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3–8 Chapter 3: Memory Blocks in Cyclone IV Devices
Memory Modes
1 Violating the setup or hold time on the M9K memory block input registers may 
corrupt memory contents. This applies to both read and write operations.

Single-Port Mode
Single-port mode supports non-simultaneous read and write operations from a single 
address. Figure 3–6 shows the single-port memory configuration for Cyclone IV 
devices M9K memory blocks.

During a write operation, the behavior of the RAM outputs is configurable. If you 
activate rden during a write operation, the RAM outputs show either the new data 
being written or the old data at that address. If you perform a write operation with 
rden deactivated, the RAM outputs retain the values they held during the most recent 
active rden signal.

To choose the desired behavior, set the Read-During-Write option to either New Data 
or Old Data in the RAM MegaWizard Plug-In Manager in the Quartus II software. For 
more information about read-during-write mode, refer to “Read-During-Write 
Operations” on page 3–15. 

The port width configurations for M9K blocks in single-port mode are as follow:

■ 8192 × 1

■ 4096 × 2

■ 2048 × 4

■ 1024 × 8

■ 1024 × 9

■ 512 × 16

■ 512 × 18

■ 256 × 32

■ 256 × 36

Figure 3–6. Single-Port Memory (1), (2)

Notes to Figure 3–6:

(1) You can implement two single-port memory blocks in a single M9K block.
(2) For more information, refer to “Packed Mode Support” on page 3–4.
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4–2 Chapter 4: Embedded Multipliers in Cyclone IV Devices
Architecture
Table 4–1 lists the number of embedded multipliers and the multiplier modes that can 
be implemented in each Cyclone IV device.

In addition to the embedded multipliers in Cyclone IV devices, you can implement 
soft multipliers by using the M9K memory blocks as look-up tables (LUTs). The LUTs 
contain partial results from the multiplication of input data with coefficients that 
implement variable depth and width high-performance soft multipliers for low-cost, 
high-volume DSP applications. The availability of soft multipliers increases the 
number of available multipliers in the device.

f For more information about M9K memory blocks, refer to the Memory Blocks in 
Cyclone IV Devices chapter.

f For more information about soft multipliers, refer to AN 306: Implementing Multipliers 
in FPGA Devices.

Architecture
Each embedded multiplier consists of the following elements:

■ Multiplier stage

■ Input and output registers

■ Input and output interfaces

Table 4–1. Number of Embedded Multipliers in Cyclone IV Devices

Device Family Device Embedded 
Multipliers

9 × 9 
Multipliers (1)

18 × 18 
Multipliers (1)

Cyclone IV GX

EP4CGX15 0 0 0

EP4CGX22 40 80 40

EP4CGX30 80 160 80

EP4CGX50 140 280 140

EP4CGX75 198 396 198

EP4CGX110 280 560 280

EP4CGX150 360 720 360

Cyclone IV E

EP4CE6 15 30 15

EP4CE10 23 46 23

EP4CE15 56 112 56

EP4CE22 66 132 66

EP4CE30 66 132 66

EP4CE40 116 232 116

EP4CE55 154 308 154

EP4CE75 200 400 200

EP4CE115 266 532 266

Note to Table 4–1:

(1) These columns show the number of 9 × 9 or 18 × 18 multipliers for each device.
Cyclone IV Device Handbook, February 2010 Altera Corporation
Volume 1
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Document Revision History
Document Revision History
Table 4–3 lists the revision history for this chapter.

Table 4–3. Document Revision History

Date Version Changes

February 2010 1.1 Added Cyclone IV E devices in Table 4–1 for the Quartus II software version 
9.1 SP1 release.

November 2009 1.0 Initial release.
February 2010 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 7: External Memory Interfaces in Cyclone IV Devices 7–3
Cyclone IV Devices Memory Interfaces Pin Support
In Cyclone IV devices, DQS is used only during write mode in DDR2 and 
DDR SDRAM interfaces. Cyclone IV devices ignore DQS as the read-data strobe 
because the PHY internally generates the read capture clock for read mode. However, 
you must connect the DQS pin to the DQS signal in DDR2 and DDR SDRAM interfaces, 
or to the CQ signal in QDR II SRAM interfaces.

1 Cyclone IV devices do not support differential strobe pins, which is an optional 
feature in the DDR2 SDRAM device.

f When you use the Altera Memory Controller MegaCore® function, the PHY is 
instantiated for you. For more information about the memory interface data path, 
refer to the External Memory Interface Handbook. 

1 ALTMEMPHY is a self-calibrating megafunction, enhanced to simplify the 
implementation of the read-data path in different memory interfaces. The 
auto-calibration feature of ALTMEMPHY provides ease-of-use by optimizing clock 
phases and frequencies across process, voltage, and temperature (PVT) variations. 
You can save on the global clock resources in Cyclone IV devices through the 
ALTMEMPHY megafunction because you are not required to route the DQS signals on 
the global clock buses (because DQS is ignored for read capture). Resynchronization 
issues do not arise because no transfer occurs from the memory domain clock (DQS) to 
the system domain for capturing data DQ.

All I/O banks in Cyclone IV devices can support DQ and DQS signals with DQ-bus 
modes of ×8, ×9, ×16, ×18, ×32, and ×36 except Cyclone IV GX devices that do not 
support left I/O bank interface. DDR2 and DDR SDRAM interfaces use ×8 mode DQS 
group regardless of the interface width. For a wider interface, you can use multiple ×8 
DQ groups to achieve the desired width requirement.

In the ×9, ×18, and ×36 modes, a pair of complementary DQS pins (CQ and CQ#) 
drives up to 9, 18, or 36 DQ pins, respectively, in the group, to support one, two, or four 
parity bits and the corresponding data bits. The ×9, ×18, and ×36 modes support the 
QDR II memory interface. CQ# is the inverted read-clock signal that is connected to 
the complementary data strobe (DQS or CQ#) pin. You can use any unused DQ pins as 
regular user I/O pins if they are not used as memory interface signals. 

f For more information about unsupported DQS and DQ groups of the Cyclone IV 
transceivers that run at 2.97 Gbps data rate, refer to the Cyclone IV Device Family Pin 
Connection Guidelines.
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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7–4 Chapter 7: External Memory Interfaces in Cyclone IV Devices
Cyclone IV Devices Memory Interfaces Pin Support
Table 7–1 lists the number of DQS or DQ groups supported on each side of the 
Cyclone IV GX device.

Table 7–1. Cyclone IV GX Device DQS and DQ Bus Mode Support for Each Side of the Device

Device Package Side
Number 

×8 
Groups

Number 
×9 

Groups

Number 
×16 

Groups

Number 
×18 

Groups

Number 
×32 

Groups

Number 
×36 

Groups

EP4CGX15 169-pin FBGA 

Right 1 0 0 0 — —

Top (1) 1 0 0 0 — —

Bottom (2) 1 0 0 0 — —

EP4CGX22

EP4CGX30

169-pin FBGA 

Right 1 0 0 0 — —

Top (1) 1 0 0 0 — —

Bottom (2) 1 0 0 0 — —

324-pin FBGA 

Right 2 2 1 1 — —

Top 2 2 1 1 — —

Bottom 2 2 1 1 — —

484-pin FBGA (3)

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

EP4CGX50

EP4CGX75

484-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

672-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

EP4CGX110

EP4CGX150

484-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

672-pin FBGA 

Right 4 2 2 2 1 1

Top 4 2 2 2 1 1

Bottom 4 2 2 2 1 1

896-pin FBGA 

Right 6 3 2 2 1 1

Top 6 3 3 3 1 1

Bottom 6 3 3 3 1 1

Notes to Table 7–1:

(1) Some of the DQ pins can be used as RUP and RDN pins. You cannot use these groups if you are using these pins as RUP and RDN pins for 
OCT calibration.

(2) Some of the DQ pins can be used as RUP pins while the DM pins can be used as RDN pins. You cannot use these groups if you are using the 
RUP and RDN pins for OCT calibration.

(3) Only available for EP4CGX30 device.
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1
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Cyclone IV Devices Memory Interfaces Pin Support
Figure 7–2 shows the location and numbering of the DQS, DQ, or CQ# pins in the 
Cyclone IV GX I/O banks.

Figure 7–2. DQS, CQ, or CQ# Pins in Cyclone IV GX I/O Banks (1)

Note to Figure 7–2:

(1) The DQS, CQ, or CQ# pin locations in this diagram apply to all packages in Cyclone IV GX devices except devices in 
169-pin FBGA and 324-pin FBGA.
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Document Revision History
f For more information about Cyclone IV PLL, refer to the Clock Networks and PLLs in 
Cyclone IV Devices chapter.

Document Revision History
Table 7–3 lists the revision history for this chapter.

Table 7–3. Document Revision History

Date Version Changes

March 2016 2.6

■ Updated Table 7–1 to remove support for the N148 package.

■ Updated note (1) in Figure 7–2 to remove support for the N148 package.

■ Updated Figure 7–4 to remove support for the N148 package.

May 2013 2.5 Updated Table 7–2 to add new device options and packages.

February 2013 2.4 Updated Table 7–2 to add new device options and packages.

October 2012 2.3 Updated Table 7–1 and Table 7–2.

December 2010 2.2

■ Updated for the Quartus II software version 10.1 release.

■ Added Cyclone IV E new device package information.

■ Updated Table 7–2.

■ Minor text edits.

November 2010 2.1 Updated “Data and Data Clock/Strobe Pins” section.

February 2010 2.0

■ Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1 
release.

■ Updated Table 7–1.

■ Added Table 7–2.

■ Added Figure 7–5 and Figure 7–6.

November 2009 1.0 Initial release.
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–5
Configuration
Use the data in Table 8–2 to estimate the file size before design compilation. Different 
configuration file formats, such as Hexadecimal (.hex) or Tabular Text File (.ttf) 
formats, have different file sizes. However, for any specific version of the Quartus II 
software, any design targeted for the same device has the same uncompressed 
configuration file size. If you use compression, the file size varies after each 
compilation, because the compression ratio depends on the design.

f For more information about setting device configuration options or creating 
configuration files, refer to the Software Settings section in volume 2 of the 
Configuration Handbook.

Configuration and JTAG Pin I/O Requirements
Cyclone IV devices are manufactured using the TSMC 60-nm low-k dielectric process. 
Although Cyclone IV devices use TSMC 2.5-V transistor technology in the I/O 
buffers, the devices are compatible and able to interface with 2.5, 3.0, and 3.3-V 
configuration voltage standards by following specific requirements.

All I/O inputs must maintain a maximum AC voltage of 4.1 V. When using a serial 
configuration device in an AS configuration scheme, you must connect a 25- series 
resistor for the DATA[0] pin. When cascading the Cyclone IV device family in a 
multi-device configuration for AS, AP, FPP, and PS configuration schemes, you must 
connect the repeater buffers between the master and slave devices for the DATA and 
DCLK pins. When using the JTAG configuration scheme in a multi-device 
configuration, connect 25- resistors on both ends of the TDO-TDI path if the TDO 
output driver is a non-Cyclone IV device. 

The output resistance of the repeater buffers and the TDO path for all cases must fit the 
maximum overshoot equation shown in Equation 8–1.

Cyclone IV GX

EP4CGX15 3,805,568

EP4CGX22 7,600,040

EP4CGX30 
7,600,040

22,010,888 (1)

EP4CGX50 22,010,888

EP4CGX75 22,010,888

EP4CGX110 39,425,016

EP4CGX150 39,425,016

Note to Table 8–2:

(1) Only for the F484 package.

Table 8–2. Uncompressed Raw Binary File (.rbf) Sizes for Cyclone IV Devices (Part 2 of 2) 

Device Data Size (bits)

Equation 8–1. (1)

Note to Equation 8–1:
(1) ZO is the transmission line impedance and RE is the equivalent resistance of the output buffer.

0.8ZO RE 1.8ZO 
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–17
Configuration
Single SRAM Object File

The second method configures both the master device and slave devices with the 
same .sof. The serial configuration device stores one copy of the .sof. You must set up 
one or more slave devices in the chain. All the slave devices must be set up in the 
same way (Figure 8–5).

In this setup, all the Cyclone IV devices in the chain are connected for concurrent 
configuration. This reduces the AS configuration time because all the Cyclone IV 
devices are configured in one configuration cycle. Connect the nCE input pins of all the 
Cyclone IV devices to GND. You can either leave the nCEO output pins on all the 
Cyclone IV devices unconnected or use the nCEO output pins as normal user I/O pins. 
The DATA and DCLK pins are connected in parallel to all the Cyclone IV devices.

Figure 8–5. Multi-Device AS Configuration in Which Devices Receive the Same Data with a Single .sof

Notes to Figure 8–5: 

(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(3) The MSEL pin settings vary for different configuration voltage standards and POR time. You must set the master device of the Cyclone IV device 

in AS mode and the slave devices in PS mode. To connect the MSEL pins for the master device in AS mode and slave devices in PS mode, refer to 
Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly to VCCA or GND.

(4) Connect the series resistor at the near end of the serial configuration device.
(5) Connect the repeater buffers between the master and slave devices for DATA[0] and DCLK. All I/O inputs must maintain a maximum AC voltage 

of 4.1 V. The output resistance of the repeater buffers must fit the maximum overshoot equation outlined in “Configuration and JTAG Pin I/O 
Requirements” on page 8–5.

(6) The 50- series resistors are optional if the 3.3-V configuration voltage standard is applied. For optimal signal integrity, connect these 50- series 
resistors if the 2.5- or 3.0-V configuration voltage standard is applied.

(7) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions as DATA[1] pin in AP and 
FPP modes.

(8) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for DCLK.
(9) For multi-devices AS configuration using Cyclone IV E with 1,0 V core voltage, the maximum board trace-length from the serial configuration 

device to the junction-split on both DCLK and Data0 line is 3.5 inches.
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Configuration
1 If a non-Cyclone IV device is cascaded in the JTAG-chain, TDO of the non-Cyclone IV 
device driving into TDI of the Cyclone IV device must fit the maximum overshoot 
outlined in Equation 8–1 on page 8–5.

The CONF_DONE and nSTATUS signals are shared in multi-device AS, AP, PS, and FPP 
configuration chains to ensure that the devices enter user mode at the same time after 
configuration is complete. When the CONF_DONE and nSTATUS signals are shared among 
all the devices, you must configure every device when JTAG configuration is 
performed.

If you only use JTAG configuration, Altera recommends that you connect the circuitry 
as shown in Figure 8–25 or Figure 8–26, in which each of the CONF_DONE and nSTATUS 
signals are isolated so that each device can enter user mode individually.

After the first device completes configuration in a multi-device configuration chain, 
its nCEO pin drives low to activate the nCE pin of the second device, which prompts the 
second device to begin configuration. Therefore, if these devices are also in a JTAG 
chain, ensure that the nCE pins are connected to GND during JTAG configuration or 
that the devices are JTAG configured in the same order as the configuration chain. As 
long as the devices are JTAG configured in the same order as the multi-device 
configuration chain, the nCEO of the previous device drives the nCE pin of the next 
device low when it has successfully been JTAG configured. You can place other Altera 
devices that have JTAG support in the same JTAG chain for device programming and 
configuration.

Figure 8–26. JTAG Configuration of Multiple Devices Using a Download Cable (1.2, 1.5, and 1.8-V VCCIO Powering the 
JTAG Pins)

Notes to Figure 8–26:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use a JTAG configuration, connect the nCONFIG 

pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
(3) In the USB-Blaster and ByteBlaster II cable, this pin is connected to nCE when it is used for AS programming, otherwise it is a no connect.
(4) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
(5) Power up the VCC of the ByteBlaster II or USB-Blaster cable with supply from VCCIO. The ByteBlaster II and USB-Blaster cables do not support a 

target supply voltage of 1.2 V. For the target supply voltage value, refer to the ByteBlaster II Download Cable User Guide and the USB-Blaster 
Download Cable User Guide.

(6) Resistor value can vary from 1 k to 10 k.
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Remote System Upgrade
Table 8–25 lists the contents of previous state register 1 and previous state register 2 in 
the status register. The status register bit in Table 8–25 shows the bit positions in a 
3-bit register. The previous state register 1 and previous state register 2 have the same 
bit definitions. The previous state register 1 reflects the current application 
configuration and the previous state register 2 reflects the previous application 
configuration.

If a capture is inappropriately done while capturing a previous state before the system 
has entered remote update application configuration for the first time, a value outputs 
from the shift register to indicate that the capture is incorrectly called.

Remote System Upgrade State Machine
The remote system upgrade control and update registers have identical bit 
definitions, but serve different roles (Table 8–22 on page 8–75). While both registers 
can only be updated when the device is loaded with a factory configuration image, 
the update register writes are controlled by the user logic, and the control register 
writes are controlled by the remote system upgrade state machine. 

In factory configurations, the user logic should send the option bits (Cd_early and 
Osc_int), the configuration address, and watchdog timer settings for the next 
application configuration bit to the update register. When the logic array 
configuration reset (RU_nCONFIG) goes high, the remote system upgrade state machine 
updates the control register with the contents of the update register and starts system 
reconfiguration from the new application page.

1 To ensure the successful reconfiguration between the pages, assert the RU_nCONFIG 
signal for a minimum of 250 ns. This is equivalent to strobing the reconfig input of 
the ALTREMOTE_UPDATE megafunction high for a minimum of 250 ns.

If there is an error or reconfiguration trigger condition, the remote system upgrade 
state machine directs the system to load a factory or application configuration (based 
on mode and error condition) by setting the control register accordingly. 

Table 8–26 lists the contents of the control register after such an event occurs for all 
possible error or trigger conditions.

Table 8–25. Remote System Upgrade Previous State Register 1 and Previous State Register 2 Contents in Status 
Register 

Status Register Bit Definition Description

30 nCONFIG source
One-hot, active-high field that describes the reconfiguration source 
that caused the Cyclone IV device to leave the previous application 
configuration. If there is a tie, the higher bit order indicates 
precedence. For example, if nCONFIG and remote system upgrade 
nCONFIG reach the reconfiguration state machine at the same time, 
the nCONFIG precedes the remote system upgrade nCONFIG. 

29 CRC error source

28 nSTATUS source

27 User watchdog timer source

26
Remote system upgrade 
nCONFIG source

25:24
Master state machine 
current state

The state of the master state machine during reconfiguration causes 
the Cyclone IV device to leave the previous application configuration.

23:0 Boot address The address used by the configuration scheme to load the previous 
application configuration.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1



Chapter 10: JTAG Boundary-Scan Testing for Cyclone IV Devices 10–5
I/O Voltage Support in a JTAG Chain
EXTEST_PULSE
The instruction code for EXTEST_PULSE is 0010001111. The EXTEST_PULSE instruction 
generates three output transitions:

■ Driver drives data on the falling edge of TCK in UPDATE_IR/DR.

■ Driver drives inverted data on the falling edge of TCK after entering the 
RUN_TEST/IDLE state.

■ Driver drives data on the falling edge of TCK after leaving the RUN_TEST/IDLE 
state.

1 If you use DC-coupling on HSSI signals, you must execute the EXTEST instruction. If 
you use AC-coupling on HSSI signals, you must execute the EXTEST_PULSE 
instruction. AC-coupled and DC-coupled HSSI are only supported in 
post-configuration mode.

EXTEST_TRAIN
The instruction code for EXTEST_TRAIN is 0001001111. The EXTEST_TRAIN instruction 
behaves the same as the EXTEST_PULSE instruction with one exception. The output 
continues to toggle on the TCK falling edge as long as the test access port (TAP) 
controller is in the RUN_TEST/IDLE state.

1 These two instruction codes are only supported in post-configuration mode for 
Cyclone IV GX devices.

1 When you perform JTAG boundary-scan testing before configuration, the nCONFIG pin 
must be held low.

I/O Voltage Support in a JTAG Chain 
A Cyclone IV device operating in BST mode uses four required pins: TDI, TDO, TMS, 
and TCK. The TDO output pin and all JTAG input pins are powered by the VCCIO power 
supply of I/O Banks (I/O Bank 9 for Cyclone IV GX devices and I/O Bank 1 for 
Cyclone IV E devices).

A JTAG chain can contain several different devices. However, you must use caution if 
the chain contains devices that have different VCCIO levels. The output voltage level of 
the TDO pin must meet the specification of the TDI pin it drives. For example, a device 
with a 3.3-V TDO pin can drive a device with a 5.0-V TDI pin because 3.3 V meets the 
minimum TTL-level VIH for the 5.0-V TDI pin.

1 For multiple devices in a JTAG chain with the 3.0-V/3.3-V I/O standard, you must 
connect a 25- series resistor on a TDO pin driving a TDI pin.

You can also interface the TDI and TDO lines of the devices that have different VCCIO 
levels by inserting a level shifter between the devices. If possible, the JTAG chain 
should have a device with a higher VCCIO level driving a device with an equal or 
lower VCCIO level. This way, a level shifter may be required only to shift the TDO level 
to a level acceptable to the JTAG tester.
December 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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When the byte serializer is enabled, the low-speed clock frequency is halved before 
feeding into the read clock of TX phase compensation FIFO. The low-speed clock is 
available in the FPGA fabric as tx_clkout port, which can be used in the FPGA fabric 
to send transmitter data and control signals.

Figure 1–34 shows the datapath clocking in receiver only operation. In this mode, the 
receiver PCS supports configuration without the rate match FIFO. The CDR unit in 
the channel recovers the clock from the received serial data and generates the high-
speed recovered clock for the deserializer, and low-speed recovered clock for 
forwarding to the receiver PCS. The low-speed recovered clock feeds to the following 
blocks in the receiver PCS:

■ word aligner

■ 8B/10B decoder

■ write clock of byte deserializer

■ byte ordering

■ write clock of RX phase compensation FIFO

When the byte deserializer is enabled, the low-speed recovered clock frequency is 
halved before feeding into the write clock of the RX phase compensation FIFO. The 
low-speed recovered clock is available in the FPGA fabric as rx_clkout port, which 
can be used in the FPGA fabric to capture receiver data and status signals.

When the transceiver is configured for transmitter and receiver operation in 
non-bonded channel configuration, the receiver PCS supports configuration with and 
without the rate match FIFO. The difference is only at the receiver datapath clocking. 
The transmitter datapath clocking is identical to transmitter only operation mode as 
shown in Figure 1–33. 

Figure 1–33. Transmitter Only Datapath Clocking in Non-Bonded Channel Configuration
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Figure 1–34. Receiver Only Datapath Clocking without Rate Match FIFO in Non-Bonded Channel Configuration

Note to Figure 1–34:

(1) High-speed recovered clock.
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Dynamic Reconfiguration Controller Port List
Table 3–2 lists the input control ports and output status ports of the dynamic 
reconfiguration controller.

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 1 of 7)

Port Name Input/
Output Description

Clock Inputs to ALTGX_RECONFIG Instance

reconfig_clk Input

The frequency range of this clock depends on the following transceiver channel 
configuration modes:

■ Receiver only (37.5 MHz to 50 MHz)

■ Receiver and Transmitter (37.5 MHz to 50 MHz)

■ Transmitter only (2.5 MHz to 50 MHz)

By default, the Quartus® II software assigns a global clock resource to this port. This clock 
must be a free-running clock sourced from an I/O clock pin. Do not use dedicated 
transceiver REFCLK pins or any clocks generated by transceivers.

ALTGX and ALTGX_RECONFIG Interface Signals

reconfig_fromgxb
[n..0]

Input

An output port in the ALTGX instance and an input port in the ALTGX_RECONFIG instance. 
This signal is transceiver-block based. Therefore, the width of this signal increases in steps 
of 5 bits per transceiver block.

In the ALTGX MegaWizard Plug-In Manager, the width of this signal depends on the 
number of channels you select in the What is the number of channels? option in the 
General screen.

For example, if you select the number of channels in the ALTGX instance as follows:

1  Channels  4, then the output port reconfig_fromgxb[4..0] = 5 bits 

5  Channels  8, then the output port reconfig_fromgxb[9..0] = 10 bits 

9  Channels  12, then the output port reconfig_fromgxb[14..0] = 15 bits 

13  Channels  16, then the output port reconfig_fromgx[19..0] = 20 bits 

To connect the reconfig_fromgxb port between the ALTGX_RECONFIG instance and 
multiple ALTGX instances, follow these rules:

■ Connect the reconfig_fromgxb[4..0] of ALTGX Instance 1 to the 
reconfig_fromgxb[4..0] of the ALTGX_RECONFIG instance. Connect the 
reconfig_fromgxb[] port of the next ALTGX instance to the next available bits of the 
ALTGX_RECONFIG instance, and so on.

■ Connect the reconfig_fromgxb port of the ALTGX instance, which has the highest 
What is the starting channel number? option, to the MSB of the reconfig_fromgxb 
port of the ALTGX_RECONFIG instance.

The Quartus II Fitter produces a warning if the dynamic reconfiguration option is enabled in 
the ALTGX instance but the reconfig_fromgxb and reconfig_togxb ports are not 
connected to the ALTGX_RECONFIG instance. 

reconfig_togxb
[3..0]

Output

An input port of the ALTGX instance and an output port of the ALTGX_RECONFIG instance. 
You must connect the reconfig_togxb[3..0] input port of every ALTGX instance 
controlled by the dynamic reconfiguration controller to the reconfig_togxb[3..0] 
output port of the ALTGX_RECONFIG instance.

The width of this port is always fixed to 4 bits.
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Figure 3–3 shows the timing diagram for a offset cancellation process.

Functional Simulation of the Offset Cancellation Process
You must connect the ALTGX_RECONFIG instances to the ALTGX instances in your 
design for functional simulation. Functional simulation uses a reduced timing model 
of the dynamic reconfiguration controller. Therefore, the duration of the offset 
cancellation process is 16 reconfig_clk clock cycles for functional simulation only. 
The gxb_powerdown signal must not be asserted during the offset cancellation 
sequence (for functional simulation and silicon).

Dynamic Reconfiguration Modes
When you enable the dynamic reconfiguration feature, you can reconfigure the 
following portions of each transceiver channel dynamically, without powering down 
the other transceiver channels or the FPGA fabric of the device:

■ Analog (PMA) controls reconfiguration 

■ Channel reconfiguration

■ PLL reconfiguration 

Table 3–3 lists the supported dynamic reconfiguration modes for Cyclone IV GX 
devices.

Figure 3–3. Dynamic Reconfiguration Signals Transition during Offset Cancellation

Notes to Figure 3–3:

(1) After device power up, the busy signal remains low for the first reconfig_clk cycle.
(2) The busy signal then gets asserted for the second reconfig_clk cycle, when the dynamic reconfiguration controller initiates the offset 

cancellation process.
(3) The deassertion of the busy signal indicates the successful completion of the offset cancellation process.

reconfig_clk

busy

(1)

(2)

(3)

Table 3–3. Cyclone IV GX Supported Dynamic Reconfiguration Mode (Part 1 of 2)

Dynamic Reconfiguration 
Supported Mode

Operational Mode Quartus II Instances

.mif 
RequirementsTransmitter 

Only
Receiver 

Only

Transmitter 
and 

Receiver 
Only

ALTGX  ALTGX_
RECONFIG

ALTPLL_
RECONFIG

Offset Cancellation — v v v v — —

Analog (PMA) Controls 
Reconfiguration v v v v v — —
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Figure 3–9 shows the connection for PMA reconfiguration mode.

Transceiver Channel Reconfiguration Mode
You can dynamically reconfigure the transceiver channel from an existing functional 
mode to a different functional mode by selecting the Channel Reconfiguration option 
in ALTGX and ALTGX_RECONFIG MegaWizards. The blocks that are reconfigured 
by channel reconfiguration mode are the PCS and RX PMA blocks of a transceiver 
channel.

1 For more information about reconfiguring the RX PMA blocks of the transceiver 
channel using channel reconfiguration mode, you can refer to “Data Rate 
Reconfiguration Mode Using RX Local Divider” on page 3–26.

In channel reconfiguration, only a write transaction can occur; no read transactions 
are allowed. You can optionally choose to trigger write_all once by selecting the 
continuous write operation in the ALTGX_RECONFIG MegaWizard Plug-In 
Manager. The Quartus II software then continuously writes all the words required for 
reconfiguration.

For channel reconfiguration, .mif files are required to dynamically reconfigure the 
transceivers channels in channel reconfiguration modes. The .mif carries the 
reconfiguration information that will be used to reconfigure the transceivers channel 
dynamically on-the-fly. The .mif contents is generated automatically when you select 
the Generate GXB Reconfig MIF option in the Quartus II software setting. For 
different .mif settings, you need to later reconfigure and recompile the ALTGX 
MegaWizard to generate the .mif based on the required reconfiguration settings. 

The dynamic reconfiguration controller can optionally perform a continuos write 
operation or a regular write operation of the .mif contents in terms of word size 
(16-bit data) to the transceivers channel that is selected for reconfiguration.

Figure 3–9. ALTGX and ALTGX_RECONFIG Connection for PMA Reconfiguration Mode 

Note to Figure 3–9:

(1) This block can be reconfigured in PMA reconfiguration mode.

ALTGXALTGX_RECONFIG
reconfig_fromgxb[n..0]

TX PCS 

Analog
Reconfig
Control
Logic

TX PMA
              (1)

reconfig_clk

read

write_all

tx_vodctrl[2..0]

reconfig_togxb[3..0]

busy

tx_preemp[4..0]

rx_eqdcgain[1..0]

RX PCS
RX PMA

+ CDR (1)

data_valid

rx_eqctrl[3..0]

tx_vodctrl_out[2..0]

tx_preemp_out[4..0]

rx_eqdcgain_out[1..0]

rx_eqctrl_out[3..0]

rx_tx_duplex_sel[1..0]

logical_channel_address[n..0]

Ports that are used to read the PMA settings from the TX/RX PMA block during a read transaction

Ports that are used to write the PMA settings to the TX/RX PMA block during a write transaction

Input control and output signal ports for analog reconfiguration mode



Chapter 1: Cyclone IV Device Datasheet 1–3
Operating Conditions
1 A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 
4.3 V can only be at 4.3 V for 65% over the lifetime of the device; for a device lifetime 
of 10 years, this amounts to 65/10ths of a year.

 

Figure 1–1 shows the methodology to determine the overshoot duration. The 
overshoot voltage is shown in red and is present on the input pin of the Cyclone IV 
device at over 4.3 V but below 4.4 V. From Table 1–2, for an overshoot of 4.3 V, the 
percentage of high time for the overshoot can be as high as 65% over a 10-year period. 
Percentage of high time is calculated as ([delta T]/T) × 100. This 10-year period 
assumes that the device is always turned on with 100% I/O toggle rate and 50% duty 
cycle signal. For lower I/O toggle rates and situations in which the device is in an idle 
state, lifetimes are increased.

Table 1–2.  Maximum Allowed Overshoot During Transitions over a 10-Year Time Frame for 
Cyclone IV Devices

Symbol Parameter Condition (V) Overshoot Duration as % of High Time Unit

Vi
AC Input 
Voltage

VI = 4.20 100 %

VI = 4.25 98 %

VI = 4.30 65 %

VI = 4.35 43 %

VI = 4.40 29 %

VI = 4.45 20 %

VI = 4.50 13 %

VI = 4.55 9 %

VI = 4.60 6 %

Figure 1–1. Cyclone IV Devices Overshoot Duration

3.3 V

4.3 V

4.4 V
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Operating Conditions
The OCT resistance may vary with the variation of temperature and voltage after 
calibration at device power-up. Use Table 1–10 and Equation 1–1 to determine the 
final OCT resistance considering the variations after calibration at device power-up. 
Table 1–10 lists the change percentage of the OCT resistance with voltage and 
temperature.

Table 1–10. OCT Variation After Calibration at Device Power-Up for Cyclone IV Devices (1)

Nominal Voltage dR/dT (%/°C) dR/dV (%/mV)

3.0 0.262 –0.026

2.5 0.234 –0.039

1.8 0.219 –0.086

1.5 0.199 –0.136

1.2 0.161 –0.288

Note to Table 1–10:

(1) This specification is not applicable to EP4CGX15, EP4CGX22, and EP4CGX30 devices.

Equation 1–1. Final OCT Resistance (1), (2), (3), (4), (5), (6)

RV = (V2 – V1) × 1000 × dR/dV ––––– (7)

RT = (T2 – T1) × dR/dT ––––– (8)

For Rx < 0; MFx = 1/ (|Rx|/100 + 1) ––––– (9)

For Rx > 0; MFx = Rx/100 + 1 ––––– (10)

MF = MFV × MFT ––––– (11)

Rfinal = Rinitial × MF ––––– (12)

Notes to Equation 1–1: 

(1) T2 is the final temperature. 
(2) T1 is the initial temperature. 
(3) MF is multiplication factor. 
(4) Rfinal is final resistance. 
(5) Rinitial is initial resistance. 
(6) Subscript x refers to both V and T.
(7) RV is a variation of resistance with voltage. 
(8) RT is a variation of resistance with temperature. 
(9) dR/dT is the change percentage of resistance with temperature after calibration at device power-up. 
(10) dR/dV is the change percentage of resistance with voltage after calibration at device power-up. 
(11) V2 is final voltage. 
(12) V1 is the initial voltage. 
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