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Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices 2–3
LE Operating Modes
In addition to the three general routing outputs, LEs in an LAB have register chain 
outputs, which allows registers in the same LAB to cascade together. The register 
chain output allows the LUTs to be used for combinational functions and the registers 
to be used for an unrelated shift register implementation. These resources speed up 
connections between LABs while saving local interconnect resources.

LE Operating Modes
Cyclone IV LEs operate in the following modes:

■ Normal mode

■ Arithmetic mode

The Quartus® II software automatically chooses the appropriate mode for common 
functions, such as counters, adders, subtractors, and arithmetic functions, in 
conjunction with parameterized functions such as the library of parameterized 
modules (LPM) functions. You can also create special-purpose functions that specify 
which LE operating mode to use for optimal performance, if required.

Normal Mode
Normal mode is suitable for general logic applications and combinational functions. 
In normal mode, four data inputs from the LAB local interconnect are inputs to a 
four-input LUT (Figure 2–2). The Quartus II Compiler automatically selects the 
carry-in (cin) or the data3 signal as one of the inputs to the LUT. LEs in normal mode 
support packed registers and register feedback.

Figure 2–2 shows LEs in normal mode.

Figure 2–2. Cyclone IV Device LEs in Normal Mode
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3–6 Chapter 3: Memory Blocks in Cyclone IV Devices
Overview
Figure 3–3 and Figure 3–4 show the address clock enable waveform during read and 
write cycles, respectively.

Mixed-Width Support
M9K memory blocks support mixed data widths. When using simple dual-port, true 
dual-port, or FIFO modes, mixed width support allows you to read and write 
different data widths to an M9K memory block. For more information about the 
different widths supported per memory mode, refer to “Memory Modes” on 
page 3–7.

Figure 3–3. Cyclone IV Devices Address Clock Enable During Read Cycle Waveform

Figure 3–4. Cyclone IV Devices Address Clock Enable During Write Cycle Waveform
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–25
Clock Feedback Modes
Figure 5–14 shows a waveform example of the phase relationship of the PLL clocks in 
this mode.

Zero Delay Buffer Mode
In zero delay buffer (ZDB) mode, the external clock output pin is phase-aligned with 
the clock input pin for zero delay through the device. When using this mode, use the 
same I/O standard on the input clock and output clocks to guarantee clock alignment 
at the input and output pins. 

Figure 5–15 shows an example waveform of the phase relationship of the PLL clocks 
in ZDB mode.

Figure 5–14. Phase Relationship Between PLL Clocks in Normal Mode 
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–27
Hardware Features
Post-Scale Counter Cascading
PLLs of Cyclone IV devices support post-scale counter cascading to create counters 
larger than 512. This is implemented by feeding the output of one C counter into the 
input of the next C counter, as shown in Figure 5–16.

When cascading counters to implement a larger division of the high-frequency VCO 
clock, the cascaded counters behave as one counter with the product of the individual 
counter settings. 

For example, if C0 = 4 and C1 = 2, the cascaded value is C0 × C1 = 8. 

1 Post-scale counter cascading is automatically set by the Quartus II software in the 
configuration file. Post-scale counter cascading cannot be performed using the PLL 
reconfiguration.

Programmable Duty Cycle
The programmable duty cycle allows PLLs to generate clock outputs with a variable 
duty cycle. This feature is supported on the PLL post-scale counters. You can achieve 
the duty cycle setting by a low and high time count setting for the post-scale counters. 
The Quartus II software uses the frequency input and the required multiply or divide 
rate to determine the duty cycle choices. The post-scale counter value determines the 
precision of the duty cycle. The precision is defined by 50% divided by the post-scale 
counter value. For example, if the C0 counter is 10, steps of 5% are possible for duty 
cycle choices between 5 to 90%.

Combining the programmable duty cycle with programmable phase shift allows the 
generation of precise non-overlapping clocks.

PLL Control Signals
You can use the pfdena, areset, and locked signals to observe and control the PLL 
operation and resynchronization.

f For more information about the PLL control signals, refer to the ALTPLL Megafunction 
User Guide.

Figure 5–16. Counter Cascading
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–37
PLL Reconfiguration
■ Low time count = 1 cycle

■ rselodd = 1 effectively equals: 

■ High time count = 1.5 cycles

■ Low time count = 1.5 cycles

■ Duty cycle = (1.5/3)% high time count and (1.5/3)% low time count

Scan Chain Description 
Cyclone IV PLLs have a 144-bit scan chain.

Table 5–7 lists the number of bits for each component of the PLL. 

Figure 5–24 shows the scan chain order of the PLL components.

Table 5–7. Cyclone IV PLL Reprogramming Bits

Block Name 
Number of Bits 

Counter Other Total 

C4 (1) 16 2 (2) 18

C3 16 2 (2) 18

C2 16 2 (2) 18

C1 16 2 (2) 18

C0 16 2 (2) 18

M 16 2 (2) 18

N 16 2 (2) 18

Charge Pump 9 0 9

Loop Filter (3) 9 0 9

Total number of bits: 144 

Notes to Table 5–7:
(1) LSB bit for C4 low-count value is the first bit shifted into the scan chain.
(2) These two control bits include rbypass, for bypassing the counter, and rselodd, to select the output clock duty 

cycle.
(3) MSB bit for loop filter is the last bit shifted into the scan chain.

Figure 5–24. PLL Component Scan Chain Order
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Chapter 6: I/O Features in Cyclone IV Devices 6–29
High-Speed I/O Standards Support
The CLKIN/REFCLK pins are powered by dedicated VCC_CLKIN3A, VCC_CLKIN3B, 
VCC_CLKIN8A, and VCC_CLKIN8B power supplies separately in their respective I/O banks 
to avoid the different power level requirements in the same bank for GPIO.

f For more information about the AC-coupled termination scheme for the HSSI 
reference clock, refer to the Cyclone IV Transceivers Architecture chapter.

LVDS I/O Standard Support in Cyclone IV Devices
The LVDS I/O standard is a high-speed, low-voltage swing, low power, and GPIO 
interface standard. Cyclone IV devices meet the ANSI/TIA/EIA-644 standard with 
the following exceptions:

■ The maximum differential output voltage (VOD) is increased to 600 mV. The 
maximum VOD for ANSI specification is 450 mV.

■ The input voltage range is reduced to the range of 1.0 V to 1.6 V, 0.5 V to 1.85 V, or 
0 V to 1.8 V based on different frequency ranges. The ANSI/TIA/EIA-644 
specification supports an input voltage range of 0 V to 2.4 V.

f For LVDS I/O standard electrical specifications in Cyclone IV devices, refer to the 
Cyclone IV Device Datasheet chapter.

Table 6–10. Cyclone IV GX HSSI REFCLK I/O Standard Support Using GPIO CLKIN Pins (1), (2)

I/O Standard HSSI Protocol Coupling Termination 

VCC_CLKIN Level I/O Pin Type

Input Output Column 
I/O

Row 
I/O

Supported I/O 
Banks 

LVDS All

Differential 
AC (Need 
off chip 

resistor to 
restore 
VCM)

Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

LVPECL All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

1.2V, 1.5V, 
3.3V PCML

All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

All Off chip 2.5V Not 
supported Yes No 3A, 3B, 8A, 8B

HCSL PCIe Differential 
DC Off chip 2.5V Not 

supported Yes No 3A, 3B, 8A, 8B

Notes to Table 6–10:

(1) The EP4CGX15, EP4CGX22, and EP4CGX30 devices have two pairs of dedicated clock input pins in banks 3A and 8A for HSSI input reference 
clock. I/O banks 3B and 8B are not available in EP4CGX15, EP4CGX22, and EP4CGX30 devices.

(2) The EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices have four pairs of dedicated clock input pins in banks 3A, 3B, 8A, and 8B 
for HSSI input or single-ended clock input.
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Chapter 6: I/O Features in Cyclone IV Devices 6–39
Document Revision History
implements either a high-speed deserializer receiver or a high-speed serializer 
transmitter. There is a list of parameters in the ALTLVDS megafunction that you can 
set to customize your SERDES based on your design requirements. The megafunction 
is optimized to use Cyclone IV devices resources to create high-speed I/O interfaces 
in the most effective manner.

1 When you use Cyclone IV devices with the ALTLVDS megafunction, the interface 
always sends the MSB of your parallel data first.

f For more details about designing your high-speed I/O systems interfaces using the 
ALTLVDS megafunction, refer to the ALTLVDS Megafunction User Guide and the 
Quartus II Handbook.

Document Revision History
Table 6–12 lists the revision history for this chapter.

Table 6–12. Document Revision History (Part 1 of 2)

Date Version Changes

March 2016 2.7 ■ Updated Table 6–5 and Table 6–9 to remove support for the N148 package.

May 2013 2.6
■ Updated Table 6–2 by adding Note (9).

■ Updated Table 6–4 and Table 6–8 to add new device options and packages.

February 2013 2.5 Updated Table 6–4 and Table 6–8 to add new device options and packages.

October 2012 2.4

■ Updated “I/O Banks” and “High Speed Serial Interface (HSSI) Input Reference Clock 
Support ” sections.

■ Updated Table 6–3 and Table 6–5.

■ Updated Figure 6–10.

November 2011 2.3

■ Updated “Differential SSTL I/O Standard Support in Cyclone IV Devices” and 
“Differential HSTL I/O Standard Support in Cyclone IV Devices” sections.

■ Updated Table 6–1, Table 6–8, and Table 6–9.

■ Updated Figure 6–1.

December 2010 2.2

■ Updated for the Quartus II software version 10.1 release.

■ Added Cyclone IV E new device package information.

■ Added “Clock Pins Functionality” section.

■ Updated Table 6–4 and Table 6–8.

■ Minor text edits.

July 2010 2.1

■ Updated “Cyclone IV I/O Elements”, “Programmable Pull-Up Resistor”, “I/O Banks”, 
“High-Speed I/O Interface”, and “Designing with BLVDS” sections.

■ Updated Table 6–6 and Table 6–7.

■ Updated Figure 6–19.
March 2016 Altera Corporation Cyclone IV Device Handbook,
Volume 1
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–3
Configuration
3. Click the Configuration tab.

4. Turn on Generate compressed bitstreams.

5. Click OK.

6. In the Settings dialog box, click OK.

You can enable compression when creating programming files from the Convert 
Programming Files dialog box. To enable compression, perform the following steps:

1. On the File menu, click Convert Programming Files.

2. Under Output programming file, select your desired file type from the 
Programming file type list.

3. If you select Programmer Object File (.pof), you must specify the configuration 
device in the Configuration device list.

4. Under Input files to convert, select SOF Data.

5. Click Add File to browse to the Cyclone IV device SRAM object files (.sof).

6. In the Convert Programming Files dialog box, select the .pof you added to SOF 
Data and click Properties.

7. In the SOF File Properties dialog box, turn on the Compression option.

When multiple Cyclone IV devices are cascaded, you can selectively enable the 
compression feature for each device in the chain. Figure 8–1 shows a chain of two 
Cyclone IV devices. The first device has compression enabled and receives 
compressed bitstream from the configuration device. The second device has the 
compression feature disabled and receives uncompressed data. You can generate 
programming files for this setup in the Convert Programming Files dialog box.

Configuration Requirement
This section describes Cyclone IV device configuration requirement and includes the 
following topics:

■ “Power-On Reset (POR) Circuit” on page 8–4

■ “Configuration File Size” on page 8–4

■ “Power Up” on page 8–6

Figure 8–1. Compressed and Uncompressed Configuration Data in the Same Configuration File
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8–6 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
Configuration Process
This section describes Cyclone IV device configuration requirements and includes the 
following topics:

■ “Power Up” on page 8–6

■ “Reset” on page 8–6

■ “Configuration” on page 8–6

■ “Configuration Error” on page 8–7

■ “Initialization” on page 8–7

■ “User Mode” on page 8–7

f For more information about the Altera® FPGA configuration cycle state machine, refer 
to the Configuring Altera FPGAs chapter in volume 1 of the Configuration Handbook.

Power Up
If the device is powered up from the power-down state, VCCINT, VCCA, and VCCIO (for 
the I/O banks in which the configuration and JTAG pins reside) must be powered up 
to the appropriate level for the device to exit from POR. 

Reset
After power up, Cyclone IV devices go through POR. POR delay depends on the MSEL 
pin settings, which correspond to your configuration scheme. During POR, the device 
resets, holds nSTATUS and CONF_DONE low, and tri-states all user I/O pins (for PS and 
FPP configuration schemes only). 

1 To tri-state the configuration bus for AS and AP configuration schemes, you must tie 
nCE high and nCONFIG low. 

The user I/O pins and dual-purpose I/O pins have weak pull-up resistors, which are 
always enabled (after POR) before and during configuration. When the device exits 
POR, all user I/O pins continue to tri-state. While nCONFIG is low, the device is in 
reset. When nCONFIG goes high, the device exits reset and releases the open-drain 
nSTATUS pin, which is then pulled high by an external 10-k pull-up resistor. After 
nSTATUS is released, the device is ready to receive configuration data and the 
configuration stage starts.

f For more information about the value of the weak pull-up resistors on the I/O pins 
that are on before and during configuration, refer to the Cyclone IV Device Datasheet 
chapter.

Configuration
Configuration data is latched into the Cyclone IV device at each DCLK cycle. However, 
the width of the data bus and the configuration time taken for each scheme are 
different. After the device receives all the configuration data, the device releases the 
open-drain CONF_DONE pin, which is pulled high by an external 10-kpull-up resistor. 
A low-to-high transition on the CONF_DONE pin indicates that the configuration is 
complete and initialization of the device can begin. 
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–25
Configuration
1 There are no series resistors required in AP configuration mode for Cyclone IV E 
devices when using the Micron flash at 2.5-, 3.0-, and 3.3-V I/O standard. The output 
buffer of the Micron P30 IBIS model does not overshoot above 4.1 V. Thus, series 
resistors are not required for the 2.5-, 3.0-, and 3.3-V AP configuration option. 
However, if there are any other devices sharing the same flash I/Os with Cyclone IV E 
devices, all shared pins are still subject to the 4.1-V limit and may require series 
resistors.

Default read mode of the supported parallel flash memory and all writes to the 
parallel flash memory are asynchronous. Both the parallel flash families support a 
synchronous read mode, with data supplied on the positive edge of DCLK.

The serial clock (DCLK) generated by Cyclone IV E devices controls the entire 
configuration cycle and provides timing for the parallel interface.

Multi-Device AP Configuration
You can configure multiple Cyclone IV E devices using a single parallel flash. You can 
cascade multiple Cyclone IV E devices using the chip-enable (nCE) and 
chip-enable-out (nCEO) pins. The first device in the chain must have its nCE pin 
connected to GND. You must connect its nCEO pin to the nCE pin of the next device in 
the chain. Use an external 10-k pull-up resistor to pull the nCEO signal high to its 
VCCIO level to help the internal weak pull-up resistor. When the first device captures 
all its configuration data from the bitstream, it drives the nCEO pin low, enabling the 
next device in the chain. You can leave the nCEO pin of the last device unconnected or 
use it as a user I/O pin after configuration if the last device in the chain is a 
Cyclone IV E device. The nCONFIG, nSTATUS, CONF_DONE, DCLK, DATA[15..8], and 
DATA[7..0] pins of each device in the chain are connected (Figure 8–8 on page 8–26 
and Figure 8–9 on page 8–27).

The first Cyclone IV E device in the chain, as shown in Figure 8–8 on page 8–26 and 
Figure 8–9 on page 8–27, is the configuration master device and controls the 
configuration of the entire chain. You must connect its MSEL pins to select the AP 
configuration scheme. The remaining Cyclone IV E devices are used as configuration 
slaves. You must connect their MSEL pins to select the FPP configuration scheme. Any 
other Altera device that supports FPP configuration can also be part of the chain as a 
configuration slave.

The following are the configurations for the DATA[15..0] bus in a multi-device AP 
configuration:

■ Byte-wide multi-device AP configuration

■ Word-wide multi-device AP configuration
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



8–50 Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices
Configuration
When programming a JTAG device chain, one JTAG-compatible header is connected 
to several devices. The number of devices in the JTAG chain is limited only by the 
drive capability of the download cable. When four or more devices are connected in a 
JTAG chain, Altera recommends buffering the TCK, TDI, and TMS pins with an on-board 
buffer.

JTAG-chain device programming is ideal when the system contains multiple devices, 
or when testing your system with JTAG BST circuitry. Figure 8–25 and Figure 8–26 
show multi-device JTAG configuration.

For devices using 2.5-, 3.0-, and 3.3-V VCCIO supply, you must refer to Figure 8–25. All 
I/O inputs must maintain a maximum AC voltage of 4.1 V because JTAG pins do not 
have the internal PCI clamping diodes to prevent voltage overshoot when using 2.5-, 
3.0-, and 3.3- V VCCIO supply. You must power up the VCC of the download cable with 
a 2.5-V VCCA supply. For device using VCCIO of 1.2, 1.5 V, and 1.8 V, refer to 
Figure 8–26. You can power up the VCC of the download cable with the supply from 
VCCIO.

Figure 8–25. JTAG Configuration of Multiple Devices Using a Download Cable (2.5, 3.0, and 3.3-V VCCIO Powering the 
JTAG Pins)

Notes to Figure 8–25:

(1) Connect these pull-up resistors to the VCCIO supply of the bank in which the pin resides.
(2) Connect the nCONFIG and MSEL pins to support a non-JTAG configuration scheme. If you only use a JTAG configuration, connect the nCONFIG 

pin to logic-high and the MSEL pins to GND. In addition, pull DCLK and DATA[0] to either high or low, whichever is convenient on your board.
(3) Pin 6 of the header is a VIO reference voltage for the MasterBlaster output driver. VIO must match the VCCA of the device. For this value, refer to the 

MasterBlaster Serial/USB Communications Cable User Guide. In the ByteBlasterMV cable, this pin is a no connect. In the USB-Blaster and 
ByteBlaster II cables, this pin is connected to nCE when it is used for AS programming, otherwise it is a no connect.

(4) You must connect the nCE pin to GND or driven low for successful JTAG configuration.
(5) Power up the VCC of the ByteBlaster II, USB-Blaster, or ByteBlasterMV cable with a 2.5-V supply from VCCA. Third-party programmers must switch 

to 2.5 V. Pin 4 of the header is a VCC power supply for the MasterBlaster cable. The MasterBlaster cable can receive power from either 5.0- or 3.3-V 
circuit boards, DC power supply, or 5.0 V from the USB cable. For this value, refer to the MasterBlaster Serial/USB Communications Cable User 
Guide.

(6) Resistor value can vary from 1 k to 10 k.
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10–2 Chapter 10: JTAG Boundary-Scan Testing for Cyclone IV Devices
IEEE Std. 1149.6 Boundary-Scan Register
IEEE Std. 1149.6 Boundary-Scan Register
The boundary-scan cell (BSC) for HSSI transmitters (GXB_TX[p,n]) and receivers 
(GXB_RX[p,n]) in Cyclone IV GX devices are different from the BSCs for I/O pins.

Figure 10–1 shows the Cyclone IV GX HSSI transmitter boundary-scan cell.

Figure 10–1. HSSI Transmitter BSC with IEEE Std. 1149.6 BST Circuitry for Cyclone IV GX Devices
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1–80 Chapter 1: Cyclone IV Transceivers Architecture
Loopback

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

1 Serial loopback mode can only be dynamically enabled or disabled during user mode 
by performing a dynamic channel reconfiguration.

Reverse Serial Loopback
The reverse serial loopback mode is available for all functional modes except for 
XAUI mode. The two reverse serial loopback options from the receiver to the 
transmitter are:

■ Pre-CDR mode where data received through the RX input buffer is looped back to 
the TX output buffer using the Reverse serial loopback (pre-CDR) option

■ Post-CDR mode where retimed data through the receiver CDR from the RX input 
buffer is looped back to the TX output buffer using the Reverse serial loopback 
option

The received data is also available to the FPGA logic. In the transmitter channel, only 
the transmitter buffer is active. 

1 The transmitter pre-emphasis feature is not available in reverse serial loopback (pre-
CDR) mode.

1 Reverse serial loopback modes can only be dynamically enabled or disabled during 
user mode by performing a dynamic channel reconfiguration.

Figure 1–71.  Serial Loopback Path (1)

Note to Figure 1–71:

(1) Grayed-Out Blocks are Not Active in this mode.

Tx PCS

Rx PCS

Tx PMA

Serializer

Rx PMA

Serial
loopback

path

Deserializer

To FPGA fabric
for verification

Transceiver

CDR

FPGA
Fabric



2–22 Chapter 2: Cyclone IV Reset Control and Power Down
Simulation Requirements
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The deassertion of the busy signal indicates proper completion of the offset 
cancellation process on the receiver channel.

Simulation Requirements
The following are simulation requirements:

■ The gxb_powerdown port is optional. In simulation, if the gxb_powerdown port is not 
instantiated, you must assert the tx_digitalreset, rx_digitalreset, and 
rx_analogreset signals appropriately for correct simulation behavior.

■ If the gxb_powerdown port is instantiated, and the other reset signals are not used, 
you must assert the gxb_powerdown signal for at least 1 s for correct simulation 
behavior.

■ You can deassert the rx_digitalreset signal immediately after the rx_freqlocked 
signal goes high to reduce the simulation run time. It is not necessary to wait for 
tLTD_Auto (as suggested in the actual reset sequence).

■ The busy signal is deasserted after about 20 parallel reconfig_clk clock cycles in 
order to reduce simulation run time. For silicon behavior in hardware, you can 
follow the reset sequences described in the previous pages.

Figure 2–13. Sample Reset Sequence of a Receiver and Transmitter Channels-Receiver CDR in Automatic Lock Mode 
with the Optional gxb_powerdown Signal (1)

Notes to Figure 2–13:

(1) The gxb_powerdown signal must not be asserted during the offset cancellation sequence.
(2) For tLTD_Auto duration, refer to the Cyclone IV Device Datasheet chapter.
(3) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy 

signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

Output Status Signals
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November 2011 Altera Corporation Cyclone IV Device Handbook,
Volume 2

Functional Simulation of the Dynamic Reconfiguration Process
This section describes the points to be considered during functional simulation of the 
dynamic reconfiguration process. 

■ You must connect the ALTGX_RECONFIG instance to the 
ALTGX_instance/ALTGX instances in your design for functional simulation.

■ The functional simulation uses a reduced timing model of the dynamic 
reconfiguration controller. The duration of the offset cancellation process is 16 
reconfig_clk clock cycles for functional simulation only.

■ The gxb_powerdown signal must not be asserted during the offset cancellation 
sequence (for functional simulation and silicon).

Document Revision History
Table 3–8 lists the revision history for this chapter. 

Table 3–8. Document Revision History 

Date Version Changes

November 2011 2.1

■ Updated “Dynamic Reconfiguration Controller Architecture”, “PMA Controls 
Reconfiguration Mode”, “PLL Reconfiguration Mode”, and “Error Indication During 
Dynamic Reconfiguration” sections.

■ Updated Table 3–2 and Table 3–4.

December 2010 2.0

■ Updated for the Quartus II software version 10.1 release.

■ Updated Table 3–1, Table 3–2, Table 3–3, Table 3–4, Table 3–5, and Table 3–6.

■ Added Table 3–7.

■ Updated Figure 3–1, Figure 3–11, Figure 3–13, and Figure 3–14.

■ Updated “Offset Cancellation Feature”, “Error Indication During Dynamic 
Reconfiguration”, “Data Rate Reconfiguration Mode Using RX Local Divider”, “PMA 
Controls Reconfiguration Mode”, and “Control and Status Signals for Channel 
Reconfiguration” sections.

July 2010 1.0 Initial release.
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Chapter 1: Cyclone IV Device Datasheet 1–3
Operating Conditions
1 A DC signal is equivalent to 100% duty cycle. For example, a signal that overshoots to 
4.3 V can only be at 4.3 V for 65% over the lifetime of the device; for a device lifetime 
of 10 years, this amounts to 65/10ths of a year.

 

Figure 1–1 shows the methodology to determine the overshoot duration. The 
overshoot voltage is shown in red and is present on the input pin of the Cyclone IV 
device at over 4.3 V but below 4.4 V. From Table 1–2, for an overshoot of 4.3 V, the 
percentage of high time for the overshoot can be as high as 65% over a 10-year period. 
Percentage of high time is calculated as ([delta T]/T) × 100. This 10-year period 
assumes that the device is always turned on with 100% I/O toggle rate and 50% duty 
cycle signal. For lower I/O toggle rates and situations in which the device is in an idle 
state, lifetimes are increased.

Table 1–2.  Maximum Allowed Overshoot During Transitions over a 10-Year Time Frame for 
Cyclone IV Devices

Symbol Parameter Condition (V) Overshoot Duration as % of High Time Unit

Vi
AC Input 
Voltage

VI = 4.20 100 %

VI = 4.25 98 %

VI = 4.30 65 %

VI = 4.35 43 %

VI = 4.40 29 %

VI = 4.45 20 %

VI = 4.50 13 %

VI = 4.55 9 %

VI = 4.60 6 %

Figure 1–1. Cyclone IV Devices Overshoot Duration

3.3 V

4.3 V

4.4 V

T

DT
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Operating Conditions

)

x 

(3)

Max

—

—

1.375 
f For more information about receiver input and transmitter output waveforms, and for 
other differential I/O standards, refer to the I/O Features in Cyclone IV Devices chapter.

Table 1–18. Differential SSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard
VCCIO (V) VSwing(DC) (V) VX(AC) (V) VSwing(AC) 

(V) VOX(AC) (V)

Min Typ Max Min Max Min Typ Max Min Max Min Typ Max

SSTL-2 
Class I, II 2.375 2.5 2.625 0.36 VCCIO VCCIO/2 – 0.2 — VCCIO/2 

+ 0.2 0.7 VCCI

O

VCCIO/2 – 
0.125 — VCCIO/2 

+ 0.125

SSTL-18 
Class I, II 1.7 1.8 1.90 0.25 VCCIO

VCCIO/2 – 
0.175 — VCCIO/2 

+ 0.175 0.5 VCCI

O

VCCIO/2 – 
0.125 — VCCIO/2 

+ 0.125

Note to Table 1–18:

(1) Differential SSTL requires a VREF input.

Table 1–19. Differential HSTL I/O Standard Specifications for Cyclone IV Devices (1)

I/O Standard

VCCIO (V) VDIF(DC) (V) VX(AC) (V) VCM(DC) (V) VDIF(AC) (V

Min Typ Max Min Max Min Typ Max Min Typ Max Mi
n Max

HSTL-18 
Class I, II 1.71 1.8 1.89 0.2 — 0.85 — 0.95 0.85 — 0.95 0.4 —

HSTL-15 
Class I, II 1.425 1.5 1.575 0.2 — 0.71 — 0.79 0.71 — 0.79 0.4 —

HSTL-12 
Class I, II 1.14 1.2 1.26 0.16 VCCIO 0.48 x VCCIO — 0.52 x 

VCCIO

0.48 x 
VCCIO

— 0.52 x 
VCCIO

0.3 0.48 
VCCIO

Note to Table 1–19:

(1) Differential HSTL requires a VREF input.

Table 1–20. Differential I/O Standard Specifications for Cyclone IV Devices (1) (Part 1 of 2)

I/O Standard
VCCIO (V) VID (mV) VIcM (V) (2) VOD (mV) (3) VOS (V) 

Min Typ Max Min Max Min Condition Max Min Typ Max Min Typ

LVPECL 
(Row I/Os) 
(6)

2.375 2.5 2.625 100 —

0.05 DMAX500 Mbps 1.80

— — — — —0.55 500 Mbps  DMAX 
 700 Mbps 1.80

1.05 DMAX > 700 Mbps 1.55

LVPECL 
(Column 
I/Os) (6)

2.375 2.5 2.625 100 —

0.05 DMAX 500 Mbps 1.80

— — — — —0.55 500 Mbps  DMAX 
700 Mbps 1.80

1.05 DMAX > 700 Mbps 1.55

LVDS (Row 
I/Os) 2.375 2.5 2.625 100 —

0.05 DMAX 500 Mbps 1.80

247 — 600 1.125 1.250.55 500 Mbps  DMAX 
 700 Mbps 1.80

1.05 DMAX > 700 Mbps 1.55
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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Switching Characteristics

mV

µs

µs

ns

ns

ns

recon
fig_c
lk 

cycles

dB

dB

dB

Mbps

Mbps

mV





—

ps

ps

ps

ps

Unit
Signal detect/loss 
threshold PIPE mode 65 — 175 65 — 175 65 — 175

tLTR (10) — — — 75 — — 75 — — 75

tLTR-LTD_Manual (11) — 15 — — 15 — — 15 — —

tLTD (12) — 0 100 4000 0 100 4000 0 100 4000

tLTD_Manual 
(13) — — — 4000 — — 4000 — — 4000

tLTD_Auto 
(14) — — — 4000 — — 4000 — — 4000

Receiver buffer and 
CDR offset 
cancellation time 
(per channel)

— — — 17000 — — 17000 — — 17000

Programmable DC 
gain

DC Gain Setting = 
0 — 0 — — 0 — — 0 —

DC Gain Setting = 
1 — 3 — — 3 — — 3 —

DC Gain Setting = 
2 — 6 — — 6 — — 6 —

Transmitter

Supported I/O 
Standards 1.5 V PCML

Data rate (F324 and 
smaller package) — 600 — 2500 600 — 2500 600 — 2500

Data rate (F484 and 
larger package) — 600 — 3125 600 — 3125 600 — 2500

VOCM 0.65 V setting — 650 — — 650 — — 650 —

Differential on-chip 
termination resistors

100 setting — 100 — — 100 — — 100 —

150 setting — 150 — — 150 — — 150 —

Differential and 
common mode 
return loss

PIPE, CPRI LV, 
Serial Rapid I/O 
SR, SDI, XAUI, 
SATA

Compliant

Rise time — 50 — 200 50 — 200 50 — 200

Fall time — 50 — 200 50 — 200 50 — 200

Intra-differential pair 
skew — — — 15 — — 15 — — 15

Intra-transceiver 
block skew — — — 120 — — 120 — — 120

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 3 of 4)

Symbol/
Description Conditions

C6 C7, I7 C8

Min Typ Max Min Typ Max Min Typ Max
December 2016 Altera Corporation Cyclone IV Device Handbook,
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