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3–18 Chapter 3: Memory Blocks in Cyclone IV Devices
Document Revision History
Power-Up Conditions and Memory Initialization
The M9K memory block outputs of Cyclone IV devices power up to zero (cleared) 
regardless of whether the output registers are used or bypassed. All M9K memory 
blocks support initialization using a .mif. You can create .mifs in the Quartus II 
software and specify their use using the RAM MegaWizard Plug-In Manager when 
instantiating memory in your design. Even if memory is pre-initialized (for example, 
using a .mif), it still powers up with its outputs cleared. Only the subsequent read 
after power up outputs the pre-initialized values.

f For more information about .mifs, refer to the RAM Megafunction User Guide and the 
Quartus II Handbook.

Power Management
The M9K memory block clock enables of Cyclone IV devices allow you to control 
clocking of each M9K memory block to reduce AC power consumption. Use the rden 
signal to ensure that read operations only occur when necessary. If your design does 
not require read-during-write, reduce power consumption by deasserting the rden 
signal during write operations or any period when there are no memory operations. 
The Quartus II software automatically powers down any unused M9K memory 
blocks to save static power.

Document Revision History
Table 3–6 shows the revision history for this chapter.

Table 3–6. Document Revision History

Date Version Changes

November 2011 1.1 Updated the “Byte Enable Support” section.

November 2009 1.0 Initial release.
Cyclone IV Device Handbook, November 2011 Altera Corporation
Volume 1
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4–4 Chapter 4: Embedded Multipliers in Cyclone IV Devices
Operational Modes
Table 4–2 lists the sign of the multiplication results for the various operand sign 
representations. The results of the multiplication are signed if any one of the operands 
is a signed value.

Each embedded multiplier block has only one signa and one signb signal to control 
the sign representation of the input data to the block. If the embedded multiplier 
block has two 9 × 9 multipliers, the Data A input of both multipliers share the same 
signa signal, and the Data B input of both multipliers share the same signb signal. 
You can dynamically change the signa and signb signals to modify the sign 
representation of the input operands at run time. You can send the signa and signb 
signals through a dedicated input register. The multiplier offers full precision, 
regardless of the sign representation.

1 When the signa and signb signals are unused, the Quartus II software sets the 
multiplier to perform unsigned multiplication by default.

Output Registers
You can register the embedded multiplier output with output registers in either 18- or 
36-bit sections, depending on the operational mode of the multiplier. The following 
control signals are available for each output register in the embedded multiplier:

■ clock

■ clock enable

■ asynchronous clear

All input and output registers in a single embedded multiplier are fed by the same 
clock, clock enable, and asynchronous clear signals.

Operational Modes
You can use an embedded multiplier block in one of two operational modes, 
depending on the application needs:

■ One 18 × 18 multiplier

■ Up to two 9 × 9 independent multipliers

1 You can also use embedded multipliers of Cyclone IV devices to implement multiplier 
adder and multiplier accumulator functions, in which the multiplier portion of the 
function is implemented with embedded multipliers, and the adder or accumulator 
function is implemented in logic elements (LEs). 

Table 4–2. Multiplier Sign Representation 

Data A Data B
Result

signa Value Logic Level signb Value Logic Level

Unsigned Low Unsigned Low Unsigned

Unsigned Low Signed High Signed

Signed High Unsigned Low Signed

Signed High Signed High Signed
Cyclone IV Device Handbook, February 2010 Altera Corporation
Volume 1



4–6 Chapter 4: Embedded Multipliers in Cyclone IV Devices
Operational Modes
9-Bit Multipliers
You can configure each embedded multiplier to support two 9 × 9 independent 
multipliers for input widths of up to 9 bits.

Figure 4–4 shows the embedded multiplier configured to support two 9-bit 
multipliers.

All 9-bit multiplier inputs and results are independently sent through registers. The 
multiplier inputs can accept signed integers, unsigned integers, or a combination of 
both. Two 9 × 9 multipliers in the same embedded multiplier block share the same 
signa and signb signal. Therefore, all the Data A inputs feeding the same embedded 
multiplier must have the same sign representation. Similarly, all the Data B inputs 
feeding the same embedded multiplier must have the same sign representation.

Figure 4–4. 9-Bit Multiplier Mode
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Cyclone IV Device Handbook, February 2010 Altera Corporation
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Table 5–3. GCLK Network Connections for Cyclone IV E Devices (1) (Part 2 of 3)
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–17
Clock Networks
Figure 5–7 shows how to implement the clkena signal with a single register.

1 The clkena circuitry controlling the output C0 of the PLL to an output pin is 
implemented with two registers instead of a single register, as shown in Figure 5–7.

Figure 5–8 shows the waveform example for a clock output enable. The clkena signal 
is sampled on the falling edge of the clock (clkin).

1 This feature is useful for applications that require low power or sleep mode.

The clkena signal can also disable clock outputs if the system is not tolerant to 
frequency overshoot during PLL resynchronization.

Altera recommends using the clkena signals when switching the clock source to the 
PLLs or the GCLK. The recommended sequence is:

1. Disable the primary output clock by de-asserting the clkena signal.

2. Switch to the secondary clock using the dynamic select signals of the clock control 
block.

3. Allow some clock cycles of the secondary clock to pass before reasserting the 
clkena signal. The exact number of clock cycles you must wait before enabling the 
secondary clock is design-dependent. You can build custom logic to ensure 
glitch-free transition when switching between different clock sources.

Figure 5–7. clkena Implementation
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clk_out
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Figure 5–8. clkena Implementation: Output Enable
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6–14 Chapter 6: I/O Features in Cyclone IV Devices
Termination Scheme for I/O Standards
Voltage-Referenced I/O Standard Termination
Voltage-referenced I/O standards require an input reference voltage (VREF) and a 
termination voltage (VTT). The reference voltage of the receiving device tracks the 
termination voltage of the transmitting device, as shown in Figure 6–5 and Figure 6–6.

Figure 6–5. Cyclone IV Devices HSTL I/O Standard Termination
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Figure 6–6. Cyclone IV Devices SSTL I/O Standard Termination
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Chapter 6: I/O Features in Cyclone IV Devices 6–29
High-Speed I/O Standards Support
The CLKIN/REFCLK pins are powered by dedicated VCC_CLKIN3A, VCC_CLKIN3B, 
VCC_CLKIN8A, and VCC_CLKIN8B power supplies separately in their respective I/O banks 
to avoid the different power level requirements in the same bank for GPIO.

f For more information about the AC-coupled termination scheme for the HSSI 
reference clock, refer to the Cyclone IV Transceivers Architecture chapter.

LVDS I/O Standard Support in Cyclone IV Devices
The LVDS I/O standard is a high-speed, low-voltage swing, low power, and GPIO 
interface standard. Cyclone IV devices meet the ANSI/TIA/EIA-644 standard with 
the following exceptions:

■ The maximum differential output voltage (VOD) is increased to 600 mV. The 
maximum VOD for ANSI specification is 450 mV.

■ The input voltage range is reduced to the range of 1.0 V to 1.6 V, 0.5 V to 1.85 V, or 
0 V to 1.8 V based on different frequency ranges. The ANSI/TIA/EIA-644 
specification supports an input voltage range of 0 V to 2.4 V.

f For LVDS I/O standard electrical specifications in Cyclone IV devices, refer to the 
Cyclone IV Device Datasheet chapter.

Table 6–10. Cyclone IV GX HSSI REFCLK I/O Standard Support Using GPIO CLKIN Pins (1), (2)

I/O Standard HSSI Protocol Coupling Termination 

VCC_CLKIN Level I/O Pin Type

Input Output Column 
I/O

Row 
I/O

Supported I/O 
Banks 

LVDS All

Differential 
AC (Need 
off chip 

resistor to 
restore 
VCM)

Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

LVPECL All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

1.2V, 1.5V, 
3.3V PCML

All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

HCSL PCIe Differential 
DC Off chip 2.5V Not 

supported Yes No 3A, 3B, 8A, 8B

Notes to Table 6–10:

(1) The EP4CGX15, EP4CGX22, and EP4CGX30 devices have two pairs of dedicated clock input pins in banks 3A and 8A for HSSI input reference 
clock. I/O banks 3B and 8B are not available in EP4CGX15, EP4CGX22, and EP4CGX30 devices.

(2) The EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices have four pairs of dedicated clock input pins in banks 3A, 3B, 8A, and 8B 
for HSSI input or single-ended clock input.
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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7. External Memory Interfaces in
Cyclone IV Devices
This chapter describes the memory interface pin support and the external memory 
interface features of Cyclone® IV devices.

In addition to an abundant supply of on-chip memory, Cyclone IV devices can easily 
interface with a broad range of external memory devices, including DDR2 SDRAM, 
DDR SDRAM, and QDR II SRAM. External memory devices are an important system 
component of a wide range of image processing, storage, communications, and 
general embedded applications.

1 Altera recommends that you construct all DDR2 or DDR SDRAM external memory 
interfaces using the Altera® ALTMEMPHY megafunction. You can implement the 
controller function using the Altera DDR2 or DDR SDRAM memory controllers, 
third-party controllers, or a custom controller for unique application needs. 
Cyclone IV devices support QDR II interfaces electrically, but Altera does not supply 
controller or physical layer (PHY) megafunctions for QDR II interfaces.

This chapter includes the following sections:

■ “Cyclone IV Devices Memory Interfaces Pin Support” on page 7–2

■ “Cyclone IV Devices Memory Interfaces Features” on page 7–12

f For more information about supported maximum clock rate, device and pin planning, 
IP implementation, and device termination, refer to the External Memory Interface 
Handbook.
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Architectural Overview
Figure 1–3 shows the Cyclone IV GX transceiver channel datapath.

Each transceiver channel consists of a transmitter and a receiver datapath. Each 
datapath is further structured into the following:

■ Physical media attachment (PMA)—includes analog circuitry for I/O buffers, 
clock data recovery (CDR), serializer/deserializer (SERDES), and programmable 
pre-emphasis and equalization to optimize serial data channel performance.

■ Physical coding sublayer (PCS)—includes hard logic implementation of digital 
functionality within the transceiver that is compliant with supported protocols.

Outbound parallel data from the FPGA fabric flows through the transmitter PCS and 
PMA, is transmitted as serial data. Received inbound serial data flows through the 
receiver PMA and PCS into the FPGA fabric. The transceiver supports the following 
interface widths:

■ FPGA fabric-transceiver PCS—8, 10, 16, or 20 bits

■ PMA-PCS—8 or 10 bits

f The transceiver channel interfaces through the PIPE when configured for PCIe 
protocol implementation. The PIPE is compliant with version 2.00 of the PHY Interface 
for the PCI Express Architecture specification.

Figure 1–3. Transceiver Channel Datapath for Cyclone IV GX Devices
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When using user-specified clock option, ensure that the clock feeding rx_coreclk port 
has 0 ppm difference with the RX phase compensation FIFO write clock.

Calibration Block
This block calibrates the OCT resistors and the analog portions of the transceiver 
blocks to ensure that the functionality is independent of process, voltage, and 
temperature (PVT) variations. 

Figure 1–40 shows the location of the calibration block and how it is connected to the 
transceiver blocks.

Bonded

With rate match FIFO (1)
coreclkout clock feeds the FIFO read clock for the bonded channels. 
coreclkout clock is the common bonded low-speed clock, which also feeds 
the FIFO read clock and transmitter PCS in the bonded channels.

Without rate match FIFO
rx_clkout clock feeds the FIFO read clock. rx_clkout is forwarded through 
the receiver channel from low-speed recovered clock, which also feeds the FIFO 
write clock.

Note to Table 1–13:

(1) Configuration with rate match FIFO is supported in transmitter and receiver operation.

Table 1–13. Automatic RX Phase Compensation FIFO Read Clock Selection (Part 2 of 2)

Channel Configuration Quartus II Selection

Figure 1–40. Transceiver Calibration Blocks Location and Connection 

Note to Figure 1–40:

(1) Transceiver block GXBL1 is only available for devices in F484 and larger packages.

GXBL1 (1)

GXBL0

2KΩ
RREF

Calibration
Block

Cyclone IV GX
Device
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Rate Match FIFO Operation in Basic Mode
In Basic mode, the rate match FIFO performs the following operations:

■ Deletes a maximum of four skip patterns from a cluster, if there is one skip pattern 
left in the cluster after deletion

■ Insert a maximum of four skip patterns in a cluster, if there are less than five skip 
patterns in the cluster after deletion

■ Automatically deletes the data byte that causes the FIFO to go full and asserts the 
rx_rmfifofull flag synchronous to the subsequent data byte

■ Automatically inserts /K30.7/ (9’h1FE) after the data byte that causes the FIFO to 
go empty and asserts the rx-fifoempty flag synchronous to the inserted /K30.7/ 
(9’h1FE)

Additional Options in Basic Mode
In Basic mode, the transceiver supports the following additional options:

■ low-latency PCS operation

Figure 1–46. Transceiver Configurations in Basic Mode with a 10-Bit Wide PMA-to-PCS Interface 
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1 Cyclone IV GX transceivers do not have built-in support for some PCS functions such 
as auto-negotiation state machine, collision-detect, and carrier-sense. If required, you 
must implement these functions in a user logic or external circuits.

The 1000 Base-X PHY is defined by IEEE 802.3 standard as an intermediate or 
transition layer that interfaces various physical media with the media access control 
(MAC) in a GbE system. The 1000 Base-X PHY, which has a physical interface data 
rate of 1.25 Gbps consists of the PCS, PMA, and physical media dependent (PMD) 
layers. Figure 1–54 shows the 1000 Base-X PHY in LAN layers.

Figure 1–54. 1000 Base-X PHY in a GbE OSI Reference Model

Notes to Figure 1–54:

(1) CSMA/CD = Carrier-Sense Multiple Access with Collision Detection
(2) GMII = gigabit medium independent interface

Logical Link Control (LLC) or other MAC client

(1)

(2)

MAC Control (Optional)

MAC

PMA

Medium

1000 Base-X PHY

GMII 
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Reconcilation

PMD

Higher Layers

LAN CSMA/DC Layers
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Figure 1–56 shows the transceiver configuration in GIGE mode.

When configured in GIGE mode, three encoded comma (/K28.5/) code groups are 
transmitted automatically after deassertion of tx_digitalreset and before 
transmitting user data on the tx_datain port. This could affect the synchronization 
state machine behavior at the receiver.

Depending on when you start transmitting the synchronization sequence, there could 
be an even or odd number of encoded data (/Dx.y/) code groups transmitted 
between the last of the three automatically sent /K28.5/ code groups and the first 
/K28.5/ code group of the synchronization sequence. If there is an even number of 
/Dx.y/ code groups received between these two /K28.5/ code groups, the first 
/K28.5/ code group of the synchronization sequence begins at an odd code group 
boundary. An IEEE802.3-compliant GIGE synchronization state machine treats this as 
an error condition and goes into the Loss-of-Sync state.

Figure 1–56. Transceiver Configuration in GIGE Mode
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Figure 1–60 shows the transceiver channel datapath and clocking when configured in 
Serial RapidIO mode.

Figure 1–60. Transceiver Channel Datapath and Clocking when Configured in Serial RapidIO Mode 

Notes to Figure 1–60:

(1) Optional rate match FIFO.
(2) High-speed recovered clock.
(3) Low-speed recovered clock.
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Receive Bit-Slip Indication
The number of bits slipped in the word aligner for synchronization in manual 
alignment mode is provided with the rx_bitslipboundaryselectout[4..0] signal. 
For example, if one bit is slipped in word aligner to achieve synchronization, the 
output on rx_bitslipboundaryselectout[4..0] signal shows a value of 1 (5'00001). 
The information from this signal helps in latency calculation through the receiver as 
the number of bits slipped in the word aligner varies at each synchronization.

Transmit Bit-Slip Control
The transmitter datapath supports bit-slip control to delay the serial data 
transmission by a number of specified bits in PCS with 
tx_bitslipboundaryselect[4..0] port. With 8- or 10-bit channel width, the 
transmitter supports zero to nine bits of data slip. This feature helps to maintain a 
fixed round trip latency by compensating latency variation from word aligner when 
providing the appropriate values on tx_bitslipboundaryselect[4..0] port based on 
values on rx_bitslipboundaryselectout[4..0] signal.

PLL PFD feedback
In Deterministic Latency mode, when transmitter input reference clock frequency is 
the same as the low-speed clock, the PLL that clocks the transceiver supports PFD 
feedback. When enabled, the PLL compensates for delay uncertainty in the low-speed 
clock (tx_clkout in ×1 configuration or coreclkout in ×4 configuration) path relative 
to input reference and the transmitter datapath latency is fixed relative to the 
transmitter input reference clock.

SDI Mode
SDI mode provides the non-bonded (×1) transceiver channel datapath configuration 
for HD- and 3G-SDI protocol implementations.

Cyclone IV GX transceivers configured in SDI mode provides the serialization and 
deserialization functions that supports the SDI data rates as listed in Table 1–24.

1 SDI functions such as scrambling/de-scrambling, framing, and cyclic redundancy 
check (CRC) must be implemented in the user logic.

Table 1–24. Supported SDI Data Rates

SMPTE 
Standard (1) Configuration Data Rate (Mbps) FPGA Fabric-to-

Transceiver Width Byte SERDES Usage

292M High definition (HD)

1483.5
20-bit Used

10-bit Not used

1485
20-bit Used

10-bit Not used

424M Third-generation (3G)
2967

20-bit Used
2970

Note to Table 1–24:

(1) Society of Motion Picture and Television Engineers (SMPTE).
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As shown in Figure 2–5, perform the following reset procedure for the receiver CDR 
in manual lock mode configuration:

1. After power up, assert pll_areset for a minimum period of 1 s (the time 
between markers 1 and 2). 

2. Keep the tx_digitalreset, rx_analogreset, rx_digitalreset, and 
rx_locktorefclk signals asserted and the rx_locktodata signal deasserted during 
this time period. After you deassert the pll_areset signal, the multipurpose PLL 
starts locking to the input reference clock.

3. After the multipurpose PLL locks, as indicated by the pll_locked signal going 
high (marker 3), deassert the tx_digitalreset signal (marker 4). For the receiver 
operation, after deassertion of the busy signal, wait for two parallel clock cycles to 
deassert the rx_analogreset signal. 

4. In a bonded channel group, wait for at least tLTR_LTD_Manual, then deassert 
rx_locktorefclk and assert rx_locktodata (marker 7). At this point, the receiver 
CDR of all the channels enters into lock-to-data mode and starts locking to the 
received data.

5. After asserting the rx_locktodata signal, wait for at least tLTD_Manual before 
deasserting rx_digitalreset (the time between markers 7 and 8). At this point, 
the transmitter and receiver are ready for data traffic.

Non-Bonded Channel Configuration 
In non-bonded channels, each channel in the ALTGX MegaWizard Plug-In Manager 
instance contains its own tx_digitalreset, rx_analogreset, rx_digitalreset, and 
rx_freqlocked signals.

You can reset each channel independently. For example, if there are four non-bonded 
channels, the ALTGX MegaWizard Plug-In Manager provides four each of the 
following signals: tx_digitalreset, rx_analogreset, rx_digitalreset, and 
rx_freqlocked.

Table 2–6 lists the reset and power-down sequences for one channel in a non-bonded 
configuration under the stated functional modes.

1 Follow the same reset sequence for all the other channels in the non-bonded 
configuration.

Table 2–6. Reset and Power-Down Sequences for Non-Bonded Channel Configurations

Channel Set Up Receiver CDR Mode Refer to

Transmitter Only Basic ×1 “Transmitter Only Channel” on page 2–11

Receiver Only Automatic lock mode “Receiver Only Channel—Receiver CDR in Automatic 
Lock Mode” on page 2–11

Receiver Only Manual lock mode “Receiver Only Channel—Receiver CDR in Manual Lock 
Mode” on page 2–12

Receiver and Transmitter Automatic lock mode “Receiver and Transmitter Channel—Receiver CDR in 
Automatic Lock Mode” on page 2–13

Receiver and Transmitter Manual lock mode “Receiver and Transmitter Channel—Receiver CDR in 
Manual Lock Mode” on page 2–14
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4. Wait for at least tLTR_LTD_Manual (the time between markers 6 and 7), then deassert 
the rx_locktorefclk signal. At the same time, assert the rx_locktodata signal 
(marker 7). At this point, the receiver CDR enters lock-to-data mode and the 
receiver CDR starts locking to the received data.

5. Deassert rx_digitalreset at least tLTD_Manual (the time between markers 7 and 8) 
after asserting the rx_locktodata signal. At this point, the transmitter and receiver 
are ready for data traffic.

Reset Sequence in Loss of Link Conditions
Loss of link can occur due to loss of local reference clock source or loss of the link due 
to an unplugged cable. Other adverse conditions like loss of power could also cause 
the loss of signal from the other device or link partner.

Loss of Local REFCLK or Other Reference Clock Condition

Should local reference clock input become disabled or unstable, take the following 
steps:

1. Monitor pll_locked signal. Pll_locked is de-asserted if local reference clock 
source becomes unavailable. 

2. Pll_locked assertion indicates a stable reference clock because TX PLL locks to the 
incoming clock. You can follow appropriate reset sequence provided in the device 
handbook, starting from pll_locked assertion.

Loss of Link Due To Unplugged Cable or Far End Shut-off Condition

Use one or more of the following methods to identify whether link partner is alive:

■ Signal detect is available in PCIe and Basic modes. You can monitor 
rx_signaldetect signal as loss of link indicator. rx_signaldetect is asserted 
when the link partner comes back up.

■ You can implement a ppm detector in device core for modes that do not have 
signal detect to monitor the link. Ppm detector helps in identifying whether the 
link is alive.

■ Data corruption or RX phase comp FIFO overflow or underflow condition in user 
logic may indicate a loss of link condition.

Apply the following reset sequences when loss of link is detected:

■ For Automatic CDR lock mode:

a. Monitor rx_freqlocked signal. Loss of link causes rx_freqlocked to be de-
asserted when CDR moves back to lock-to-data (LTD) mode.

b. Assert rx_digitalreset.

c. rx_freqlocked toggles over time when CDR switches between lock-to-
reference (LTR) and LTD modes.

d. If rx_freqlocked goes low at any point, re-assert rx_digitalreset.

e. If data corruption or RX phase comp FIFO overflow or underflow condition is 
observed in user logic, assert rx_digitalreset for 2 parallel clock cycles, then 
de-assert the signal.
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Table 1–40 and Table 1–41 list the IOE programmable delay for Cyclone IV E 1.0 V 
core voltage devices.

Table 1–40. IOE Programmable Delay on Column Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

Parameter Paths Affected
Number 

of 
Setting

Min 
Offset

Max Offset

UnitFast Corner Slow Corner

C8L I8L C8L C9L I8L

Input delay from pin to 
internal cells

Pad to I/O 
dataout to core 7 0 2.054 1.924 3.387 4.017 3.411 ns

Input delay from pin to 
input register

Pad to I/O input 
register 8 0 2.010 1.875 3.341 4.252 3.367 ns

Delay from output register 
to output pin

I/O output 
register to pad 2 0 0.641 0.631 1.111 1.377 1.124 ns

Input delay from 
dual-purpose clock pin to 
fan-out destinations

Pad to global 
clock network 12 0 0.971 0.931 1.684 2.298 1.684 ns

Notes to Table 1–40:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.

Table 1–41. IOE Programmable Delay on Row Pins for Cyclone IV E 1.0 V Core Voltage Devices (1), (2)

Parameter Paths Affected
Number 

of 
Setting

Min 
Offset

Max Offset

UnitFast Corner Slow Corner

C8L I8L C8L C9L I8L

Input delay from pin to 
internal cells

Pad to I/O 
dataout to core 7 0 2.057 1.921 3.389 4.146 3.412 ns

Input delay from pin to 
input register

Pad to I/O input 
register 8 0 2.059 1.919 3.420 4.374 3.441 ns

Delay from output register 
to output pin

I/O output 
register to pad 2 0 0.670 0.623 1.160 1.420 1.168 ns

Input delay from 
dual-purpose clock pin to 
fan-out destinations

Pad to global 
clock network 12 0 0.960 0.919 1.656 2.258 1.656 ns

Notes to Table 1–41:

(1) The incremental values for the settings are generally linear. For the exact values for each setting, use the latest version of the Quartus II software.
(2) The minimum and maximum offset timing numbers are in reference to setting 0 as available in the Quartus II software.
Cyclone IV Device Handbook, December 2016 Altera Corporation
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