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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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2. Logic Elements and Logic Array Blocks
in Cyclone IV Devices
This chapter contains feature definitions for logic elements (LEs) and logic array 
blocks (LABs). Details are provided on how LEs work, how LABs contain groups of 
LEs, and how LABs interface with the other blocks in Cyclone® IV devices.

Logic Elements
Logic elements (LEs) are the smallest units of logic in the Cyclone IV device 
architecture. LEs are compact and provide advanced features with efficient logic 
usage. Each LE has the following features:

■ A four-input look-up table (LUT), which can implement any function of four 
variables

■ A programmable register

■ A carry chain connection

■ A register chain connection

■ The ability to drive the following interconnects:

■ Local

■ Row

■ Column

■ Register chain

■ Direct link

■ Register packing support

■ Register feedback support
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4–4 Chapter 4: Embedded Multipliers in Cyclone IV Devices
Operational Modes
Table 4–2 lists the sign of the multiplication results for the various operand sign 
representations. The results of the multiplication are signed if any one of the operands 
is a signed value.

Each embedded multiplier block has only one signa and one signb signal to control 
the sign representation of the input data to the block. If the embedded multiplier 
block has two 9 × 9 multipliers, the Data A input of both multipliers share the same 
signa signal, and the Data B input of both multipliers share the same signb signal. 
You can dynamically change the signa and signb signals to modify the sign 
representation of the input operands at run time. You can send the signa and signb 
signals through a dedicated input register. The multiplier offers full precision, 
regardless of the sign representation.

1 When the signa and signb signals are unused, the Quartus II software sets the 
multiplier to perform unsigned multiplication by default.

Output Registers
You can register the embedded multiplier output with output registers in either 18- or 
36-bit sections, depending on the operational mode of the multiplier. The following 
control signals are available for each output register in the embedded multiplier:

■ clock

■ clock enable

■ asynchronous clear

All input and output registers in a single embedded multiplier are fed by the same 
clock, clock enable, and asynchronous clear signals.

Operational Modes
You can use an embedded multiplier block in one of two operational modes, 
depending on the application needs:

■ One 18 × 18 multiplier

■ Up to two 9 × 9 independent multipliers

1 You can also use embedded multipliers of Cyclone IV devices to implement multiplier 
adder and multiplier accumulator functions, in which the multiplier portion of the 
function is implemented with embedded multipliers, and the adder or accumulator 
function is implemented in logic elements (LEs). 

Table 4–2. Multiplier Sign Representation 

Data A Data B
Result

signa Value Logic Level signb Value Logic Level

Unsigned Low Unsigned Low Unsigned

Unsigned Low Signed High Signed

Signed High Unsigned Low Signed

Signed High Signed High Signed
Cyclone IV Device Handbook, February 2010 Altera Corporation
Volume 1



5–10 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
Clock Networks
If you do not use dedicated clock pins to feed the GCLKs, you can use them as 
general-purpose input pins to feed the logic array. However, when using them as 
general-purpose input pins, they do not have support for an I/O register and must 
use LE-based registers in place of an I/O register.

f For more information about how to connect the clock and PLL pins, refer to the 
Cyclone IV Device Family Pin Connection Guidelines.

Clock Control Block
The clock control block drives the GCLKs. Clock control blocks are located on each 
side of the device, close to the dedicated clock input pins. GCLKs are optimized for 
minimum clock skew and delay. 

Table 5–4 lists the sources that can feed the clock control block, which in turn feeds the 
GCLKs.

In Cyclone IV devices, dedicated clock input pins, PLL counter outputs, dual-purpose 
clock I/O inputs, and internal logic can all feed the clock control block for each GCLK. 
The output from the clock control block in turn feeds the corresponding GCLK. The 
GCLK can drive the PLL input if the clock control block inputs are outputs of another 
PLL or dedicated clock input pins. There are five or six clock control blocks on each 
side of the device periphery—depending on device density; providing up to 30 clock 
control blocks in each Cyclone IV GX device. The maximum number of clock control 
blocks per Cyclone IV E device is 20. For the clock control block locations, refer to 
Figure 5–2 on page 5–12, Figure 5–3 on page 5–13, and Figure 5–4 on page 5–14.

1 The clock control blocks on the left side of the Cyclone IV GX device do not support 
any clock inputs.

The control block has two functions:

■ Dynamic GCLK clock source selection (not applicable for DPCLK, CDPCLK, and 
internal logic input)

■ GCLK network power down (dynamic enable and disable)

Table 5–4. Clock Control Block Inputs

Input Description

Dedicated clock inputs
Dedicated clock input pins can drive clocks or global signals, such as 
synchronous and asynchronous clears, presets, or clock enables onto 
given GCLKs.

Dual-purpose clock 
(DPCLK and CDPCLK) 
I/O input 

DPCLK and CDPCLK I/O pins are bidirectional dual function pins that 
are used for high fan-out control signals, such as protocol signals, 
TRDY and IRDY signals for PCI, via the GCLK. Clock control blocks 
that have inputs driven by dual-purpose clock I/O pins are not able to 
drive PLL inputs.

PLL outputs PLL counter outputs can drive the GCLK.

Internal logic

You can drive the GCLK through logic array routing to enable internal 
logic elements (LEs) to drive a high fan-out, low-skew signal path. 
Clock control blocks that have inputs driven by internal logic are not 
able to drive PLL inputs.
Cyclone IV Device Handbook, October 2012 Altera Corporation
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5–40 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLL Reconfiguration
Table 5–13 lists the PLL counter selection based on the corresponding 
PHASECOUNTERSELECT setting.

To perform one dynamic phase-shift, follow these steps:

1. Set PHASEUPDOWN and PHASECOUNTERSELECT as required.

2. Assert PHASESTEP for at least two SCANCLK cycles. Each PHASESTEP pulse allows one 
phase shift.

3. Deassert PHASESTEP after PHASEDONE goes low.

4. Wait for PHASEDONE to go high.

5. Repeat steps 1 through 4 as many times as required to perform multiple phase-
shifts.

PHASEUPDOWN and PHASECOUNTERSELECT signals are synchronous to SCANCLK and must 
meet the tsu and th requirements with respect to the SCANCLK edges.

1 You can repeat dynamic phase-shifting indefinitely. For example, in a design where 
the VCO frequency is set to 1,000 MHz and the output clock frequency is set to 
100 MHz, performing 40 dynamic phase shifts (each one yields 125 ps phase shift) 
results in shifting the output clock by 180, in other words, a phase shift of 5 ns.

scanclk

Free running clock from core used in 
combination with phasestep to enable or 
disable dynamic phase shifting. Shared with 
scanclk for dynamic reconfiguration.

GCLK or I/O pins 
PLL 
reconfiguration 
circuit

phasedone

When asserted, it indicates to core logic that 
the phase adjustment is complete and PLL is 
ready to act on a possible second adjustment 
pulse. Asserts based on internal PLL timing. 
De-asserts on the rising edge of scanclk.

PLL reconfiguration 
circuit

Logic array or 
I/O pins 

Table 5–12. Dynamic Phase Shifting Control Signals (Part 2 of 2)

Signal Name Description Source Destination

Table 5–13. Phase Counter Select Mapping

phasecounterselect
Selects

[2] [1] [0]

0 0 0 All Output Counters

0 0 1 M Counter

0 1 0 C0 Counter

0 1 1 C1 Counter

1 0 0 C2 Counter

1 0 1 C3 Counter

1 1 0 C4 Counter
Cyclone IV Device Handbook, October 2012 Altera Corporation
Volume 1



Chapter 6: I/O Features in Cyclone IV Devices 6–19
I/O Banks
Figure 6–11. Cyclone IV GX I/O Banks for EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 (1), (2), (9)

Notes to Figure 6–11:

(1) This is a top view of the silicon die. For exact pin locations, refer to the pin list and the Quartus II software.
(2) True differential (PPDS, LVDS, mini-LVDS, and RSDS I/O standards) outputs are supported in row I/O banks 5 and 6 only. External resistors are 

needed for the differential outputs in column I/O banks.
(3) The LVPECL I/O standard is only supported on clock input pins. This I/O standard is not supported on output pins.
(4) The HSTL-12 Class II is supported in column I/O banks 4, 7, and 8.
(5) The differential SSTL-18 and SSTL-2, differential HSTL-18, and HSTL-15 I/O standards are supported only on clock input pins and phase-locked 

loops (PLLs) output clock pins. PLL output clock pins do not support Class II interface type of differential SSTL-18, HSTL-18, HSTL-15, and 
HSTL-12 I/O standards.

(6) The differential HSTL-12 I/O standard is only supported on clock input pins and PLL output clock pins. Differential HSTL-12 Class II is supported 
only in column I/O banks 4, 7, and 8.

(7) BLVDS output uses two single-ended outputs with the second output programmed as inverted. BLVDS input uses the LVDS input buffer.
(8) The PCI-X I/O standard does not meet the IV curve requirement at the linear region.
(9) The OCT block is located in the shaded banks 4, 5, and 7.
(10) The dedicated clock input I/O banks 3A, 3B, 8A, and 8B can be used either for HSSI input reference clock pins or clock input pins. 
(11) Single-ended clock input support is available for dedicated clock input I/O banks 3B and 8B.

Right, Top, and Bottom  Banks Support:

3.3-V LVTTL/LVCMOS
3.0-V LVTTL/LVCMOS
2.5-V LVTTL/LVCMOS
1.8-V LVTTL/LVCMOS
1.5-V LVCMOS
1.2-V LVCMOS
PPDS
LVDS
RSDS
mini-LVDS
Bus LVDS (7)
LVPECL (3)
SSTL-2 class I and II
SSTL-18 CLass I and II
HSTL-18 Class I and II
HSTL-15 Class I and II
HSTL-12 Class I and II (4)
Differential SSTL-2 (5)
Differential SSTL-18 (5)
Differential HSTL-18 (5)
Differential HSTL-15 (5)
Differential HSTL-12 (6)
3.0-V PCI/PCI-X (8)
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6–32 Chapter 6: I/O Features in Cyclone IV Devices
High-Speed I/O Standards Support
RSDS, Mini-LVDS, and PPDS I/O Standard Support in Cyclone IV Devices
The RSDS, mini-LVDS, and PPDS I/O standards are used in chip-to-chip applications 
between the timing controller and the column drivers on the display panels such as 
LCD monitor panels and LCD televisions. Cyclone IV devices meet the National 
Semiconductor Corporation RSDS Interface Specification, Texas Instruments 
mini-LVDS Interface Specification, and National Semiconductor Corporation PPDS 
Interface Specification to support RSDS, mini-LVDS and PPDS output standards, 
respectively. 

f For Cyclone IV devices RSDS, mini-LVDS, and PPDS output electrical specifications, 
refer to the Cyclone IV Device Datasheet chapter.

f For more information about the RSDS I/O standard, refer to the RSDS specification 
from the National Semiconductor website (www.national.com).

Designing with RSDS, Mini-LVDS, and PPDS
Cyclone IV I/O banks support RSDS, mini-LVDS, and PPDS output standards. The 
right I/O banks support true RSDS, mini-LVDS, and PPDS transmitters. On the top 
and bottom I/O banks, RSDS, mini-LVDS, and PPDS transmitters are supported using 
two single-ended output buffers with external resistors. The two single-ended output 
buffers are programmed to have opposite polarity. 

Figure 6–15 shows an RSDS, mini-LVDS, or PPDS interface with a true output buffer.

Figure 6–16 shows an RSDS, mini-LVDS, or PPDS interface with two single-ended 
output buffers and external resistors.

Figure 6–15. Cyclone IV Devices RSDS, Mini-LVDS, or PPDS Interface with True Output Buffer on 
the Right I/O Banks

Figure 6–16. RSDS, Mini-LVDS, or PPDS Interface with External Resistor Network on the Top and 
Bottom I/O Banks (1)
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During device configuration, Cyclone IV E devices read configuration data using the 
parallel interface and configure their SRAM cells. This scheme is referred to as the AP 
configuration scheme because the device controls the configuration interface. This 
scheme contrasts with the FPP configuration scheme, where an external host controls 
the interface.

AP Configuration Supported Flash Memories
The AP configuration controller in Cyclone IV E devices is designed to interface with 
two industry-standard flash families—the Micron P30 Parallel NOR flash family and 
the Micron P33 Parallel NOR flash family. Unlike serial configuration devices, both of 
the flash families supported in AP configuration scheme are designed to interface 
with microprocessors. By configuring from an industry standard microprocessor flash 
which allows access to the flash after entering user mode, the AP configuration 
scheme allows you to combine configuration data and user data (microprocessor boot 
code) on the same flash memory.

The Micron P30 flash family and the P33 flash family support a continuous 
synchronous burst read mode at 40 MHz DCLK frequency for reading data from the 
flash. Additionally, the Micron P30 and P33 flash families have identical pin-out and 
adopt similar protocols for data access.

1 Cyclone IV E devices use a 40-MHz oscillator for the AP configuration scheme. The 
oscillator is the same oscillator used in the Cyclone IV E AS configuration scheme.

Table 8–10 lists the supported families of the commodity parallel flash for the AP 
configuration scheme.

Configuring Cyclone IV E devices from the Micron P30 and P33 family 512-Mbit flash 
memory is possible, but you must properly drive the extra address and FLASH_nCE 
pins as required by these flash memories.

f To check for supported speed grades and package options, refer to the respective flash 
datasheets.

The AP configuration scheme in Cyclone IV E devices supports flash speed grades of 
40 MHz and above. However, AP configuration for all these speed grades must be 
capped at 40 MHz. The advantage of faster speed grades is realized when your design 
in the Cyclone IV E devices accesses flash memory in user mode.

Table 8–10. Supported Commodity Flash for AP Configuration Scheme for Cyclone IV E 
Devices (1) 

Flash Memory Density Micron P30 Flash Family (2) Micron P33 Flash Family (3)

64 Mbit v v
128 Mbit v v
256 Mbit v v

Notes to Table 8–10:
(1) The AP configuration scheme only supports flash memory speed grades of 40 MHz and above.
(2) 3.3- , 3.0-, 2.5-, and 1.8-V I/O options are supported for the Micron P30 flash family.
(3) 3.3-, 3.0- and 2.5-V I/O options are supported for the Micron P33 flash family.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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When programming a JTAG device chain, one JTAG-compatible header is connected 
to several devices. The number of devices in the JTAG chain is limited only by the 
drive capability of the download cable. When four or more devices are connected in a 
JTAG chain, Altera recommends buffering the TCK, TDI, and TMS pins with an on-board 
buffer.

JTAG-chain device programming is ideal when the system contains multiple devices, 
or when testing your system with JTAG BST circuitry. Figure 8–25 and Figure 8–26 
show multi-device JTAG configuration.

For devices using 2.5-, 3.0-, and 3.3-V VCCIO supply, you must refer to Figure 8–25. All 
I/O inputs must maintain a maximum AC voltage of 4.1 V because JTAG pins do not 
have the internal PCI clamping diodes to prevent voltage overshoot when using 2.5-, 
3.0-, and 3.3- V VCCIO supply. You must power up the VCC of the download cable with 
a 2.5-V VCCA supply. For device using VCCIO of 1.2, 1.5 V, and 1.8 V, refer to 
Figure 8–26. You can power up the VCC of the download cable with the supply from 
VCCIO.

Figure 8–25. JTAG Configuration of Multiple Devices Using a Download Cable (2.5, 3.0, and 3.3-V VCCIO Powering the 
JTAG Pins)

Notes to Figure 8–25:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use a JTAG configuration, connect the nCONFIG 

pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
(3) Pin 6 of the header is a VIO reference voltage for the MasterBlaster output driver. VIO must match the VCCA of the device. For this value, refer to the 

MasterBlaster Serial/USB Communications Cable User Guide. In the ByteBlasterMV cable, this pin is a no connect. In the USB-Blaster and 
ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming, otherwise it is a no connect.

(4) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
(5) Power up the VCC of the ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V supply from VCCA. Third-party programmers must switch 

to 2.5 V. Pin 4 of the header is a VCC power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V 
circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the MasterBlaster Serial/USB Communications Cable User 
Guide.

(6) Resistor value can vary from 1 k to 10 k.
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Figure 8–28. Combining JTAG and AS Configuration Schemes

Notes to Figure 8–28:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Power up the VCC of the EthernetBlaster, ByteBlaster II, or USB-Blaster cable with the 3.3-V supply.
(3) Pin 6 of the header is a VIO reference voltage for the MasterBlaster output driver.The VIO must match the VCCA of the 

device. For this value, refer to the MasterBlaster Serial/USB Communications Cable User Guide. When using the 
ByteBlasterMV download cable, this pin is a no connect. When using the USB-Blaster and ByteBlaster II cables, this 
pin is connected to nCE when it is used for AS programming, otherwise it is a no connect.

(4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect MSEL for AS 
configuration schemes, refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect 
the MSEL pins directly to VCCA or GND.

(5) Power up the VCC of the EthernetBlaster, ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V VCCA supply. 
Third-party programmers must switch to 2.5 V. Pin 4 of the header is a VCC power supply for the MasterBlaster cable. 
The MasterBlaster cable can receive power from either 5.0- or 3.3-V circuit boards, DC power supply, or 5.0 V from 
the USB cable. For this value, refer to the MasterBlaster Serial/USB Communications Cable User Guide.

(6) You must place the diodes and capacitors as close as possible to the Cyclone IV device. Altera recommends using 
the Schottky diode, which has a relatively lower forward diode voltage (VF) than the switching and Zener diodes, for 
effective voltage clamping. 

(7) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions 
as DATA[1] pin in AP and FPP modes.

(8) Resistor value can vary from 1 k to 10 k..
(9) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for 
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Chapter 9: SEU Mitigation in Cyclone IV Devices 9–9
Recovering from CRC Errors
Table 9–7 lists the input and output ports that you must include in the atom. 

Recovering from CRC Errors
The system that the Altera FPGA resides in must control device reconfiguration. After 
detecting an error on the CRC_ERROR pin, strobing the nCONFIG low directs the system 
to perform the reconfiguration at a time when it is safe for the system to reconfigure 
the FPGA. 

When the data bit is rewritten with the correct value by reconfiguring the device, the 
device functions correctly.

While soft errors are uncommon in Altera devices, certain high-reliability applications 
might require a design to account for these errors. 

Table 9–7. CRC Block Input and Output Ports

Port Input/Output Definition

<crcblock_name> Input
Unique identifier for the CRC block, and represents any identifier name that is legal 
for the given description language (for example, Verilog HDL, VHDL, and AHDL). 
This field is required.

.clk(<clock source> Input

This signal designates the clock input of this cell. All operations of this cell are 
with respect to the rising edge of the clock. Whether it is the loading of the data 
into the cell or data out of the cell, it always occurs on the rising edge. This port is 
required.

.shiftnld (<shiftnld

source>)
Input

This signal is an input into the error detection block. If shiftnld=1, the data is 
shifted from the internal shift register to the regout at each rising edge of clk. If 
shiftnld=0, the shift register parallel loads either the pre-calculated CRC value 
or the update register contents, depending on the ldsrc port input. To do this, 
the shiftnld must be driven low for at least two clock cycles. This port is 
required.

.ldsrc (<ldsrc 
source>) Input

This signal is an input into the error detection block. If ldsrc=0, the 
pre-computed CRC register is selected for loading into the 32-bit shift register at 
the rising edge of clk when shiftnld=0. If ldsrc=1, the signature register 
(result of the CRC calculation) is selected for loading into the shift register at the 
rising edge of clk when shiftnld=0. This port is ignored when 
shiftnld=1. This port is required.

.crcerror (<crcerror 
indicator
output>)

Output

This signal is the output of the cell that is synchronized to the internal oscillator of 
the device (80-MHz internal oscillator) and not to the clk port. It asserts high if 
the error block detects that a SRAM bit has flipped and the internal CRC 
computation has shown a difference with respect to the pre-computed value. You 
must connect this signal either to an output pin or a bidirectional pin. If it is 
connected to an output pin, you can only monitor the CRC_ERROR pin (the core 
cannot access this output). If the CRC_ERROR signal is used by core logic to 
read error detection logic, you must connect this signal to a BIDIR pin. The 
signal is fed to the core indirectly by feeding a BIDIR pin that has its output 
enable port connected to VCC (see Figure 9–3 on page 9–8).

.regout (<registered 
output>) Output

This signal is the output of the error detection shift register synchronized to the 
clk port to be read by core logic. It shifts one bit at each cycle, so you should 
clock the clk signal 31 cycles to read out the 32 bits of the shift register.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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PIPE Interface
The PIPE interface provides a standard interface between the PCIe-compliant PHY 
and MAC layer as defined by the version 2.00 of the PIPE Architecture specification 
for Gen1 (2.5 Gbps) signaling rate. Any core or IP implementing the PHY MAC, data 
link, and transaction layers that supports PIPE 2.00 can be connected to the 
Cyclone IV GX transceiver configured in PIPE mode. Table 1–15 lists the PIPE-specific 
ports available from the Cyclone IV GX transceiver configured in PIPE mode and the 
corresponding port names in the PIPE 2.00 specification.

Receiver Detection Circuitry
In PIPE mode, the transmitter supports receiver detection function with a built-in 
circuitry in the transmitter PMA. The PCIe protocol requires the transmitter to detect 
if a receiver is present at the far end of each lane as part of the link training and 
synchronization state machine sequence. This feature requires the following 
conditions:

■ transmitter output buffer to be tri-stated

■ have OCT utilization

■ 125 MHz clock on the fixedclk port

The circuit works by sending a pulse on the common mode of the transmitter. If an 
active PCIe receiver is present at the far end, the time constant of the step voltage on 
the trace is higher compared to when the receiver is not present. The circuitry 
monitors the time constant of the step signal seen on the trace to decide if a receiver 
was detected. 

Table 1–15. Transceiver-FPGA Fabric Interface Ports in PIPE Mode

Transceiver Port Name PIPE 2.00 Port Name

tx_datain[15..0] (1) TxData[15..0]

tx_ctrlenable[1..0] (1) TxDataK[1..0]

rx_dataout[15..0] (1) RxData[15..0]

rx_ctrldetect[1..0] (1) RxDataK[1..0]

tx_detectrxloop TxDetectRx/Loopback

tx_forceelecidle TxElecIdle

tx_forcedispcompliance TxCompliance

pipe8b10binvpolarity RxPolarity

powerdn[1..0] (2) PowerDown[1..0]

pipedatavalid RxValid

pipephydonestatus PhyStatus

pipeelecidle RxElecIdle

pipestatus RxStatus[2..0]

Notes to Table 1–15:

(1) When used with PCIe hard IP block, the byte SERDES is not used. In this case, the data ports are 8 bits wide and 
control identifier is 1 bit wide.

(2) Cyclone IV GX transceivers do not implement power saving measures in lower power states (P0s, P1, and P2), 
except when putting the transmitter buffer in electrical idle in the lower power states.
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Figure 1–66 shows the transceiver channel datapath and clocking when configured in 
deterministic latency mode.

Figure 1–66. Transceiver Channel Datapath and Clocking when Configured in Deterministic Latency Mode

Note to Figure 1–66:

(1) High-speed recovered clock.
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Receive Bit-Slip Indication
The number of bits slipped in the word aligner for synchronization in manual 
alignment mode is provided with the rx_bitslipboundaryselectout[4..0] signal. 
For example, if one bit is slipped in word aligner to achieve synchronization, the 
output on rx_bitslipboundaryselectout[4..0] signal shows a value of 1 (5'00001). 
The information from this signal helps in latency calculation through the receiver as 
the number of bits slipped in the word aligner varies at each synchronization.

Transmit Bit-Slip Control
The transmitter datapath supports bit-slip control to delay the serial data 
transmission by a number of specified bits in PCS with 
tx_bitslipboundaryselect[4..0] port. With 8- or 10-bit channel width, the 
transmitter supports zero to nine bits of data slip. This feature helps to maintain a 
fixed round trip latency by compensating latency variation from word aligner when 
providing the appropriate values on tx_bitslipboundaryselect[4..0] port based on 
values on rx_bitslipboundaryselectout[4..0] signal.

PLL PFD feedback
In Deterministic Latency mode, when transmitter input reference clock frequency is 
the same as the low-speed clock, the PLL that clocks the transceiver supports PFD 
feedback. When enabled, the PLL compensates for delay uncertainty in the low-speed 
clock (tx_clkout in ×1 configuration or coreclkout in ×4 configuration) path relative 
to input reference and the transmitter datapath latency is fixed relative to the 
transmitter input reference clock.

SDI Mode
SDI mode provides the non-bonded (×1) transceiver channel datapath configuration 
for HD- and 3G-SDI protocol implementations.

Cyclone IV GX transceivers configured in SDI mode provides the serialization and 
deserialization functions that supports the SDI data rates as listed in Table 1–24.

1 SDI functions such as scrambling/de-scrambling, framing, and cyclic redundancy 
check (CRC) must be implemented in the user logic.

Table 1–24. Supported SDI Data Rates

SMPTE 
Standard (1) Configuration Data Rate (Mbps) FPGA Fabric-to-

Transceiver Width Byte SERDES Usage

292M High definition (HD)

1483.5
20-bit Used

10-bit Not used

1485
20-bit Used

10-bit Not used

424M Third-generation (3G)
2967

20-bit Used
2970

Note to Table 1–24:

(1) Society of Motion Picture and Television Engineers (SMPTE).
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PRBS
Figure 1–74 shows the datapath for the PRBS, high and low frequency pattern test 
modes. The pattern generator is located in TX PCS before the serializer, and PRBS 
pattern verifier located in RX PCS after the word aligner.

Table 1–25 lists the supported PRBS, high and low frequency patterns, and 
corresponding channel settings. The PRBS pattern repeats after completing an 
iteration. The number of bits a PRBS X pattern sends before repeating the pattern is 
2(X-1) bits.

Figure 1–74. PRBS Pattern Test Mode Datapath

Note to Figure 1–74:

(1) Serial loopback path is optional and can be enabled for the PRBS verifier to check the PRBS pattern
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Table 1–25. PRBS, High and Low Frequency Patterns, and Channel Settings (Part 1 of 2)

Patterns Polynomial

8-bit Channel Width 10-bit Channel Width 

Channel 
Width 

of 
8 bits 

(1)

Word 
Alignment 

Pattern

Maximum 
Data Rate 
(Gbps) for 
F324 and 
Smaller 

Packages

Maximum 
Data Rate 
(Gbps) for 
F484 and 

Larger 
Packages

Channel 
Width 

of 
10-bits 

(1)

Word 
Alignment 

Pattern

Maximum 
Data Rate 
(Gbps) for 
F324 and 
Smaller 

Packages

Maximum 
Data Rate 
(Gbps) for 
F484 and 

Larger 
Packages

PRBS 7 X7 + X6 + 1 Y 16’h3040 2.0 2.5 N — — —

PRBS 8 X8 + X7 + 1 Y 16’hFF5A 2.0 2.5 N — — —

PRBS 10 X10 + X7 + 1 N — — — Y 10’h3FF 2.5 3.125

PRBS 23 X23 + X18 + 1 Y 16’hFFFF 2.0 2.5 N — — —

High 
frequency (2) 1010101010 Y — 2.0 2.5 Y — 2.5 3.125
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Analog Settings Control/Status Signals

tx_vodctrl[2..0] 
(1) Input

This is an optional transmit buffer VOD control signal. It is 3 bits per transmitter channel. 
The number of settings varies based on the transmit buffer supply setting and the 
termination resistor setting on the TX Analog screen of the ALTGX MegaWizard Plug-In 
Manager.

The width of this signal is fixed to 3 bits if you enable either the Use 
'logical_channel_address' port for Analog controls reconfiguration option or the Use 
same control signal for all the channels option in the Analog controls screen. Otherwise, 
the width of this signal is 3 bits per channel. 

The following shows the VOD values corresponding to the tx_vodctrl settings for 100-  
termination.

For more information, refer to the “Programmable Output Differential Voltage” section of 
the Cyclone IV GX Device Datasheet chapter.

tx_vodctrl[2:0] Corresponding ALTGX Corresponding VOD 
instance settings settings (mV)

3’b001 1  400

3’b010 2 600

3’b011 3 800

3’b111 4 (2) 900 (2)

3’b100 5 1000

3’b101 6 1200

All other values => N/A

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 4 of 7)

Port Name Input/
Output Description

http://www.altera.com/literature/hb/cyclone-iv/cyiv-52001.pdf
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Method 3: Writing Different Control Signals for all the Transceiver Channels 
at the Same Time
If you disable the Use the same control signal for all the channels option, the PMA 
control ports for a write transaction are separate for each channel. If you disable this 
option, the width of the PMA control ports are fixed as follows:

PMA Control Ports Used in a Write Transaction

■ tx_vodctrl is 3 bits per channel

■ tx_preemp are 5 bits per channel

■ rx_eqdcgain is 2 bits per channel

■ rx_eqctrl is 4 bits per channel

For example, if you have two channels, the tx_vodctrl is 6 bits wide 
(tx_vodctrl [2:0] corresponds to channel 1 and tx_vodctrl [5:3] corresponds to 
channel 2).

PMA Control Ports Used in a Read Transaction

The width of the PMA control ports for a read transaction are always separate for each 
channel as explained in “Method 2: Writing the Same Control Signals to Control All 
the Transceiver Channels” on page 3–16.

Write Transaction

Because the PMA controls of all the channels are written, if you want to reconfigure a 
specific channel connected to the ALTGX_RECONFIG instance, set the new value at 
the corresponding PMA control port of the channel under consideration and retain 
the previously stored values in the other active channels with a read transaction prior 
to this write transaction.

For example, if the number of channels controlled by the ALTGX_RECONFIG 
instance is two, the tx_vodctrl signal in this case would be 6 bits wide. The 
tx_vodctrl[2:0] signal corresponds to channel 1 and the tx_vodctrl[5:3] signal 
corresponds to channel 2.

■ To dynamically reconfigure the PMA controls of only channel 2 with a new value, 
first perform a read transaction to retrieve the existing PMA control values from 
tx_vodctrl_out[5:0]. Use the tx_vodctrl_out[2:0] value for tx_vodctrl[2:0] 
to write in channel 1. By doing so, channel 1 is overwritten with the same value.

■ Perform a write transaction. This ensures that the new values are written only to 
channel 2 while channel 1 remains unchanged.
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Chapter 1: Cyclone IV Device Datasheet 1–15
Operating Conditions

1.375

—

—

1.4

1.4

1.5

1.5

1.4

1.4

(3)

Max
LVDS 
(Column 
I/Os)

2.375 2.5 2.625 100 —

0.05 DMAX  500 Mbps 1.80

247 — 600 1.125 1.250.55 500 Mbps  DMAX 
 700 Mbps 1.80

1.05 DMAX > 700 Mbps 1.55

BLVDS (Row 
I/Os) (4) 2.375 2.5 2.625 100 — — — — — — — — —

BLVDS 
(Column 
I/Os) (4)

2.375 2.5 2.625 100 — — — — — — — — —

mini-LVDS 
(Row I/Os) 
(5)

2.375 2.5 2.625 — — — — — 300 — 600 1.0 1.2

mini-LVDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 300 — 600 1.0 1.2

RSDS® (Row 
I/Os) (5) 2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

RSDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

PPDS (Row 
I/Os) (5) 2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

PPDS 
(Column 
I/Os) (5)

2.375 2.5 2.625 — — — — — 100 200 600 0.5 1.2

Notes to Table 1–20:

(1) For an explanation of terms used in Table 1–20, refer to “Glossary” on page 1–37.
(2) VIN range: 0 V  VIN  1.85 V.
(3) RL range: 90  RL  110  .
(4) There are no fixed VIN, VOD, and VOS specifications for BLVDS. They depend on the system topology.
(5) The Mini-LVDS, RSDS, and PPDS standards are only supported at the output pins.
(6) The LVPECL I/O standard is only supported on dedicated clock input pins. This I/O standard is not supported for output pins.

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 2 of 2)

I/O Standard
VCCIO (V) VID (mV) VIcM (V) (2) VOD (mV) (3) VOS (V) 

Min Typ Max Min Max Min Condition Max Min Typ Max Min Typ
December 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 3


