is not available for transceivers in F484 package.
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Transceiver Functional Modes
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Figure 1–55 shows the transceiver channel datapath and clocking when configured in 
GIGE mode.

Figure 1–55. Transceiver Channel Datapath and Clocking when Configured in GIGE Mode

Notes to Figure 1–55:

(1) Low-speed recovered clock.
(2) High-speed recovered clock.
(3) Optional rx_recovclkout port from CDR low-speed recovered clock is available for applications such as Synchronous Ethernet.
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Figure 1–57 shows an example of even numbers of /Dx.y/ between the last 
automatically sent /K28.5/ and the first user-sent /K28.5/. The first user-sent 
/K28.5/ code group received at an odd code group boundary in cycle n + 3 takes the 
receiver synchronization state machine in Loss-of-Sync state. The first 
synchronization ordered-set /K28.5/Dx.y/ in cycles n + 3 and n + 4 is discounted and 
three additional ordered sets are required for successful synchronization.

Running Disparity Preservation with Idle Ordered Set
During idle ordered sets transmission in GIGE mode, the transmitter ensures a 
negative running disparity at the end of an idle ordered set. Any /Dx.y/, except for 
/D21.5/ (part of /C1/ ordered set) or /D2.2/ (part of /C2/ ordered set) following a 
/K28.5/ is automatically replaced with either of the following:

■ A /D5.6/ (/I1/ ordered set) if the running disparity before /K28.5/ is positive

■ A /D16.2/ (/I2/ ordered set) if the running disparity before /K28.5/ is negative

Lane Synchronization
In GIGE mode, the word aligner is configured in automatic synchronization state 
machine mode that complies with the IEEE P802.3ae standard. A synchronization 
ordered set is a /K28.5/ code group followed by an odd number of valid /Dx.y/ code 
groups. Table 1–19 lists the synchronization state machine parameters that 
implements the GbE-compliant synchronization.

Figure 1–57. Example of Reset Condition in GIGE Mode

tx_digitalreset

clock

n n + 1 n + 2 n + 3 n + 4

tx_dataout K28.5 xxx K28.5 K28.5 Dx.y Dx.y K28.5 Dx.yK28.5 K28.5 Dx.y K28.5 Dx.y

Table 1–19. Synchronization State Machine Parameters (1)

Parameter Value

Number of valid synchronization ordered sets received to achieve 
synchronization 3

Number of erroneous code groups received to lose synchronization 4

Number of continuous good code groups received to reduce the error count by 
one 4

Note to Table 1–19:

(1) The word aligner supports 7-bit and 10-bit pattern lengths in GIGE mode.
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8B/10B decoder in the receiver datapath maps received PCS code groups into specific 
8-bit XGMII codes as listed in Table 1–22.

Channel Deskewing
The deskew FIFO in each of the four lanes expects to receive /A/ code group 
simultaneously on all four channels during the inter-packet gap, as required by XAUI 
protocol. The skew introduced in the physical medium and the receiver channels 
might cause the /A/ code group to be received misaligned with respect to each other. 

The deskew FIFO works to align the /A/ code group across the four channels, which 
operation is compliant to the PCS deskew state machine diagram specified in 
clause 48 of the IEEE P802.3ae specification. The deskew operation begins after link 
synchronization is achieved on all four channels as indicated by the word aligner in 
each channel. The following are the deskew FIFO operations:

■ Until the first /A/ code group is received, the deskew FIFO read and write 
pointers in each channel are not incremented. 

■ After the first /A/ code group is received, the write pointer starts incrementing for 
each word received but the read pointer is frozen. 

■ When all the four channels received the /A/ code group within 10 recovered clock 
cycles of each other, the read pointer of all four deskew FIFOs is released 
simultaneously, aligning the /A/ code group of all four channels in a column. 

1 Any other value K30.7 Invalid XGMII character

Notes to Table 1–21:

(1) Equivalent to tx_ctrlenable port.
(2) Equivalent to 8-bit input data to 8B/10B encoder.
(3) The values in XGMII TXD column are in hexadecimal.

Table 1–21. XGMII Character to PCS Code Groups Mapping (Part 2 of 2)

XGMII TXC (1) XGMII TXD (2), (3) PCS Code Group Description

Table 1–22. PCS Code Groups to XGMII Character Mapping

XGMII RXC (1) XGMII RXD (2), (3) PCS Code Group Description

0 00 through FF Dxx,y Normal data transmission

1 07 K28.0, K28.3, or K28.5 Idle in ||I||

1 07 K28.5 Idle in ||T||

1 9C K28.4 Sequence

1 FB K27.7 Start

1 FD K29.7 Terminate

1 FE K30.7 Error

1 FE Invalid code group Received code group

Notes to Table 1–22:

(1) Equivalent to rx_ctrlenable port.
(2) Equivalent to 8-bit input data to 8B/10B encoder.
(3) The values in XGMII RXD column are in hexadecimal.
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4. For the receiver operation, after deassertion of busy signal, wait for two parallel 
clock cycles to deassert the rx_analogreset signal.

5. Wait for the rx_freqlocked signal from each channel to go high. The 
rx_freqlocked signal of each channel may go high at different times (indicated by 
the slashed pattern at marker 7).

6. In a bonded channel group, when the rx_freqlocked signals of all the channels 
has gone high, from that point onwards, wait for at least tLTD_Auto time for the 
receiver parallel clock to be stable, then deassert the rx_digitalreset signal 
(marker 8). At this point, all the receivers are ready for data traffic.

Receiver and Transmitter Channel—Receiver CDR in Manual Lock Mode

This configuration contains both a transmitter and receiver channel. When the 
receiver CDR is in manual lock mode, use the reset sequence shown in Figure 2–5.

Figure 2–5. Sample Reset Sequence for Bonded Configuration Receiver and Transmitter Channels—Receiver CDR in 
Manual Lock Mode

Notes to Figure 2–5:

(1) For tLTD_Manual duration, refer to the Cyclone IV Device Datasheet chapter.
(2) The number of rx_locktorefclk[n] and rx_locktodata[n] signals depend on the number of channels configured. n=number of channels. 
(3) For tLTR_LTD_Manual duration, refer to the Cyclone IV Device Datasheet chapter.
(4) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy 

signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

Reset Signals

Output Status Signals

1 2

3

4

8

CDR Control Signals

6

7

7

5
Two parallel clock cycles

rx_locktodata[0]

7

7
rx_locktodata[n] (2)

1 µs

pll_areset

(txurstpcs) tx_digitalreset

(rxurstpma) rx_analogreset

(rxurstpcs) rx_digitalreset

rx_locktorefclk[0]

rx_locktorefclk[n] (2)

pll_locked

busy (4)

tLTR_LTD_Manual (3)

tLTD_Manual (1)

http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
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4. Wait for at least tLTR_LTD_Manual (the time between markers 6 and 7), then deassert 
the rx_locktorefclk signal. At the same time, assert the rx_locktodata signal 
(marker 7). At this point, the receiver CDR enters lock-to-data mode and the 
receiver CDR starts locking to the received data.

5. Deassert rx_digitalreset at least tLTD_Manual (the time between markers 7 and 8) 
after asserting the rx_locktodata signal. At this point, the transmitter and receiver 
are ready for data traffic.

Reset Sequence in Loss of Link Conditions
Loss of link can occur due to loss of local reference clock source or loss of the link due 
to an unplugged cable. Other adverse conditions like loss of power could also cause 
the loss of signal from the other device or link partner.

Loss of Local REFCLK or Other Reference Clock Condition

Should local reference clock input become disabled or unstable, take the following 
steps:

1. Monitor pll_locked signal. Pll_locked is de-asserted if local reference clock 
source becomes unavailable. 

2. Pll_locked assertion indicates a stable reference clock because TX PLL locks to the 
incoming clock. You can follow appropriate reset sequence provided in the device 
handbook, starting from pll_locked assertion.

Loss of Link Due To Unplugged Cable or Far End Shut-off Condition

Use one or more of the following methods to identify whether link partner is alive:

■ Signal detect is available in PCIe and Basic modes. You can monitor 
rx_signaldetect signal as loss of link indicator. rx_signaldetect is asserted 
when the link partner comes back up.

■ You can implement a ppm detector in device core for modes that do not have 
signal detect to monitor the link. Ppm detector helps in identifying whether the 
link is alive.

■ Data corruption or RX phase comp FIFO overflow or underflow condition in user 
logic may indicate a loss of link condition.

Apply the following reset sequences when loss of link is detected:

■ For Automatic CDR lock mode:

a. Monitor rx_freqlocked signal. Loss of link causes rx_freqlocked to be de-
asserted when CDR moves back to lock-to-data (LTD) mode.

b. Assert rx_digitalreset.

c. rx_freqlocked toggles over time when CDR switches between lock-to-
reference (LTR) and LTD modes.

d. If rx_freqlocked goes low at any point, re-assert rx_digitalreset.

e. If data corruption or RX phase comp FIFO overflow or underflow condition is 
observed in user logic, assert rx_digitalreset for 2 parallel clock cycles, then 
de-assert the signal.
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PCIe Initialization/Compliance Phase
After the device is powered up, a PCIe-compliant device goes through the compliance 
phase during initialization. The rx_digitalreset signal must be deasserted during 
this compliance phase to achieve transitions on the pipephydonestatus signal, as 
expected by the link layer. The rx_digitalreset signal is deasserted based on the 
assertion of the rx_freqlocked signal.

During the initialization/compliance phase, do not use the rx_freqlocked signal to 
trigger a deassertion of the rx_digitalreset signal. Instead, perform the following 
reset sequence:

1. After power up, assert pll_areset for a minimum period of 1 s (the time 
between markers 1 and 2). Keep the tx_digitalreset, rx_analogreset, and 
rx_digitalreset signals asserted during this time period. After you deassert the 
pll_areset signal, the multipurpose PLL starts locking to the input reference 
clock.

2. After the multipurpose PLL locks, as indicated by the pll_locked signal going 
high (marker 3), deassert tx_digitalreset. For a receiver operation, after 
deassertion of busy signal, wait for two parallel clock cycles to deassert the 
rx_analogreset signal. After rx_analogreset is deasserted, the receiver CDR 
starts locking to the receiver input reference clock.

3. Deassert both the rx_analogreset signal (marker 6) and rx_digitalreset signal 
(marker 7) together, as indicated in Figure 2–10. After deasserting 
rx_digitalreset, the pipephydonestatus signal transitions from the transceiver 
channel to indicate the status to the link layer. Depending on its status, 
pipephydonestatus helps with the continuation of the compliance phase. After 
successful completion of this phase, the device enters into the normal operation 
phase.

PCIe Normal Phase
For the normal PCIe phase:

1. After completion of the Initialization/Compliance phase, during the normal 
operation phase at the Gen1 data rate, when the rx_freqlocked signal is 
deasserted (marker 9 in Figure 2–10).

2. Wait for the rx_freqlocked signal to go high again. In this phase, the received data 
is valid (not electrical idle) and the receiver CDR locks to the incoming data. 
Proceed with the reset sequence after assertion of the rx_freqlocked signal. 

3. After the rx_freqlocked signal goes high, wait for at least tLTD_Manual before 
asserting rx_digitalreset (marker 12 in Figure 2–10) for two parallel receive 
clock cycles so that the receiver phase compensation FIFO is initialized. For 
bonded PCIe Gen 1 mode (×2 and ×4), wait for all the rx_freqlocked signals to go 
high, then wait for tLTD_Manual before asserting rx_digitalreset for 2 parallel clock 
cycles.



Chapter 3: Cyclone IV Dynamic Reconfiguration 3–21
Dynamic Reconfiguration Modes

November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Figure 3–9 shows the connection for PMA reconfiguration mode.

Transceiver Channel Reconfiguration Mode
You can dynamically reconfigure the transceiver channel from an existing functional 
mode to a different functional mode by selecting the Channel Reconfiguration option 
in ALTGX and ALTGX_RECONFIG MegaWizards. The blocks that are reconfigured 
by channel reconfiguration mode are the PCS and RX PMA blocks of a transceiver 
channel.

1 For more information about reconfiguring the RX PMA blocks of the transceiver 
channel using channel reconfiguration mode, you can refer to “Data Rate 
Reconfiguration Mode Using RX Local Divider” on page 3–26.

In channel reconfiguration, only a write transaction can occur; no read transactions 
are allowed. You can optionally choose to trigger write_all once by selecting the 
continuous write operation in the ALTGX_RECONFIG MegaWizard Plug-In 
Manager. The Quartus II software then continuously writes all the words required for 
reconfiguration.

For channel reconfiguration, .mif files are required to dynamically reconfigure the 
transceivers channels in channel reconfiguration modes. The .mif carries the 
reconfiguration information that will be used to reconfigure the transceivers channel 
dynamically on-the-fly. The .mif contents is generated automatically when you select 
the Generate GXB Reconfig MIF option in the Quartus II software setting. For 
different .mif settings, you need to later reconfigure and recompile the ALTGX 
MegaWizard to generate the .mif based on the required reconfiguration settings. 

The dynamic reconfiguration controller can optionally perform a continuos write 
operation or a regular write operation of the .mif contents in terms of word size 
(16-bit data) to the transceivers channel that is selected for reconfiguration.

Figure 3–9. ALTGX and ALTGX_RECONFIG Connection for PMA Reconfiguration Mode 

Note to Figure 3–9:

(1) This block can be reconfigured in PMA reconfiguration mode.

ALTGXALTGX_RECONFIG
reconfig_fromgxb[n..0]

TX PCS 

Analog
Reconfig
Control
Logic

TX PMA
              (1)

reconfig_clk

read

write_all

tx_vodctrl[2..0]

reconfig_togxb[3..0]

busy

tx_preemp[4..0]

rx_eqdcgain[1..0]

RX PCS
RX PMA

+ CDR (1)

data_valid

rx_eqctrl[3..0]

tx_vodctrl_out[2..0]

tx_preemp_out[4..0]

rx_eqdcgain_out[1..0]

rx_eqctrl_out[3..0]

rx_tx_duplex_sel[1..0]

logical_channel_address[n..0]

Ports that are used to read the PMA settings from the TX/RX PMA block during a read transaction

Ports that are used to write the PMA settings to the TX/RX PMA block during a write transaction

Input control and output signal ports for analog reconfiguration mode
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Option 1: Share a Single Transmitter Core Clock Between Receivers

■ Enable this option if you want tx_clkout of the first channel (channel 0) of the 
transceiver block to provide the read clock to the Receive Phase Compensation 
FIFOs of the remaining receiver channels in the transceiver block.

■ This option is typically enabled when all the channels of a transceiver block are in 
a Basic or Protocol configuration with rate matching enabled and are reconfigured 
to another Basic or Protocol configuration with rate matching enabled.

Figure 3–13 shows the sharing of channel 0’s tx_clkout between all four channels of a 
transceiver block.

Figure 3–13. Option 1 for Receiver Core Clocking (Channel Reconfiguration Mode)

High-speed serial clock generated by the MPLL

Low-speed parallel clock (tx_clkout0) 

FPGA Fabric Transceiver Block

tx_clkout[0]

TX0

RX0

TX1

TX2

TX3

RX1

RX2

RX3

MPLL
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Additional Information
This chapter provides additional information about the document and Altera.

About this Handbook
This handbook provides comprehensive information about the Altera® Cyclone® IV 
family of devices. 

How to Contact Altera
To locate the most up-to-date information about Altera products, refer to the 
following table.

Typographic Conventions
The following table shows the typographic conventions this document uses.

Contact (1) Contact Method Address

Technical support Website www.altera.com/support

Technical training
Website www.altera.com/training

Email custrain@altera.com

Product literature Website www.altera.com/literature

Nontechnical support (general) Email nacomp@altera.com

(software licensing) Email authorization@altera.com

Note to Table:

(1) You can also contact your local Altera sales office or sales representative. 

Visual Cue Meaning

Bold Type with Initial Capital 
Letters

Indicate command names, dialog box titles, dialog box options, and other GUI 
labels. For example, Save As dialog box. For GUI elements, capitalization matches 
the GUI.

bold type
Indicates directory names, project names, disk drive names, file names, file name 
extensions, software utility names, and GUI labels. For example, \qdesigns 
directory, D: drive, and chiptrip.gdf file.

Italic Type with Initial Capital Letters Indicate document titles. For example, Stratix IV Design Guidelines.

italic type
Indicates variables. For example, n + 1.

Variable names are enclosed in angle brackets (< >). For example, <file name> and 
<project name>.pof file. 

Initial Capital Letters Indicate keyboard keys and menu names. For example, the Delete key and the 
Options menu. 

“Subheading Title” Quotation marks indicate references to sections in a document and titles of 
Quartus II Help topics. For example, “Typographic Conventions.”
Cyclone IV Device Handbook,
Volume 3
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I/O Timing
Use the following methods to determine I/O timing: 

■ the Excel-based I/O Timing

■ the Quartus II timing analyzer

The Excel-based I/O timing provides pin timing performance for each device density 
and speed grade. The data is typically used prior to designing the FPGA to get a 
timing budget estimation as part of the link timing analysis. The Quartus II timing 
analyzer provides a more accurate and precise I/O timing data based on the specifics 
of the design after place-and-route is complete.

f The Excel-based I/O Timing spreadsheet is downloadable from Cyclone IV Devices 
Literature website.

Glossary
Table 1–46 lists the glossary for this chapter.

Table 1–46. Glossary (Part 1 of 5)

Letter Term Definitions

A — —

B — —

C — —

D — —

E — —

F fHSCLK High-speed I/O block: High-speed receiver/transmitter input and output clock frequency.

G
GCLK Input pin directly to Global Clock network.

GCLK PLL Input pin to Global Clock network through the PLL.

H HSIODR High-speed I/O block: Maximum/minimum LVDS data transfer rate (HSIODR = 1/TUI).

I

Input Waveforms 
for the SSTL 
Differential I/O 
Standard

VIL

VREF

VIH

VSWING
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3
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V

VCM(DC) DC common mode input voltage.

VDIF(AC) AC differential input voltage: The minimum AC input differential voltage required for switching.

VDIF(DC) DC differential input voltage: The minimum DC input differential voltage required for switching.

VICM Input common mode voltage: The common mode of the differential signal at the receiver.

VID
Input differential voltage swing: The difference in voltage between the positive and 
complementary conductors of a differential transmission at the receiver.

VIH
Voltage input high: The minimum positive voltage applied to the input that is accepted by the 
device as a logic high.

VIH(AC) High-level AC input voltage.

VIH(DC) High-level DC input voltage. 

VIL
Voltage input low: The maximum positive voltage applied to the input that is accepted by the 
device as a logic low.

VIL (AC) Low-level AC input voltage. 

VIL (DC) Low-level DC input voltage. 

VIN DC input voltage.

VOCM Output common mode voltage: The common mode of the differential signal at the transmitter.

VOD
Output differential voltage swing: The difference in voltage between the positive and 
complementary conductors of a differential transmission at the transmitter. VOD = VOH – VOL.

VOH
Voltage output high: The maximum positive voltage from an output that the device considers is 
accepted as the minimum positive high level.

VOL
Voltage output low: The maximum positive voltage from an output that the device considers is 
accepted as the maximum positive low level.

VOS Output offset voltage: VOS = (VOH + VOL) / 2.

VOX (AC)
AC differential output cross point voltage: the voltage at which the differential output signals 
must cross. 

VREF Reference voltage for the SSTL and HSTL I/O standards. 

VREF (AC)
AC input reference voltage for the SSTL and HSTL I/O standards. VREF(AC) = VREF(DC) + noise. The 
peak-to-peak AC noise on VREF must not exceed 2% of VREF(DC).

VREF (DC) DC input reference voltage for the SSTL and HSTL I/O standards.

VSWING (AC)
AC differential input voltage: AC input differential voltage required for switching. For the SSTL 
differential I/O standard, refer to Input Waveforms.

VSWING (DC)
DC differential input voltage: DC input differential voltage required for switching. For the SSTL 
differential I/O standard, refer to Input Waveforms.

VTT Termination voltage for the SSTL and HSTL I/O standards.

VX (AC)
AC differential input cross point voltage: The voltage at which the differential input signals must 
cross. 

W — —

X — —

Y — —

Z — —

Table 1–46. Glossary (Part 5 of 5)

Letter Term Definitions
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