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Logic Elements
Figure 2–1 shows the LEs for Cyclone IV devices.

LE Features
You can configure the programmable register of each LE for D, T, JK, or SR flipflop 
operation. Each register has data, clock, clock enable, and clear inputs. Signals that 
use the global clock network, general-purpose I/O pins, or any internal logic can 
drive the clock and clear control signals of the register. Either general-purpose I/O 
pins or the internal logic can drive the clock enable. For combinational functions, the 
LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output independently drives these three outputs. Two LE outputs 
drive the column or row and direct link routing connections, while one LE drives the 
local interconnect resources. This allows the LUT to drive one output while the 
register drives another output. This feature, called register packing, improves device 
utilization because the device can use the register and the LUT for unrelated 
functions. The LAB-wide synchronous load control signal is not available when using 
register packing. For more information about the synchronous load control signal, 
refer to “LAB Control Signals” on page 2–6.

The register feedback mode allows the register output to feed back into the LUT of the 
same LE to ensure that the register is packed with its own fan-out LUT, providing 
another mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–1. Cyclone IV Device LEs 
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Chapter 3: Memory Blocks in Cyclone IV Devices 3–3
Overview
Control Signals
The clock-enable control signal controls the clock entering the input and output 
registers and the entire M9K memory block. This signal disables the clock so that the 
M9K memory block does not see any clock edges and does not perform any 
operations.

The rden and wren control signals control the read and write operations for each port 
of M9K memory blocks. You can disable the rden or wren signals independently to 
save power whenever the operation is not required.

Parity Bit Support
Parity checking for error detection is possible with the parity bit along with internal 
logic resources. Cyclone IV devices M9K memory blocks support a parity bit for each 
storage byte. You can use this bit as either a parity bit or as an additional data bit. No 
parity function is actually performed on this bit.

Byte Enable Support
Cyclone IV devices M9K memory blocks support byte enables that mask the input 
data so that only specific bytes of data are written. The unwritten bytes retain the 
previous written value. The wren signals, along with the byte-enable (byteena) 
signals, control the write operations of the RAM block. The default value of the 
byteena signals is high (enabled), in which case writing is controlled only by the wren 
signals. There is no clear port to the byteena registers. M9K blocks support byte 
enables when the write port has a data width of ×16, ×18, ×32, or ×36 bits.

Byte enables operate in one-hot manner, with the LSB of the byteena signal 
corresponding to the least significant byte of the data bus. For example, if 
byteena = 01 and you are using a RAM block in ×18 mode, data[8..0] is enabled 
and data[17..9] is disabled. Similarly, if byteena = 11, both data[8..0] and 
data[17..9] are enabled. Byte enables are active high.

Table 3–2 lists the byte selection.

Table 3–2. byteena for Cyclone IV Devices M9K Blocks (1) 

byteena[3..0]
Affected Bytes

datain ×16 datain ×18 datain ×32 datain ×36

[0] = 1 [7..0] [8..0] [7..0] [8..0]

[1] = 1 [15..8] [17..9] [15..8] [17..9]

[2] = 1 — — [23..16] [26..18]

[3] = 1 — — [31..24] [35..27]

Note to Table 3–2:

(1) Any combination of byte enables is possible.
November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Cyclone IV Devices Memory Interfaces Features
DDR Output Registers
A dedicated write DDIO block is implemented in the DDR output and output enable 
paths. 

Figure 7–8 shows how a Cyclone IV dedicated write DDIO block is implemented in 
the I/O element (IOE) registers.

The two DDR output registers are located in the I/O element (IOE) block. Two serial 
data streams routed through datain_l and datain_h, are fed into two registers, 
output register Ao and output register Bo, respectively, on the same clock edge. 
The output from output register Ao is captured on the falling edge of the clock, while 
the output from output register Bo is captured on the rising edge of the clock. The 
registered outputs are multiplexed by the common clock to drive the DDR output pin 
at twice the data rate. 

The DDR output enable path has a similar structure to the DDR output path in the 
IOE block. The second output enable register provides the write preamble for the DQS 
strobe in DDR external memory interfaces. This active-low output enable register 
extends the high-impedance state of the pin by half a clock cycle to provide the 
external memory’s DQS write preamble time specification. 

f For more information about Cyclone IV IOE registers, refer to the Cyclone IV Device 
I/O Features chapter.

Figure 7–8. Cyclone IV Dedicated Write DDIO
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Configuration
f For more information about the USB-Blaster download cable, refer to the USB-Blaster 
Download Cable User Guide. For more information about the ByteBlaster II download 
cable, refer to the ByteBlaster II Download Cable User Guide.

Figure 8–6 shows the download cable connections to the serial configuration device.

Figure 8–6. In-System Programming of Serial Configuration Devices

Notes to Figure 8–6:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(3) Power up the VCC of the ByteBlaster II or USB-Blaster download cable with the 3.3-V supply.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, refer to Table 8–3 on page 8–8, 

Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND.
(5) The diodes and capacitors must be placed as close as possible to the Cyclone IV device. You must ensure that the diodes and capacitors maintain 

a maximum AC voltage of 4.1 V. The external diodes and capacitors are required to prevent damage to the Cyclone IV device AS configuration 
input pins due to possible overshoot when programming the serial configuration device with a download cable. Altera recommends using the 
Schottky diode, which has a relatively lower forward diode voltage (VF) than the switching and Zener diodes, for effective voltage clamping. 

(6) When cascading Cyclone IV devices in a multi-device AS configuration, connect the repeater buffers between the master and slave devices for 
DATA[0] and DCLK. All I/O inputs must maintain a maximum AC voltage of 4.1 V. The output resistance of the repeater buffers must fit the 
maximum overshoot equation outlined in “Configuration and JTAG Pin I/O Requirements” on page 8–5.

(7) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA[1] pin in AP and 
FPP modes.

(8) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.
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Configuration
1 JTAG configuration allows an unlimited number of Cyclone IV devices to be cascaded 
in a JTAG chain.

f For more information about configuring multiple Altera devices in the same 
configuration chain, refer to the Configuring Mixed Altera FPGA Chains chapter in 
volume 2 of the Configuration Handbook.

Figure 8–27 shows JTAG configuration with a Cyclone IV device and a 
microprocessor.

Configuring Cyclone IV Devices with Jam STAPL
Jam™ STAPL, JEDEC standard JESD-71, is a standard file format for in-system 
programmability (ISP) purposes. Jam STAPL supports programming or configuration 
of programmable devices and testing of electronic systems, using the IEEE 1149.1 
JTAG interface. Jam STAPL is a freely licensed open standard. The Jam Player 
provides an interface for manipulating the IEEE Std. 1149.1 JTAG TAP state machine.

f For more information about JTAG and Jam STAPL in embedded environments, refer 
to AN 425: Using Command-Line Jam STAPL Solution for Device Programming. To 
download the Jam Player, visit the Altera website (www.altera.com).

Configuring Cyclone IV Devices with the JRunner Software Driver
The JRunner software driver allows you to configure Cyclone IV devices through the 
ByteBlaster II or ByteBlasterMV cables in JTAG mode. The supported programming 
input file is in .rbf format. The JRunner software driver also requires a Chain 
Description File (.cdf) generated by the Quartus II software. The JRunner software 
driver is targeted for embedded JTAG configuration. The source code is developed for 
the Windows NT operating system (OS). You can customize the code to make it run 
on your embedded platform.

Figure 8–27. JTAG Configuration of a Single Device Using a Microprocessor

Notes to Figure 8–27:

(1) You must connect the pull-up resistor to a supply that provides an acceptable input signal for all devices in the chain.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use a JTAG 

configuration, connect the nCONFIG pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] 
to either high or low, whichever is convenient on your board.

(3) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
(4) All I/O inputs must maintain a maximum AC voltage of 4.1 V. Signals driving into TDI, TMS, and TCK must fit the 

maximum overshoot outlined in Equation 8–1 on page 8–5. 
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Remote System Upgrade
Table 8–25 lists the contents of previous state register 1 and previous state register 2 in 
the status register. The status register bit in Table 8–25 shows the bit positions in a 
3-bit register. The previous state register 1 and previous state register 2 have the same 
bit definitions. The previous state register 1 reflects the current application 
configuration and the previous state register 2 reflects the previous application 
configuration.

If a capture is inappropriately done while capturing a previous state before the system 
has entered remote update application configuration for the first time, a value outputs 
from the shift register to indicate that the capture is incorrectly called.

Remote System Upgrade State Machine
The remote system upgrade control and update registers have identical bit 
definitions, but serve different roles (Table 8–22 on page 8–75). While both registers 
can only be updated when the device is loaded with a factory configuration image, 
the update register writes are controlled by the user logic, and the control register 
writes are controlled by the remote system upgrade state machine. 

In factory configurations, the user logic should send the option bits (Cd_early and 
Osc_int), the configuration address, and watchdog timer settings for the next 
application configuration bit to the update register. When the logic array 
configuration reset (RU_nCONFIG) goes high, the remote system upgrade state machine 
updates the control register with the contents of the update register and starts system 
reconfiguration from the new application page.

1 To ensure the successful reconfiguration between the pages, assert the RU_nCONFIG 
signal for a minimum of 250 ns. This is equivalent to strobing the reconfig input of 
the ALTREMOTE_UPDATE megafunction high for a minimum of 250 ns.

If there is an error or reconfiguration trigger condition, the remote system upgrade 
state machine directs the system to load a factory or application configuration (based 
on mode and error condition) by setting the control register accordingly. 

Table 8–26 lists the contents of the control register after such an event occurs for all 
possible error or trigger conditions.

Table 8–25. Remote System Upgrade Previous State Register 1 and Previous State Register 2 Contents in Status 
Register 

Status Register Bit Definition Description

30 nCONFIG source
One-hot, active-high field that describes the reconfiguration source 
that caused the Cyclone IV device to leave the previous application 
configuration. If there is a tie, the higher bit order indicates 
precedence. For example, if nCONFIG and remote system upgrade 
nCONFIG reach the reconfiguration state machine at the same time, 
the nCONFIG precedes the remote system upgrade nCONFIG. 

29 CRC error source

28 nSTATUS source

27 User watchdog timer source

26
Remote system upgrade 
nCONFIG source

25:24
Master state machine 
current state

The state of the master state machine during reconfiguration causes 
the Cyclone IV device to leave the previous application configuration.

23:0 Boot address The address used by the configuration scheme to load the previous 
application configuration.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Chapter 1: Cyclone IV Transceivers Architecture 1–7
Transmitter Channel Datapath

February 2015 Altera Corporation Cyclone IV Device Handbook,
Volume 2

The following describes the 8B/10B encoder behavior in reset condition (as shown in 
Figure 1–7):

■ During reset, the 8B/10B encoder ignores the inputs (tx_datain and 
tx_ctrlenable ports) from the FPGA fabric and outputs the K28.5 pattern from 
the RD- column continuously until the tx_digitalreset port is deasserted. 

■ Upon deassertion of the tx_digitalreset port, the 8B/10B encoder starts with a 
negative disparity and transmits three K28.5 code groups for synchronization 
before it starts encoding and transmitting data on its output. 

■ Due to some pipelining of the transmitter PCS, some "don't cares" (10'hxxx) are 
sent before the three synchronizing K28.5 code groups.

The encoder supports forcing the running disparity to either positive or negative 
disparity with tx_forcedisp and tx_dispval ports. Figure 1–8 shows an example of 
tx_forcedisp and tx_dispval port use, where data is shown in hexadecimal radix.

In this example, a series of K28.5 code groups are continuously sent. The stream 
alternates between a positive disparity K28.5 (RD+) and a negative disparity K28.5 
(RD-) to maintain a neutral overall disparity. The current running disparity at time 
n + 1 indicates that the K28.5 in time n + 2 should be encoded with a negative 
disparity. Because tx_forcedisp is high at time n + 2, and tx_dispval is low, the K28.5 

Figure 1–7. 8B/10B Encoder Behavior in Reset Condition

Figure 1–8. Force Running Disparity Operation
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Receiver Channel Datapath
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After updating the word boundary, word aligner status signals (rx_syncstatus and 
rx_patterndetect) are driven high for one parallel clock cycle synchronous to the 
most significant byte of the word alignment pattern. The rx_syncstatus and 
rx_patterndetect signals have the same latency as the datapath and are forwarded to 
the FPGA fabric to indicate the word aligner status. Any word alignment pattern 
received thereafter in the same word boundary causes only the rx_patterndetect 
signal to go high for one clock cycle.

Figure 1–17 shows the manual alignment mode word aligner operation in 10-bit data 
width mode. In this example, a /K28.5/ (10'b0101111100) is specified as the word 
alignment pattern. 

The word aligner aligns to the /K28.5/ alignment pattern (red) in cycle n because the 
rx_enapatternalign signal is asserted high. The rx_syncstatus signal goes high for 
one clock cycle indicating alignment to a new word boundary. The rx_patterndetect 
signal also goes high for one clock cycle to indicate initial word alignment. 

At time n + 1, the rx_enapatternalign signal is deasserted to instruct the word 
aligner to lock the current word boundary. 

The alignment pattern is detected again (green) in a new word boundary across cycles 
n + 2 and n + 3. The word aligner does not align to this new word boundary because 
the rx_enapatternalign signal is held low.

The /K28.5/ word alignment pattern is detected again (blue) in the current word 
boundary during cycle n + 5 causing the rx_patterndetect signal to go high for one 
parallel clock cycle.

1 If the word alignment pattern is known to be unique and does not appear between 
word boundaries, you can hold the rx_enapatternalign signal constantly high 
because there is no possibility of false word alignment. If there is a possibility of the 
word alignment pattern occurring across word boundaries, you must control the 
rx_enapatternalign signal to lock the word boundary after the desired word 
alignment is achieved to avoid re-alignment to an incorrect word boundary.

Figure 1–17. Word Aligner in 10-bit Manual Alignment Mode
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Table 1–4 lists the synchronization state machine parameters for the word aligner in 
this mode.

After deassertion of the rx_digitalreset signal in automatic synchronization state 
machine mode, the word aligner starts looking for the synchronization code groups, 
word alignment pattern or its complement in the received data stream. When the 
programmed number of valid synchronization code groups or ordered sets are 
received, the rx_syncstatus signal is driven high to indicate that synchronization is 
acquired. The rx_syncstatus signal is constantly driven high until the programmed 
number of erroneous code groups are received without receiving intermediate good 
groups; after which the rx_syncstatus signal is driven low. The word aligner 
indicates loss of synchronization (rx_syncstatus signal remains low) until the 
programmed number of valid synchronization code groups are received again.

In addition to restoring word boundaries, the word aligner supports the following 
features:

■ Programmable run length violation detection—detects consecutive 1s or 0s in the 
data stream, and asserts run length violation signal (rx_rlv) when a preset run 
length threshold (maximum number of consecutive 1s or 0s) is detected. The 
rx_rlv signal in each channel is clocked by its parallel recovered clock and is 
asserted for a minimum of two recovered clock cycles to ensure that the FPGA 
fabric clock can latch the rx_rlv signal reliably because the FPGA fabric clock 
might have phase differences, ppm differences (in asynchronous systems), or both, 
with the recovered clock. Table 1–5 lists the run length violation circuit detection 
capabilities.

Table 1–4. Synchronization State Machine Parameters 

Parameter Allowed Values

Number of erroneous code groups received to lose synchronization 1–64

Number of continuous good code groups received to reduce the 
error count by one 1–256

Table 1–5. Run Length Violation Circuit Detection Capabilities

Supported Data Width
Detector Range Increment Step 

SettingsMinimum Maximum

8-bit 4 128 4

10-bit 5 160 5
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Input Reference Clocking
When used for transceiver, the left PLLs synthesize the input reference clock to 
generate the required clocks for the transceiver channels. Figure 1–25 and Figure 1–26 
show the sources of input reference clocks for PLLs used in the transceiver operation.

1 Clock output from PLLs in the FPGA core cannot feed into PLLs used by the 
transceiver as input reference clock. 

Figure 1–25. PLL Input Reference Clocks in Transceiver Operation for F324 and Smaller 
Packages (1), (2)

Notes to Figure 1–25:

(1) The REFCLK0 and REFCLK1 pins are dual-purpose CLK, REFCLK, or DIFFCLK pins that reside in banks 3A and 8A 
respectively.

(2) Using any clock input pins other than the designated REFCLK pins as shown here to drive the MPLLs may have 
reduced jitter performance. 
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Table 1–9 lists the high- and low-speed clock sources for each channel.

Table 1–9. High- and Low-Speed Clock Sources for Each Channel in Non-Bonded Channel Configuration

Package Transceiver Block Transceiver Channel
High- and Low-Speed Clocks Sources

Option 1 Option 2

F324 and smaller GXBL0 All channels MPLL_1 MPLL_2

F484 and larger

GXBL0
Channels 0, 1 MPLL_5/GPLL_1 MPLL_6

Channels 2, 3 MPLL_5 MPLL_6/MPLL_7 (1)

GXBL1 (1)
Channels 0, 1 MPLL_7/MPLL_6 MPLL_8

Channels 2, 3 MPLL_7 MPLL_8/GPLL_2

Note to Table 1–9:

(1) MPLL_7 and GXBL1 are not applicable for transceivers in F484 package
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Document Revision History
Table 1–30 lists the revision history for this chapter.

Table 1–30. Document Revision History

Date Version Changes

February 2015 3.7

■ Updated the GiGE row in Table 1–14.

■ Updated the “GIGE Mode” section.

■ Updated the note in the “Clock Frequency Compensation” section. 

October 2013 3.6 Updated Figure 1–15 and Table 1–4.

May 2013 3.5 Updated Table 1–27 by setting “rx_locktodata” and “rx_locktorefclk” to “Input”

October 2012 3.4

■ Updated the data rate for the V-by-one protocol and the F324 package support in 
HD-SDI in Table 1–1.

■ Updated note (1) to Figure 1–27.

■ Added latency information to Figure 1–67.

November 2011 3.3
■ Updated “Word Aligner” and “Basic Mode” sections.

■ Updated Figure 1–37.

December 2010 3.2

■ Updated for the Quartus II software version 10.1 release.

■ Updated Table 1–1, Table 1–5, Table 1–11, Table 1–14, Table 1–24, Table 1–25, 
Table 1–26, Table 1–27, Table 1–28, and Table 1–29.

■ Updated “8B/10B Encoder”, “Transmitter Output Buffer”, “Receiver Input Buffer”, 
“Clock Data Recovery”, “Miscellaneous Transmitter PCS Features”, “Miscellaneous 
Receiver PCS Feature”, “Input Reference Clocking”, “PCI Express (PIPE) Mode”, 
“Channel Deskewing”, “Lane Synchronization”, “Serial Loopback”, and “Self Test 
Modes” sections.

■ Added Figure 1–9, Figure 1–10, Figure 1–19, Figure 1–20, and Figure 1–43.

■ Updated Figure 1–53, Figure 1–55, Figure 1–59, Figure 1–60, Figure 1–69, 
Figure 1–70, Figure 1–71, Figure 1–72, Figure 1–73, and Figure 1–74.

November 2010 3.1 Updated Introductory information.

July 2010 3.0

■ Updated information for the Quartus II software version 10.0 release.

■ Reset control, power down, and dynamic reconfiguration information moved to 
new Cyclone IV Reset Control and Power Down and Cyclone IV Dynamic 
Reconfiguration chapters.
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Transceiver Reset Sequences
You can configure transceiver channels in Cyclone IV GX devices in various 
configurations. In all functional modes except XAUI functional mode, transceiver 
channels can be either bonded or non-bonded. In XAUI functional mode, transceiver 
channels must be bonded. In PCI Express® (PCIe®) functional mode, transceiver 
channels can be either bonded or non-bonded and need to follow a specific reset 
sequence.

The two categories of reset sequences for Cyclone IV GX devices described in this 
chapter are:

■ “All Supported Functional Modes Except the PCIe Functional Mode” on 
page 2–6—describes the reset sequences in bonded and non-bonded 
configurations.

■ “PCIe Functional Mode” on page 2–17—describes the reset sequence for the 
initialization/compliance phase and the normal operation phase in PCIe 
functional modes. 

Serializer — — v — v
Transmitter Buffer — — — — v
Transmitter XAUI State 
Machine — — v — v
Receiver Buffer — — — — v
Receiver CDR — v — — v
Receiver Deserializer — — — — v
Receiver Word Aligner v — — — v
Receiver Deskew FIFO v — — — v
Receiver Clock Rate 
Compensation FIFO v — — — v
Receiver 8B/10B 
Decoder v — — — v
Receiver Byte 
Deserializer v — — — v
Receiver Byte Ordering v — — — v
Receiver Phase 
Compensation FIFO v — — — v
Receiver XAUI State 
Machine v — — — v
BIST Verifiers v — — — v

Table 2–3. Blocks Affected by Reset and Power-Down Signals (Part 2 of 2)

Transceiver Block rx_digitalreset rx_analogreset tx_digitalreset pll_areset gxb_powerdown
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Table 3–7 lists the ALTGX megafunction ports for PLL Reconfiguration mode.

f For more information about the ALTPLL_RECONFIG megafunction port list, 
description and usage, refer to the Phase-Locked Loop Reconfiguration 
(ALTPL_RECONFIG) Megafunction User Guide.

Table 3–7. ALTGX Megafunction Port List for PLL Reconfiguration Mode  

Port Name (1) Input/ 
Output Description Comments

pll_areset [n..0] Input

Resets the transceiver PLL. The 
pll_areset are asserted in two 
conditions:

■ Used to reset the transceiver PLL 
during the reset sequence. During 
reset sequence, this signal is user 
controlled.

■ After the transceiver PLL is 
reconfigured, this signal is 
asserted high by the 
ALTPLL_RECONFIG controller. At 
this time, this signal is not user 
controlled. 

You must connect the pll_areset port of ALTGX to the 
pll_areset port of the ALTPLL_RECONFIG 
megafunction. 

The ALTPLL_RECONFIG controller asserts the 
pll_areset port at the next rising clock edge after the 
pll_reconfig_done signal from the ALTGX 
megafunction goes high. After the pll_reconfig_done 
signal goes high, the transceiver PLL is reset. When the 
PLL reconfiguration is completed, this reset is 
performed automatically by the ALTPLL_RECONFIG 
megafunction and is not user controlled. 

pll_scandata
[n..0]

Input
Receives the scan data input from 
the ALTPLL_RECONFIG 
megafunction.

The reconfigurable transceiver PLL received the scan 
data input through this port for the dynamically 
reconfigurable bits from the ALTPLL_RECONFIG 
controller. 

pll_scanclk
[n..0]

Input Drives the scanclk port on the 
reconfigurable transceiver PLL.

Connect the pll_scanclk port of the ALTGX 
megafunction to the ALTPLL_RECONFIG scanclk port. 

pll_scanclkena
[n..0] Input

Acts as a clock enable for the 
scanclk port on the reconfigurable 
transceiver PLL.

Connect the pll_scanclkena port of the ALTGX 
megafunction to the ALTPLL_RECONFIG scanclk port.

pll_configupdate
[n..0] Input Drives the configupdate port on 

the reconfigurable transceiver PLL.

This port is connected to the pll_configupdate port 
from the ALTPLL_RECONFIG controller. After the final 
data bit is sent out, the ALTPLL_RECONFIG controller 
asserts this signal. 

pll_reconfig_done[n..0] Output This signal is asserted to indicate the 
reconfiguration process is done.

Connect the pll_reconfig_done port to the 
pll_scandone port on the ALTPLL_RECONFIG 
controller. The transceiver PLL scandone output signal 
drives this port and determines when the PLL is 
reconfigured.

pll_scandataout
[n..0] Output This port scan out the current 

configuration of the transceiver PLL.

Connect the pll_scandataout port to the 
pll_scandataout port of the ALTPLL_RECONFIG 
controller. This port reads the current configuration of 
the transceiver PLL and send it to the 
ALTPLL_RECONFIG megafunction. 

Note to Table 3–7:

(1) <n> = (number of transceiver PLLs configured in the ALTGX MegaWizard)  - 1.

www.altera.com/literature/ug/ug_altpll_reconfig.pdf
www.altera.com/literature/ug/ug_altpll_reconfig.pdf
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ppm

ppm

ppm

UI

dB

dB

dB

dB

Unit
Receiver

Supported I/O 
Standards

1.4 V PCML, 
1.5 V PCML, 
2.5 V PCML, 

LVPECL, LVDS

Data rate (F324 and 
smaller package) (15) — 600 — 2500 600 — 2500 600 — 2500

Data rate (F484 and 
larger package) (15) — 600 — 3125 600 — 3125 600 — 2500

Absolute VMAX for a 
receiver pin (3) — — — 1.6 — — 1.6 — — 1.6

Operational VMAX for 
a receiver pin — — — 1.5 — — 1.5 — — 1.5

Absolute VMIN for a 
receiver pin — –0.4 — — –0.4 — — –0.4 — —

Peak-to-peak 
differential input 
voltage VID (diff p-p)

VICM = 0.82 V 
setting, Data Rate 
= 600 Mbps to 
3.125 Gbps

0.1 — 2.7 0.1 — 2.7 0.1 — 2.7

VICM VICM = 0.82 V 
setting — 820 ± 

10% — — 820 ± 
10% — — 820 ± 

10% —

Differential on-chip 
termination resistors

100 setting — 100 — — 100 — — 100 —

150 setting — 150 — — 150 — — 150 —

Differential and 
common mode 
return loss

PIPE, Serial 
Rapid I/O SR, 
SATA, CPRI LV, 
SDI, XAUI

Compliant

Programmable ppm 
detector (4) — ± 62.5, 100, 125, 200,

250, 300

Clock data recovery 
(CDR) ppm 
tolerance (without 
spread-spectrum 
clocking enabled)

— — —
±300 (5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

— —

±300 
(5),

±350 
(6), (7)

CDR ppm tolerance 
(with synchronous 
spread-spectrum 
clocking enabled) (8)

— — —
350 to –

5350 
(7), (9)

— —
350 to 
–5350 
(7), (9)

— —
350 to –

5350 
(7), (9)

Run length — — 80 — — 80 — — 80 —

Programmable 
equalization

No Equalization — — 1.5 — — 1.5 — — 1.5

Medium Low — — 4.5 — — 4.5 — — 4.5

Medium High — — 5.5 — — 5.5 — — 5.5

High — — 7 — — 7 — — 7

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 2 of 4)

Symbol/
Description Conditions

C6 C7, I7 C8

Min Typ Max Min Typ Max Min Typ Max
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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ms

lone IV GX 

C8, I7, and 

Unit
x

Unit
ax

2.5 MHz

2.5 MHz

2.5 MHz

2.5 MHz

2.5 MHz

65 MHz

65 Mbps

65 Mbps

65 Mbps

65 Mbps

65 Mbps

65 Mbps

55 %

00 ps

00 ps

— ps

— ps

1 ms

 supported at 

ported at the 

, C8, I7, and 
tLOCK 
(2) — — — 1 — — 1 — — 1 — — 1 — — 1

Notes to Table 1–32:

(1) Emulated RSDS_E_1R transmitter is supported at the output pin of all I/O Banks of Cyclone IV E devices and I/O Banks 3, 4, 5, 6, 7, 8, and 9 of Cyc
devices.

(2) tLOCK is the time required for the PLL to lock from the end-of-device configuration.
(3) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7, 

A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.

Table 1–32. Emulated RSDS_E_1R Transmitter Timing Specifications for Cyclone IV Devices (1), (3) (Part 2 of 2)

Symbol Modes
C6 C7, I7 C8, A7 C8L, I8L C9L

Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ Ma

Table 1–33. Mini-LVDS Transmitter Timing Specifications for Cyclone IV Devices (1), (2), (4)

Symbol Modes
C6 C7, I7 C8, A7 C8L, I8L C9L

Min Typ Max Min Typ Max Min Typ Max Min Typ Max Min Typ M

fHSCLK (input 
clock 
frequency)

×10 5 — 200 5 — 155.5 5 — 155.5 5 — 155.5 5 — 13

×8 5 — 200 5 — 155.5 5 — 155.5 5 — 155.5 5 — 13

×7 5 — 200 5 — 155.5 5 — 155.5 5 — 155.5 5 — 13

×4 5 — 200 5 — 155.5 5 — 155.5 5 — 155.5 5 — 13

×2 5 — 200 5 — 155.5 5 — 155.5 5 — 155.5 5 — 13

×1 5 — 400 5 — 311 5 — 311 5 — 311 5 — 2

Device 
operation in 
Mbps

×10 100 — 400 100 — 311 100 — 311 100 — 311 100 — 2

×8 80 — 400 80 — 311 80 — 311 80 — 311 80 — 2

×7 70 — 400 70 — 311 70 — 311 70 — 311 70 — 2

×4 40 — 400 40 — 311 40 — 311 40 — 311 40 — 2

×2 20 — 400 20 — 311 20 — 311 20 — 311 20 — 2

×1 10 — 400 10 — 311 10 — 311 10 — 311 10 — 2

tDUTY — 45 — 55 45 — 55 45 — 55 45 — 55 45 —

TCCS — — — 200 — — 200 — — 200 — — 200 — — 2

Output jitter
(peak to peak) — — — 500 — — 500 — — 550 — — 600 — — 7

tRISE

20 – 80%,
CLOAD = 
5 pF

— 500 — — 500 — — 500 — — 500 — — 500

tFALL

20 – 80%,
CLOAD = 
5 pF

— 500 — — 500 — — 500 — — 500 — — 500

tLOCK 
(3) — — — 1 — — 1 — — 1 — — 1 — —

Notes to Table 1–33:

(1) Applicable for true and emulated mini-LVDS transmitter.
(2) Cyclone IV E—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 1, 2, 5, and 6. Emulated mini-LVDS transmitter is

the output pin of all I/O banks.
Cyclone IV GX—true mini-LVDS transmitter is only supported at the output pin of Row I/O Banks 5 and 6. Emulated mini-LVDS transmitter is sup
output pin of I/O Banks 3, 4, 5, 6, 7, 8, and 9.

(3) tLOCK is the time required for the PLL to lock from the end-of-device configuration.
(4) Cyclone IV E 1.0 V core voltage devices only support C8L, C9L, and I8L speed grades. Cyclone IV E 1.2 V core voltage devices only support C6, C7

A7 speed grades. Cyclone IV GX devices only support C6, C7, C8, and I7 speed grades.
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3


