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Document Revision History
Each LAB can use two clocks and two clock enable signals. The clock and clock enable 
signals of each LAB are linked. For example, any LE in a particular LAB using the 
labclk1 signal also uses the labclkena1. If the LAB uses both the rising and falling 
edges of a clock, it also uses both LAB-wide clock signals. Deasserting the clock 
enable signal turns off the LAB-wide clock.

The LAB row clocks [5..0] and LAB local interconnect generate the LAB-wide 
control signals. The MultiTrack interconnect inherent low skew allows clock and 
control signal distribution in addition to data distribution.

Figure 2–6 shows the LAB control signal generation circuit.

LAB-wide signals control the logic for the clear signal of the register. The LE directly 
supports an asynchronous clear function. Each LAB supports up to two asynchronous 
clear signals (labclr1 and labclr2).

A LAB-wide asynchronous load signal to control the logic for the preset signal of the 
register is not available. The register preset is achieved with a NOT gate push-back 
technique. Cyclone IV devices only support either a preset or asynchronous clear 
signal.

In addition to the clear port, Cyclone IV devices provide a chip-wide reset pin 
(DEV_CLRn) that resets all registers in the device. An option set before compilation in 
the Quartus II software controls this pin. This chip-wide reset overrides all other 
control signals.

Document Revision History
Table 2–1 shows the revision history for this chapter.

Figure 2–6. Cyclone IV Device LAB-Wide Control Signals
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Table 2–1. Document Revision History

Date Version Changes

November 2009 1.0 Initial release.
November 2009 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 3: Memory Blocks in Cyclone IV Devices 3–9
Memory Modes
Figure 3–7 shows a timing waveform for read and write operations in single-port 
mode with unregistered outputs. Registering the outputs of the RAM simply delays 
the q output by one clock cycle.

Simple Dual-Port Mode
Simple dual-port mode supports simultaneous read and write operations to different 
locations. Figure 3–8 shows the simple dual-port memory configuration.

Cyclone IV devices M9K memory blocks support mixed-width configurations, 
allowing different read and write port widths. Table 3–3 lists mixed-width 
configurations.

Figure 3–7. Cyclone IV Devices Single-Port Mode Timing Waveform
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Figure 3–8. Cyclone IV Devices Simple Dual-Port Memory (1)

Note to Figure 3–8:

(1) Simple dual-port RAM supports input or output clock mode in addition to the read or write clock mode shown. 

data[ ]
wraddress[ ]
wren
byteena[]
wr_addressstall
wrclock
wrclocken
aclr

rdaddress[ ]
rden

q[ ]
rd_addressstall

rdclock
rdclocken

Table 3–3.  Cyclone IV Devices M9K Block Mixed-Width Configurations (Simple Dual-Port Mode) (Part 1 of 2)

Read Port
Write Port

8192 × 1 4096 × 2 2048 × 4 1024 × 8 512 × 16 256 × 32 1024 × 9 512 × 18 256 × 36

8192 × 1 v v v v v v — — —

4096 × 2 v v v v v v — — —

2048 × 4 v v v v v v — — —

1024 × 8 v v v v v v — — —
November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 1



4–4 Chapter 4: Embedded Multipliers in Cyclone IV Devices
Operational Modes
Table 4–2 lists the sign of the multiplication results for the various operand sign 
representations. The results of the multiplication are signed if any one of the operands 
is a signed value.

Each embedded multiplier block has only one signa and one signb signal to control 
the sign representation of the input data to the block. If the embedded multiplier 
block has two 9 × 9 multipliers, the Data A input of both multipliers share the same 
signa signal, and the Data B input of both multipliers share the same signb signal. 
You can dynamically change the signa and signb signals to modify the sign 
representation of the input operands at run time. You can send the signa and signb 
signals through a dedicated input register. The multiplier offers full precision, 
regardless of the sign representation.

1 When the signa and signb signals are unused, the Quartus II software sets the 
multiplier to perform unsigned multiplication by default.

Output Registers
You can register the embedded multiplier output with output registers in either 18- or 
36-bit sections, depending on the operational mode of the multiplier. The following 
control signals are available for each output register in the embedded multiplier:

■ clock

■ clock enable

■ asynchronous clear

All input and output registers in a single embedded multiplier are fed by the same 
clock, clock enable, and asynchronous clear signals.

Operational Modes
You can use an embedded multiplier block in one of two operational modes, 
depending on the application needs:

■ One 18 × 18 multiplier

■ Up to two 9 × 9 independent multipliers

1 You can also use embedded multipliers of Cyclone IV devices to implement multiplier 
adder and multiplier accumulator functions, in which the multiplier portion of the 
function is implemented with embedded multipliers, and the adder or accumulator 
function is implemented in logic elements (LEs). 

Table 4–2. Multiplier Sign Representation 

Data A Data B
Result

signa Value Logic Level signb Value Logic Level

Unsigned Low Unsigned Low Unsigned

Unsigned Low Signed High Signed

Signed High Unsigned Low Signed

Signed High Signed High Signed
Cyclone IV Device Handbook, February 2010 Altera Corporation
Volume 1



4–6 Chapter 4: Embedded Multipliers in Cyclone IV Devices
Operational Modes
9-Bit Multipliers
You can configure each embedded multiplier to support two 9 × 9 independent 
multipliers for input widths of up to 9 bits.

Figure 4–4 shows the embedded multiplier configured to support two 9-bit 
multipliers.

All 9-bit multiplier inputs and results are independently sent through registers. The 
multiplier inputs can accept signed integers, unsigned integers, or a combination of 
both. Two 9 × 9 multipliers in the same embedded multiplier block share the same 
signa and signb signal. Therefore, all the Data A inputs feeding the same embedded 
multiplier must have the same sign representation. Similarly, all the Data B inputs 
feeding the same embedded multiplier must have the same sign representation.

Figure 4–4. 9-Bit Multiplier Mode
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OCT Support
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Table 6–2 lists the I/O standards that support impedance matching and series 
termination.

Table 6–2. Cyclone IV Device I/O Features Support (Part 1 of 2)

I/O Standard

IOH/IOL Current Strength 
Setting (mA) (1), (9)

RS OCT with 
Calibration

Setting, Ohm ()

RS OCT Without 
Calibration

Setting, Ohm ()
Cyclone 
IV E I/O 
Banks 

Support

Cyclone 
IV GX I/O 

Banks 
Support

Slew
Rat

Optio
(6)

Column I/O Row I/O Column 
I/O

Row 
I/O (8)

Column 
I/O

Row 
I/O (8)

3.3-V LVTTL 4,8 4,8 — — — —

1,2,3,4,
5,6,7,8

3,4,5,6,
7,8,9

—

3.3-V LVCMOS 2 2 — — — — —

3.0-V LVTTL 4,8,12,16 4,8,12,16 50,25 50,25 50,25 50,25
0,1,

3.0-V LVCMOS 4,8,12,16 4,8,12,16 50,25 50,25 50,25 50,25

3.0-V PCI/PCI-X — — — — — — —

2.5-V 
LVTTL/LVCMOS 4,8,12,16 4,8,12,16 50,25 50,25 50,25 50,25

0,1,

1.8-V 
LVTTL/LVCMOS

2,4,6,8,10,12,1
6

2,4,6,8,10,12,1
6 50,25 50,25 50,25 50,25

1.5-V LVCMOS 2,4,6,8,10,12,1
6

2,4,6,8,10,12,1
6 50,25 50,25 50,25 50,25

1.2-V LVCMOS 2,4,6,8,10,12 2,4,6,8,10 50,25 50 50,25 50
4,5,6,7,
8

SSTL-2 Class I 8,12 8,12 50 50 50 50

3,4,5,6,
7,8,9

SSTL-2 Class II 16 16 25 25 25 25

SSTL-18 Class I 8,10,12 8,10,12 50 50 50 50

SSTL-18 Class II 12,16 12,16 25 25 25 25

HSTL-18 Class I 8,10,12 8,10,12 50 50 50 50

HSTL-18 Class II 16 16 25 25 25 25

HSTL-15 Class I 8,10,12 8,10,12 50 50 50 50

HSTL-15 Class II 16 16 25 25 25 25

HSTL-12 Class I 8,10,12 8,10 50 50 50 50
4,5,6,7,
8

HSTL-12 Class II 14 — 25 — 25 — 3,4,7,8 4,7,8

Differential SSTL-2 
Class I (2), (7) 8,12 8,12 50 50 50 50

1,2,3,4,
5,6,7,8

3,4,5,6,
7,8 0,1,

Differential SSTL-2 
Class II (2), (7) 16 16 25 25 25 25

Differential SSTL-
18 (2), (7) 8,10,12 — 50 — 50 —

Differential HSTL-
18 (2), (7) 8,10,12 — 50 — 50 —

Differential HSTL-
15 (2), (7) 8,10,12 — 50 — 50 —

Differential HSTL-
12 (2), (7) 8,10,12 — 50 — 50 — 3,4,7,8 4,7,8
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 6: I/O Features in Cyclone IV Devices 6–33
High-Speed I/O Standards Support
A resistor network is required to attenuate the output voltage swing to meet RSDS, 
mini-LVDS, and PPDS specifications when using emulated transmitters. You can 
modify the resistor network values to reduce power or improve the noise margin. 

The resistor values chosen must satisfy Equation 6–1.

1 Altera recommends that you perform simulations using Cyclone IV devices IBIS 
models to validate that custom resistor values meet the RSDS, mini-LVDS, or PPDS 
requirements.

It is possible to use a single external resistor instead of using three resistors in the 
resistor network for an RSDS interface, as shown in Figure 6–17. The external 
single-resistor solution reduces the external resistor count while still achieving the 
required signaling level for RSDS. However, the performance of the single-resistor 
solution is lower than the performance with the three-resistor network.

Figure 6–17 shows the RSDS interface with a single resistor network on the top and 
bottom I/O banks.

Note to Figure 6–16: 

(1) RS and RP values are pending characterization.

Equation 6–1. Resistor Network

Figure 6–16. RSDS, Mini-LVDS, or PPDS Interface with External Resistor Network on the Top and 
Bottom I/O Banks (1)

RS
RP

2
-------

RS
RP

2
-------+

-------------------- 50 =

Figure 6–17. RSDS Interface with Single Resistor Network on the Top and Bottom I/O Banks (1)

Note to Figure 6–17: 

(1) RP value is pending characterization.

RSDS Receiver

100 Ω
 50 Ω

Cyclone IV Device 

Single Resistor Network

Emulated
RSDS Transmitter

RP

 50 Ω
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Document Revision History
implements either a high-speed deserializer receiver or a high-speed serializer 
transmitter. There is a list of parameters in the ALTLVDS megafunction that you can 
set to customize your SERDES based on your design requirements. The megafunction 
is optimized to use Cyclone IV devices resources to create high-speed I/O interfaces 
in the most effective manner.

1 When you use Cyclone IV devices with the ALTLVDS megafunction, the interface 
always sends the MSB of your parallel data first.

f For more details about designing your high-speed I/O systems interfaces using the 
ALTLVDS megafunction, refer to the ALTLVDS Megafunction User Guide and the 
Quartus II Handbook.

Document Revision History
Table 6–12 lists the revision history for this chapter.

Table 6–12. Document Revision History (Part 1 of 2)

Date Version Changes

March 2016 2.7 ■ Updated Table 6–5 and Table 6–9 to remove support for the N148 package.

May 2013 2.6
■ Updated Table 6–2 by adding Note (9).

■ Updated Table 6–4 and Table 6–8 to add new device options and packages.

February 2013 2.5 Updated Table 6–4 and Table 6–8 to add new device options and packages.

October 2012 2.4

■ Updated “I/O Banks” and “High Speed Serial Interface (HSSI) Input Reference Clock 
Support ” sections.

■ Updated Table 6–3 and Table 6–5.

■ Updated Figure 6–10.

November 2011 2.3

■ Updated “Differential SSTL I/O Standard Support in Cyclone IV Devices” and 
“Differential HSTL I/O Standard Support in Cyclone IV Devices” sections.

■ Updated Table 6–1, Table 6–8, and Table 6–9.

■ Updated Figure 6–1.

December 2010 2.2

■ Updated for the Quartus II software version 10.1 release.

■ Added Cyclone IV E new device package information.

■ Added “Clock Pins Functionality” section.

■ Updated Table 6–4 and Table 6–8.

■ Minor text edits.

July 2010 2.1

■ Updated “Cyclone IV I/O Elements”, “Programmable Pull-Up Resistor”, “I/O Banks”, 
“High-Speed I/O Interface”, and “Designing with BLVDS” sections.

■ Updated Table 6–6 and Table 6–7.

■ Updated Figure 6–19.
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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8–6 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
Configuration Process
This section describes Cyclone IV device configuration requirements and includes the 
following topics:

■ “Power Up” on page 8–6

■ “Reset” on page 8–6

■ “Configuration” on page 8–6

■ “Configuration Error” on page 8–7

■ “Initialization” on page 8–7

■ “User Mode” on page 8–7

f For more information about the Altera® FPGA configuration cycle state machine, refer 
to the Configuring Altera FPGAs chapter in volume 1 of the Configuration Handbook.

Power Up
If the device is powered up from the power-down state, VCCINT, VCCA, and VCCIO (for 
the I/O banks in which the configuration and JTAG pins reside) must be powered up 
to the appropriate level for the device to exit from POR. 

Reset
After power up, Cyclone IV devices go through POR. POR delay depends on the MSEL 
pin settings, which correspond to your configuration scheme. During POR, the device 
resets, holds nSTATUS and CONF_DONE low, and tri-states all user I/O pins (for PS and 
FPP configuration schemes only). 

1 To tri-state the configuration bus for AS and AP configuration schemes, you must tie 
nCE high and nCONFIG low. 

The user I/O pins and dual-purpose I/O pins have weak pull-up resistors, which are 
always enabled (after POR) before and during configuration. When the device exits 
POR, all user I/O pins continue to tri-state. While nCONFIG is low, the device is in 
reset. When nCONFIG goes high, the device exits reset and releases the open-drain 
nSTATUS pin, which is then pulled high by an external 10-k pull-up resistor. After 
nSTATUS is released, the device is ready to receive configuration data and the 
configuration stage starts.

f For more information about the value of the weak pull-up resistors on the I/O pins 
that are on before and during configuration, refer to the Cyclone IV Device Datasheet 
chapter.

Configuration
Configuration data is latched into the Cyclone IV device at each DCLK cycle. However, 
the width of the data bus and the configuration time taken for each scheme are 
different. After the device receives all the configuration data, the device releases the 
open-drain CONF_DONE pin, which is pulled high by an external 10-kpull-up resistor. 
A low-to-high transition on the CONF_DONE pin indicates that the configuration is 
complete and initialization of the device can begin. 
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–45
Configuration
JTAG Configuration
JTAG has developed a specification for boundary-scan testing (BST). The BST 
architecture offers the capability to efficiently test components on PCBs with tight 
lead spacing. The BST architecture can test pin connections without using physical 
test probes and capture functional data while a device is normally operating. You can 
also use the JTAG circuitry to shift configuration data into the device. The Quartus II 
software automatically generates .sof for JTAG configuration with a download cable 
in the Quartus II software Programmer.

f For more information about the JTAG boundary-scan testing, refer to the JTAG 
Boundary-Scan Testing for Cyclone IV Devices chapter.

tST2CK

nSTATUS high to 
first rising edge of 
DCLK

2 — µs

tDH

Data hold time after 
rising edge on 
DCLK

0 — ns

tCD2UM
CONF_DONE high to 
user mode (5) 300 650 µs

tCD2CU
CONF_DONE high to 
CLKUSR enabled

4 × maximum DCLK period — —

tCD2UMC

CONF_DONE high to 
user mode with 
CLKUSR option on

tCD2CU + (3,192 × CLKUSR period) — —

tDSU 

Data setup time 
before rising edge 
on DCLK

5 8 — — ns

tCH DCLK high time 3.2 6.4 — — ns

tCL DCLK low time 3.2 6.4 — — ns

tCLK DCLK period 7.5 15 — — ns

fMAX DCLK frequency (6) — — 133 66 MHz

Notes to Table 8–13:

(1) Applicable for Cyclone IV GX and Cyclone IV E with 1.2-V core voltage.
(2) Applicable for Cyclone IV E with 1.0-V core voltage.
(3) This value is applicable if you do not delay configuration by extending the nCONFIG or nSTATUS low pulse width.
(4) This value is applicable if you do not delay configuration by externally holding the nSTATUS low.
(5) The minimum and maximum numbers apply only if you choose the internal oscillator as the clock source for starting the device.
(6) Cyclone IV E devices with 1.0-V core voltage have slower FMAX when compared with Cyclone IV GX devices with 1.2-V core voltage.

Table 8–13. FPP Timing Parameters for Cyclone IV Devices (Part 2 of 2)

Symbol Parameter
Minimum Maximum

Unit
Cyclone IV (1) Cyclone IV E (2) Cyclone IV (1) Cyclone IV E (2)
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1

http://www.altera.com/literature/hb/cyclone-iv/cyiv-51010.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-51010.pdf
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Configuration
Programming Serial Configuration Devices In-System with the JTAG Interface
Cyclone IV devices in a single- or multiple-device chain support in-system 
programming of a serial configuration device with the JTAG interface through the SFL 
design. The intelligent host or download cable of the board can use the four JTAG pins 
on the Cyclone IV device to program the serial configuration device in system, even if 
the host or download cable cannot access the configuration pins (DCLK, DATA, ASDI, and 
nCS pins).

The SFL design is a JTAG-based in-system programming solution for Altera serial 
configuration devices. The SFL is a bridge design for the Cyclone IV device that uses 
their JTAG interface to access the EPCS JTAG Indirect Configuration Device 
Programming (.jic) file and then uses the AS interface to program the EPCS device. 
Both the JTAG interface and AS interface are bridged together inside the SFL design.

In a multiple device chain, you must only configure the master device that controls 
the serial configuration device. Slave devices in the multiple device chain that are 
configured by the serial configuration device do not have to be configured when 
using this feature. To successfully use this feature, set the MSEL pins of the master 
device to select the AS configuration scheme (Table 8–3 on page 8–8, Table 8–4 on 
page 8–8, and Table 8–5 on page 8–9). The serial configuration device in-system 
programming through the Cyclone IV device JTAG interface has three stages, which 
are described in the following sections:

■ “Loading the SFL Design”

■ “ISP of the Configuration Device” on page 8–56

■ “Reconfiguration” on page 8–57

Loading the SFL Design

The SFL design is a design inside the Cyclone IV device that bridges the JTAG 
interface and AS interface with glue logic.

The intelligent host uses the JTAG interface to configure the master device with a SFL 
design. The SFL design allows the master device to control the access of four serial 
configuration device pins, also known as the Active Serial Memory Interface (ASMI) 
pins, through the JTAG interface. The ASMI pins are serial clock input (DCLK), serial 
data output (DATA), AS data input (ASDI), and active-low chip select (nCS) pins.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Configuration
Use the ACTIVE_DISENGAGE instruction with the CONFIG_IO instruction to interrupt 
configuration. Table 8–16 lists the sequence of instructions to use for various 
CONFIG_IO usage scenarios.

The CONFIG_IO instruction does not hold nSTATUS low until reconfiguration. You must 
disengage the AS or AP configuration controller by issuing the ACTIVE_DISENGAGE and 
ACTIVE_ENGAGE instructions when active configuration is interrupted. You must issue 
the ACTIVE_DISENGAGE instruction alone or prior to the CONFIG_IO instruction if the 
JTAG_PROGRAM instruction is to be issued later (Table 8–17). This puts the active 
configuration controllers into the idle state. The active configuration controller is re-
engaged after user mode is reached through JTAG programming (Table 8–17).

1 While executing the CONFIG_IO instruction, all user I/Os are tri-stated.

If reconfiguration after interruption is performed using configuration modes (rather 
than using JTAG_PROGRAM), it is not necessary to issue the ACTIVE_DISENGAGE 
instruction prior to CONFIG_IO. You can start reconfiguration by either pulling nCONFIG 
low for at least 500 ns or issuing the PULSE_NCONFIG instruction. If the 
ACTIVE_DISENGAGE instruction was issued and the JTAG_PROGRAM instruction fails to 
enter user mode, you must issue the ACTIVE_ENGAGE instruction to reactivate the active 
configuration controller. Issuing the ACTIVE_ENGAGE instruction also triggers 
reconfiguration in configuration modes; therefore, it is not necessary to pull nCONFIG 
low or issue the PULSE_NCONFIG instruction.

Table 8–16. JTAG CONFIG_IO (without JTAG_PROGRAM) Instruction Flows  (1)

JTAG Instruction

Configuration Scheme and Current State of the Cyclone IV Device 

Prior to User Mode 
(Interrupting Configuration) User Mode Power Up

PS FPP AS AP PS FPP AS AP PS FPP AS AP

ACTIVE_DISENGAGE O O O 0 O O O 0 — — — —

CONFIG_IO R R R R R R R R NA NA NA NA

JTAG Boundary Scan 
Instructions (no 
JTAG_PROGRAM)

O O O 0 O O O 0 — — — —

ACTIVE_ENGAGE

A A

R (2) R (2)

A A

R (2) R (2) — — — —

PULSE_NCONFIG A (3) A (3) O 0 — — — —

Pulse nCONFIG pin A (3) A (3) O 0 — — — —

JTAG TAP Reset R R R R R R R R — — — —

Notes to Table 8–16:

(1) You must execute “R” indicates that the instruction before the next instruction, “O” indicates the optional instruction, “A” indicates 
that the instruction must be executed, and “NA” indicates that the instruction is not allowed in this mode.

(2) Required if you use ACTIVE_DISENGAGE.
(3) Neither of the instruction is required if you use ACTIVE_ENGAGE.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Configuration
Device Configuration Pins
Table 8–18 through Table 8–21 describe the connections and functionality of all the 
configuration related pins on Cyclone IV devices. Table 8–18 and Table 8–19 list the 
device pin configuration for the Cyclone IV GX and Cyclone IV E, respectively.

Table 8–18. Configuration Pin Summary for Cyclone IV GX Devices 

Bank Description Input/Output Dedicated Powered By Configuration Mode

8 Data[4:2] Input — VCCIO FPP

3 Data[7:5] Input — VCCIO FPP

9 nCSO (2) Output — VCCIO AS

3 CRC_ERROR Output — VCCIO/Pull-up (1) Optional, all modes

9 DATA[0] (2) Input Yes VCCIO PS, FPP, AS

9 DATA[1]/ASDO (2)
Input

—
VCCIO FPP

Output VCCIO AS

3 INIT_DONE Output — Pull-up Optional, all modes

3 nSTATUS Bidirectional Yes Pull-up All modes

9 nCE Input Yes VCCIO All modes

9 DCLK (2)
Input

Yes
VCCIO PS, FPP

Output VCCIO AS

3 CONF_DONE Bidirectional Yes Pull-up All modes

9 TDI Input Yes VCCIO JTAG

9 TMS Input Yes VCCIO JTAG

9 TCK Input Yes VCCIO JTAG

9 nCONFIG Input Yes VCCIO All modes

8 CLKUSR Input — VCCIO Optional

3 nCEO Output — VCCIO Optional, all modes

3 MSEL Input Yes VCCINT All modes

9 TDO Output Yes VCCIO JTAG

6 DEV_OE Input — VCCIO Optional

6 DEV_CLRn Input — VCCIO Optional

Notes to Table 8–18:

(1) The CRC_ERROR pin is a dedicated open-drain output or an optional user I/O pin. Active high signal indicates that the error detection circuit has 
detected errors in the configuration SRAM bits. This pin is optional and is used when the CRC error detection circuit is enabled in the Quartus II 
software from the Error Detection CRC tab of the Device and Pin Options dialog box. When using this pin, connect it to an external 10-k 
pull-up resistor to an acceptable voltage that satisfies the input voltage of the receiving device.

(2) To tri-state AS configuration pins in the AS configuration scheme, turn on the Enable input tri-state on active configuration pins in user mode 
option from the Device and Pin Options dialog box. This tri-states DCLK, nCSO, Data[0], and Data[1]/ASDO pins. Dual-purpose pins settings 
for these pins are ignored. To set these pins to different settings, turn off the Enable input tri-state on active configuration pins in user mode 
option and set the desired setting from the Dual-purpose Pins Setting menu. 

Table 8–19. Configuration Pin Summary for Cyclone IV E Devices (Part 1 of 3)

Bank Description Input/Output Dedicated Powered By Configuration Mode

1 nCSO (1)

FLASH_nCE (2) Output — VCCIO AS, AP 

6 CRC_ERROR (3) Output — VCCIO/Pull-up (4) Optional, all modes
Cyclone IV Device Handbook, May 2013 Altera Corporation
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9–2 Chapter 9: SEU Mitigation in Cyclone IV Devices
User Mode Error Detection
Configuration error detection determines if the configuration data received through 
an external memory device is corrupted during configuration. To validate the 
configuration data, the Quartus® II software uses a function to calculate the CRC 
value for each configuration data frame and stores the frame-based CRC value in the 
configuration data as part of the configuration bit stream.

During configuration, Cyclone IV devices use the same methodology to calculate the 
CRC value based on the frame of data that is received and compares it against the 
frame CRC value in the data stream. Configuration continues until either the device 
detects an error or all the values are calculated.

In addition to the frame-based CRC value, the Quartus II software generates a 32-bit 
CRC value for the whole configuration bit stream. This 32-bit CRC value is stored in 
the 32-bit storage register at the end of the configuration and is used for user mode 
error detection that is discussed in “User Mode Error Detection”. 

User Mode Error Detection

1 User mode error detection is available in Cyclone IV GX and Cyclone IV E devices 
with 1.2-V core voltage. Cyclone IV E devices with 1.0-V core voltage do not support 
user mode error detection.

Soft errors are changes in a configuration random-access memory (CRAM) bit state 
due to an ionizing particle. Cyclone IV devices have built-in error detection circuitry 
to detect data corruption by soft errors in the CRAM cells. 

This error detection capability continuously computes the CRC of the configured 
CRAM bits based on the contents of the device and compares it with the 
pre-calculated CRC value obtained at the end of the configuration. If the CRCs match, 
there is no error in the current configuration CRAM bits. The process of error 
detection continues until the device is reset (by setting nCONFIG to low).

The Cyclone IV device error detection feature does not check memory blocks and I/O 
buffers. These device memory blocks support parity bits that are used to check the 
contents of memory blocks for any error. The I/O buffers are not verified during error 
detection because the configuration data uses flip-flops as storage elements that are 
more resistant to soft errors. Similar flip-flops are used to store the pre-calculated CRC 
and other error detection circuitry option bits.

The error detection circuitry in Cyclone IV devices uses a 32-bit CRC IEEE 802 
standard and a 32-bit polynomial as the CRC generator. Therefore, a single 32-bit CRC 
calculation is performed by the device. If a soft error does not occur, the resulting 
32-bit signature value is 0x00000000, that results in a 0 on the CRC_ERROR output 
signal. If a soft error occurs in the device, the resulting signature value is non-zero and 
the CRC_ERROR output signal is 1.

You can inject a soft error by changing the 32-bit CRC storage register in the CRC 
circuitry. After verifying the induced failure, you can restore the 32-bit CRC value to 
the correct CRC value with the same instruction and inserting the correct value. 

1 Before updating it with a known bad value, Altera recommends reading out the 
correct value.
Cyclone IV Device Handbook, May 2013 Altera Corporation
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Error Detection Timing
Table 9–4 defines the registers shown in Figure 9–1.

Error Detection Timing
When the error detection CRC feature is enabled through the Quartus II software, the 
device automatically activates the CRC process upon entering user mode after 
configuration and initialization is complete. 

The CRC_ERROR pin is driven low until the error detection circuitry detects a corrupted 
bit in the previous CRC calculation. After the pin goes high, it remains high during 
the next CRC calculation. This pin does not log the previous CRC calculation. If the 
new CRC calculation does not contain any corrupted bits, the CRC_ERROR pin is driven 
low. The error detection runs until the device is reset.

The error detection circuitry runs off an internal configuration oscillator with a divisor 
that sets the maximum frequency.

Table 9–5 lists the minimum and maximum error detection frequencies.

You can set a lower clock frequency by specifying a division factor in the Quartus II 
software (for more information, refer to “Software Support”). The divisor is a power 
of two (2), where n is between 0 and 8. The divisor ranges from one through 256. Refer 
to Equation 9–1.

CRC calculation time depends on the device and the error detection clock frequency.

Table 9–4. Error Detection Registers

Register Function

32-bit signature 
register

This register contains the CRC signature. The signature register contains the result of the user 
mode calculated CRC value compared against the pre-calculated CRC value. If no errors are 
detected, the signature register is all zeros. A non-zero signature register indicates an error in the 
configuration CRAM contents.

The CRC_ERROR signal is derived from the contents of this register.

32-bit storage register

This register is loaded with the 32-bit pre-computed CRC signature at the end of the configuration 
stage. The signature is then loaded into the 32-bit CRC circuit (called the Compute and Compare 
CRC block, as shown in Figure 9–1) during user mode to calculate the CRC error. This register 
forms a 32-bit scan chain during execution of the CHANGE_EDREG JTAG instruction. The 
CHANGE_EDREG JTAG instruction can change the content of the storage register. Therefore, the 
functionality of the error detection CRC circuitry is checked in-system by executing the instruction 
to inject an error during the operation. The operation of the device is not halted when issuing the 
CHANGE_EDREG instruction.

Table 9–5. Minimum and Maximum Error Detection Frequencies for Cyclone IV Devices

 Error Detection 
Frequency

Maximum Error 
Detection Frequency

Minimum Error 
Detection Frequency Valid Divisors (2n)

80 MHz/2n 80 MHz 312.5 kHz 0, 1, 2, 3, 4, 5, 6, 7, 8

Equation 9–1.

rror detection frequency  80 MH

2n
-------------------=
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



11–4 Chapter 11: Power Requirements for Cyclone IV Devices
Document Revision History
In some applications, it is necessary for a device to wake up very quickly to begin 
operation. Cyclone IV devices offer the Fast-On feature to support fast wake-up time 
applications. The MSEL pin settings determine the POR time (tPOR) of the device.

f For more information about the MSEL pin settings, refer to the Configuration and 
Remote System Upgrades in Cyclone IV Devices chapter.

f For more information about the POR specifications, refer to the Cyclone IV Device 
Datasheet chapter.

Document Revision History
Table 11–3 lists the revision history for this chapter.

Table 11–3. Document Revision History

Date Version Changes

May 2013 1.3 Updated Note (4) in Table 11–1.

July 2010 1.2

■ Updated for the Quartus II software version 10.0 release.

■ Updated “I/O Pins Remain Tri-stated During Power-Up” section.

■ Updated Table 11–1.

February 2010 1.1 Updated Table 11–1 and Table 11–2 for the Quartus II software version 9.1 SP1 
release.

November 2009 1.0 Initial release.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Architectural Overview
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Architectural Overview
Figure 1–3 shows the Cyclone IV GX transceiver channel datapath.

Each transceiver channel consists of a transmitter and a receiver datapath. Each 
datapath is further structured into the following:

■ Physical media attachment (PMA)—includes analog circuitry for I/O buffers, 
clock data recovery (CDR), serializer/deserializer (SERDES), and programmable 
pre-emphasis and equalization to optimize serial data channel performance.

■ Physical coding sublayer (PCS)—includes hard logic implementation of digital 
functionality within the transceiver that is compliant with supported protocols.

Outbound parallel data from the FPGA fabric flows through the transmitter PCS and 
PMA, is transmitted as serial data. Received inbound serial data flows through the 
receiver PMA and PCS into the FPGA fabric. The transceiver supports the following 
interface widths:

■ FPGA fabric-transceiver PCS—8, 10, 16, or 20 bits

■ PMA-PCS—8 or 10 bits

f The transceiver channel interfaces through the PIPE when configured for PCIe 
protocol implementation. The PIPE is compliant with version 2.00 of the PHY Interface 
for the PCI Express Architecture specification.

Figure 1–3. Transceiver Channel Datapath for Cyclone IV GX Devices
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Figure 1–39. Transmitter and Receiver Datapath Clocking with Rate Match FIFO in Bonded Channel Configuration

Notes to Figure 1–39:

(1) Low-speed recovered clock.
(2) High-speed recovered clock.
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Dynamic Reconfiguration Modes
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The .mif files carries the reconfiguration information that will be used to reconfigure 
the multipurpose PLL or general purpose PLL dynamically. The .mif contents is 
generated automatically when you select the Enable PLL Reconfiguration option in 
the Reconfiguration Setting in ALTGX instances. The .mif files will be generated 
based on the data rate and input reference clock setting in the ALTGX MegaWizard. 
You must use the external ROM and feed its content to the ALTPLL_RECONFIG 
megafunction to reconfigure the multipurpose PLL setting. 

f For more information about instantiating the ALTPLL_Reconfig, refer to the AN 609: 
Implementing Dynamic Reconfiguration in Cyclone IV GX Devices.

Figure 3–16 shows the connection for PLL reconfiguration mode.

f For more information about connecting the ALTPLL_RECONFIG and ALTGX 
instances, refer to the AN 609: Implementing Dynamic Reconfiguration in Cyclone IV GX 
Devices.

Figure 3–16. ALTGX and ALTPLL_RECONFIG Connection for PLL Reconfiguration Mode

Notes to Figure 3–16:

(1) <n> = (number of transceiver PLLs configured in the ALTGX MegaWizard)  - 1.
(2) You must connect the pll_reconfig_done signal from the ALTGX to the pll_scandone port from ALTPLL_RECONFIG.
(3) You need two ALTPLL_RECONFIG controllers if you have two separate ALTGX instances with transceiver PLL instantiated in each ALTGX instance.
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Chapter 1: Cyclone IV Device Datasheet 1–25
Switching Characteristics
tDLOCK

Time required to lock dynamically (after switchover, 
reconfiguring any non-post-scale counters/delays or 
areset is deasserted) 

— — 1 ms

tOUTJITTER_PERIOD_DEDCLK 
(6)

Dedicated clock output period jitter 
FOUT  100 MHz — — 300 ps

FOUT < 100 MHz — — 30 mUI

tOUTJITTER_CCJ_DEDCLK 
(6)

Dedicated clock output cycle-to-cycle jitter 
FOUT  100 MHz — — 300 ps

FOUT < 100 MHz — — 30 mUI

tOUTJITTER_PERIOD_IO 
(6)

Regular I/O period jitter
FOUT  100 MHz — — 650 ps

FOUT < 100 MHz — — 75 mUI

tOUTJITTER_CCJ_IO 
(6)

Regular I/O cycle-to-cycle jitter
FOUT  100 MHz — — 650 ps

FOUT < 100 MHz — — 75 mUI

tPLL_PSERR Accuracy of PLL phase shift — — ±50 ps

tARESET Minimum pulse width on areset signal. 10 — — ns

tCONFIGPLL Time required to reconfigure scan chains for PLLs — 3.5 (7) — SCANCLK 
cycles

fSCANCLK scanclk frequency — — 100 MHz

tCASC_OUTJITTER_PERIOD_DEDCLK 
(8), (9)

Period jitter for dedicated clock output in cascaded 
PLLs (FOUT  100 MHz) — — 425 ps

Period jitter for dedicated clock output in cascaded 
PLLs (FOUT  100 MHz) — — 42.5 mUI

Notes to Table 1–25:

(1) This table is applicable for general purpose PLLs and multipurpose PLLs.
(2) You must connect VCCD_PLL to VCCINT through the decoupling capacitor and ferrite bead.
(3) This parameter is limited in the Quartus II software by the I/O maximum frequency. The maximum I/O frequency is different for each I/O 

standard.
(4) The VCO frequency reported by the Quartus II software in the PLL Summary section of the compilation report takes into consideration the VCO 

post-scale counter K value. Therefore, if the counter K has a value of 2, the frequency reported can be lower than the fVCO specification.
(5) A high input jitter directly affects the PLL output jitter. To have low PLL output clock jitter, you must provide a clean clock source that is less 

than 200 ps.
(6) Peak-to-peak jitter with a probability level of 10–12 (14 sigma, 99.99999999974404% confidence level). The output jitter specification applies 

to the intrinsic jitter of the PLL when an input jitter of 30 ps is applied.
(7) With 100-MHz scanclk frequency.
(8) The cascaded PLLs specification is applicable only with the following conditions:

■ Upstream PLL—0.59 MHz  Upstream PLL bandwidth < 1 MHz

■ Downstream PLL—Downstream PLL bandwidth > 2 MHz

(9) PLL cascading is not supported for transceiver applications.

Table 1–25. PLL Specifications for Cyclone IV Devices (1), (2) (Part 2 of 2)

Symbol Parameter Min Typ Max Unit
December 2016 Altera Corporation Cyclone IV Device Handbook,
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