Intel - EP4CE6F17I7 Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	392
Number of Logic Elements/Cells	6272
Total RAM Bits	276480
Number of I/O	179
Number of Gates	-
Voltage - Supply	1.15V ~ 1.25V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/ep4ce6f17i7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

If you do not use dedicated clock pins to feed the GCLKs, you can use them as general-purpose input pins to feed the logic array. However, when using them as general-purpose input pins, they do not have support for an I/O register and must use LE-based registers in place of an I/O register.

Constitution For more information about how to connect the clock and PLL pins, refer to the *Cyclone IV Device Family Pin Connection Guidelines*.

Clock Control Block

The clock control block drives the GCLKs. Clock control blocks are located on each side of the device, close to the dedicated clock input pins. GCLKs are optimized for minimum clock skew and delay.

Table 5–4 lists the sources that can feed the clock control block, which in turn feeds the GCLKs.

Input	Description
Dedicated clock inputs	Dedicated clock input pins can drive clocks or global signals, such as synchronous and asynchronous clears, presets, or clock enables onto given GCLKs.
Dual-purpose clock (DPCLK and CDPCLK) I/O input	DPCLK and CDPCLK I/O pins are bidirectional dual function pins that are used for high fan-out control signals, such as protocol signals, TRDY and IRDY signals for PCI, via the GCLK. Clock control blocks that have inputs driven by dual-purpose clock I/O pins are not able to drive PLL inputs.
PLL outputs	PLL counter outputs can drive the GCLK.
Internal logic	You can drive the GCLK through logic array routing to enable internal logic elements (LEs) to drive a high fan-out, low-skew signal path. Clock control blocks that have inputs driven by internal logic are not able to drive PLL inputs.

Table 5-4. Clock Control Block Inputs

In Cyclone IV devices, dedicated clock input pins, PLL counter outputs, dual-purpose clock I/O inputs, and internal logic can all feed the clock control block for each GCLK. The output from the clock control block in turn feeds the corresponding GCLK. The GCLK can drive the PLL input if the clock control block inputs are outputs of another PLL or dedicated clock input pins. There are five or six clock control blocks on each side of the device periphery—depending on device density; providing up to 30 clock control blocks in each Cyclone IV GX device. The maximum number of clock control blocks per Cyclone IV E device is 20. For the clock control block locations, refer to Figure 5–2 on page 5–12, Figure 5–3 on page 5–13, and Figure 5–4 on page 5–14.

The clock control blocks on the left side of the Cyclone IV GX device do not support any clock inputs.

The control block has two functions:

- Dynamic GCLK clock source selection (not applicable for DPCLK, CDPCLK, and internal logic input)
- GCLK network power down (dynamic enable and disable)

Figure 6–4 shows the single-ended I/O standards for OCT without calibration. The R_S shown is the intrinsic transistor impedance.

All I/O banks and I/O pins support impedance matching and series termination. Dedicated configuration pins and JTAG pins do not support impedance matching or series termination.

 R_S OCT is supported on any I/O bank. V_{CCIO} and V_{REF} must be compatible for all I/O pins to enable R_S OCT in a given I/O bank. I/O standards that support different R_S values can reside in the same I/O bank as long as their V_{CCIO} and V_{REF} do not conflict.

Impedance matching is implemented using the capabilities of the output driver and is subject to a certain degree of variation, depending on the process, voltage, and temperature.

For more information about tolerance specification, refer to the *Cyclone IV Device Datasheet* chapter.

I/O Standards

Cyclone IV devices support multiple single-ended and differential I/O standards. Cyclone IV devices support 3.3-, 3.0-, 2.5-, 1.8-, 1.5-, and 1.2-V I/O standards.

Table 6–3 summarizes I/O standards supported by Cyclone IV devices and which I/O pins support them.

Table 6-3.	. Cyclone IV Devices Supported I/O Standards a	nd Constraints	(Part 1 of 3)
------------	--	----------------	---------------

			V _{ccio} Level (in V)		C	olumn I/O P	Row I/O Pins ⁽¹⁾		
I/O Standard	Туре	Standard Support	Input	Output	CLK, DQS	PLL_OUT	User I/O Pins	CLK, DQS	User I/O Pins
3.3-V LVTTL, 3.3-V LVCMOS <i>(2)</i>	Single-ended	JESD8-B	3.3/3.0/2.5 <i>(3)</i>	3.3	~	~	\checkmark	~	~
3.0-V LVTTL, 3.0-V LVCMOS <i>(2)</i>	Single-ended	JESD8-B	3.3/3.0/2.5 <i>(3)</i>	3.0	~	~	~	~	~

Voltage-Referenced I/O Standard Termination

Voltage-referenced I/O standards require an input reference voltage (V_{REF}) and a termination voltage (V_{TT}). The reference voltage of the receiving device tracks the termination voltage of the transmitting device, as shown in Figure 6–5 and Figure 6–6.

Figure 6–5. Cyclone IV Devices HSTL I/O Standard Termination

Figure 6–6. Cyclone IV Devices SSTL I/O Standard Termination

Table 6–8 and Table 6–9 summarize the total number of supported row and column differential channels in the Cyclone IV device family.

Table 6–8. Cyclone IV E I/O and Differential Channel Count

Device		EP4CE6			EP4CE10				EDAFE16					EP4CE22			EP4CE30			EDACEAD	Er46640			EP4CE55			EP4CE75		EDAPE116	
Numbers of Differential Channels <i>(1), (2</i>)	144-EQPF	256-UBGA	256-FBGA	144-EQPF	256-UBGA	256-FBGA	144-EQPF	164-MBGA	256-MBGA	256-UBGA	256-FBGA	484-FBGA	144-EQPF	256-UBGA	256-FBGA	324-FBGA	484-FBGA	780-FBGA	324-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-UBGA	484-FBGA	780-FBGA	484-FBGA	780-FBGA
User I/O (3)	91	179	179	91	179	179	81	89	165	165	165	343	79	153	153	193	328	532	193	328	328	532	324	324	374	292	292	426	280	528
User I/O Banks	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
LVDS (4), (6)	8	23	23	8	23	23	6	8	21	21	21	67	7	20	20	30	60	112	30	60	60	112	62	62	70	54	54	79	50	103
Emulated LVDS <i>(5), (</i> <i>6)</i>	13	43	43	13	43	43	12	13	32	32	32	70	10	32	32	38	64	112	38	64	64	112	70	70	90	56	56	99	53	127

Notes to Table 6-8:

(1) User I/O pins are used as inputs or outputs; clock input pins are used as inputs only; clock output pins are used as output only.

(2) For differential pad placement guidelines, refer to "Pad Placement" on page 6-23.

(3) The I/O pin count includes all GPIOs, dedicated clock pins, and dual-purpose configuration pins. Dedicated configuration pins are not included in the pin count.

(4) The true LVDS count includes all LVDS I/O pairs, differential clock input and clock output pins in row I/O banks 1, 2, 5, and 6.

(5) The emulated LVDS count includes all LVDS I/O pairs, differential clock input and clock output pins in column I/O banks 3, 4, 7, and 8.

(6) LVDS input and output buffers are sharing the same p and n pins. One LVDS I/O channel can only be either transmitter or receiver at a time.

For more information about Cyclone IV PLL, refer to the Clock Networks and PLLs in Cyclone IV Devices chapter.

Document Revision History

Table 7–3 lists the revision history for this chapter.

Table 7–3. Docume	able 7–3. Document Revision History							
Date	Version	Changes						
		 Updated Table 7–1 to remove support for the N148 package. 						
March 2016	2.6	■ Updated note (1) in Figure 7–2 to remove support for the N148 package.						
		 Updated Figure 7-4 to remove support for the N148 package. 						
May 2013	2.5	Updated Table 7–2 to add new device options and packages.						
February 2013	2.4	Updated Table 7–2 to add new device options and packages.						
October 2012	2.3	Updated Table 7–1 and Table 7–2.						
		 Updated for the Quartus II software version 10.1 release. 						
December 2010	0.0	 Added Cyclone IV E new device package information. 						
December 2010	2.2	■ Updated Table 7–2.						
		 Minor text edits. 						
November 2010	2.1	Updated "Data and Data Clock/Strobe Pins" section.						
		 Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1 release. 						
February 2010	2.0	■ Updated Table 7–1.						
-		■ Added Table 7–2.						
		■ Added Figure 7–5 and Figure 7–6.						

Та

November 2009

1.0

Initial release.

Remote System Upgrade Mode

In remote update mode, Cyclone IV devices load the factory configuration image after power up. The user-defined factory configuration determines the application configuration to be loaded and triggers a reconfiguration cycle. The factory configuration can also contain application logic.

When used with configuration memory, the remote update mode allows an application configuration to start at any flash sector boundary. Additionally, the remote update mode features a user watchdog timer that can detect functional errors in an application configuration.

Remote Update Mode

In AS configuration scheme, when a Cyclone IV device is first powered up in remote update, it loads the factory configuration located at address <code>boot_address[23:0] = 24b'0</code>. Altera recommends storing the factory configuration image for your system at boot address 24b'0, which corresponds to the start address location 0×000000 in the serial configuration device. A factory configuration image is a bitstream for the Cyclone IV device in your system that is programmed during production and is the fall-back image when an error occurs. This image is stored in non-volatile memory and is never updated or modified using remote access.

When you use the AP configuration in Cyclone IV E devices, the Cyclone IV E device loads the default factory configuration located at the following address after device power-up in remote update mode:

boot_address[23:0] = 24'h010000 = 24'b1 0000 0000 0000.

You can change the default factory configuration address to any desired address using the APFC_BOOT_ADDR JTAG instruction. The factory configuration image is stored in non-volatile memory and is never updated or modified using remote access. This corresponds to the default start address location 0×010000 represented in 16-bit word addressing (or the updated address if the default address is changed) in the supported parallel flash memory. For more information about the application of the APFC_BOOT_ADDR JTAG instruction in AP configuration scheme, refer to the "JTAG Instructions" on page 8–57.

The factory configuration image is user-designed and contains soft logic (Nios II processor or state machine and the remote communication interface) to:

- Process any errors based on status information from the dedicated remote system upgrade circuitry
- Communicate with the remote host and receive new application configurations and store the new configuration data in the local non-volatile memory device
- Determine the application configuration to be loaded into the Cyclone IV device
- Enable or disable the user watchdog timer and load its time-out value (optional)
- Instruct the dedicated remote system upgrade circuitry to start a reconfiguration cycle

When Cyclone IV devices successfully load the application configuration, they enter user mode. In user mode, the soft logic (the Nios II processor or state machine and the remote communication interface) assists the Cyclone IV device in determining when a remote system update is arriving. When a remote system update arrives, the soft logic receives the incoming data, writes it to the configuration memory device and triggers the device to load the factory configuration. The factory configuration reads the remote system upgrade status register, determines the valid application configuration to load, writes the remote system upgrade control register accordingly, and starts system reconfiguration. The user watchdog timer is disabled in factory configurations and during the configuration cycle of the application configuration. It is enabled after the application configuration enters user mode.

Quartus II Software Support

Implementation in your design requires a remote system upgrade interface between the Cyclone IV device logic array and remote system upgrade circuitry. You must also generate configuration files for production and remote programming of the system configuration memory. The Quartus II software provides these features.

The two implementation options, ALTREMOTE_UPDATE megafunction and remote system upgrade atom, are for the interface between the remote system upgrade circuitry and the device logic array interface. Using the megafunction block instead of creating your own logic saves design time and offers more efficient logic synthesis and device implementation.

• For more information about the ALTREMOTE_UPDATE megafunction, refer to the *Remote Update Circuitry (ALTREMOTE_UPDATE) Megafunction User Guide*.

Document Revision History

Table 8–28 lists the revision history for this chapter.

abie 0-20. Ducui	nent nevision n	
Date	Version	Changes
		■ Added Table 8–6.
		 Updated Table 8–9 to add new device options and packages.
May 2013	1.7	■ Updated Figure 8–16 and Figure 8–22 to include user mode.
		Updated the "Dedicated" column for DATA[0] and DCLK in Table 8–19.
		 Updated the "User Mode" and "Pin Type" columns for DCLK in Table 8–20.
ebruary 2013	1.6	Updated Table 8–9 to add new device options and packages.
October 2012		 Updated "AP Configuration Supported Flash Memories", "Configuration Data Decompression", and "Overriding the Internal Oscillator" sections.
	1.5	 Updated Figure 8–3, Figure 8–4, Figure 8–5, Figure 8–7, Figure 8–8, Figure 8–9, Figure 8–10, and Figure 8–11.
		■ Updated Table 8–2, Table 8–8, Table 8–12, Table 8–13, Table 8–18, and Table 8–
		 Added information about how to gain control of EPCS pins.
		 Updated "Reset", "Single-Device AS Configuration", "Single-Device AP Configuration", and "Overriding the Internal Oscillator" sections.
November 2011	1.4	■ Added Table 8–7.
		■ Updated Table 8–6 and Table 8–19.
		■ Updated Figure 8–3, Figure 8–4, and Figure 8–5.
		 Updated for the Quartus II software version 10.1 release.
December 2010	1.2	 Added Cyclone IV E new device package information.
	1.0	■ Updated Table 8–7, Table 8–10, and Table 8–11.
		 Minor text edits.

Table 8–28. Document Revision History (Part 1 of 2)

8-19.

^{••••}

Figure 10–2 shows the Cyclone IV GX HSSI receiver BSC.

To For more information about Cyclone IV devices user I/O boundary-scan cells, refer to the *IEEE 1149.1 (JTAG) Boundary-Scan Testing for Cyclone III Devices* chapter.

BST Operation Control

Table 10–1 lists the boundary-scan register length for Cyclone IV devices.

Table 10–1. Boundary-Scan Register Length for Cyclone IV Devices (Part 1 of 2)

Device	Boundary-Scan Register Length
EP4CE6	603
EP4CE10	603
EP4CE15	1080
EP4CE22	732
EP4CE30	1632
EP4CE40	1632
EP4CE55	1164
EP4CE75	1314
EP4CE115	1620
EP4CGX15	260
EP4CGX22	494
EP4CGX30 ⁽¹⁾	494
EP4CGX50	1006

The user I/O pins and dual-purpose I/O pins have weak pull-up resistors, which are always enabled (after POR) before and during configuration. The weak pull up resistors are not enabled prior to POR.

A possible concern for semiconductor devices in general regarding hot socketing is the potential for latch up. Latch up can occur when electrical subsystems are hot socketed into an active system. During hot socketing, the signal pins may be connected and driven by the active system before the power supply can provide current to the V_{CC} of the device and ground planes. This condition can lead to latch up and cause a low-impedance path from V_{CC} to GND in the device. As a result, the device extends a large amount of current, possibly causing electrical damage.

The design of the I/O buffers and hot-socketing circuitry ensures that Cyclone IV devices are immune to latch up during hot-socketing.

Hot-socketing Feature Implementation

The hot-socketing circuit does not include the CONF_DONE, nCEO, and nSTATUS pins to ensure that they are able to operate during configuration. The expected behavior for these pins is to drive out during power-up and power-down sequences.

Altera uses GND as reference for hot-socketing operation and I/O buffer designs. To ensure proper operation, Altera recommends connecting the GND between boards before connecting the power supplies. This prevents the GND on your board from being pulled up inadvertently by a path to power through other components on your board. A pulled up GND can otherwise cause an out-of-specification I/O voltage or current condition with the Altera device.

Power-On Reset Circuitry

Cyclone IV devices contain POR circuitry to keep the device in a reset state until the power supply voltage levels have stabilized during power up. During POR, all user I/O pins are tri-stated until the power supplies reach the recommended operating levels. In addition, the POR circuitry also ensures the V_{CCIO} level of I/O banks that contain configuration pins reach an acceptable level before configuration is triggered.

The POR circuit of the Cyclone IV device monitors the V_{CCINT}, V_{CCA}, and V_{CCIO} that contain configuration pins during power-on. You can power up or power down the V_{CCINT}, V_{CCA}, and V_{CCIO} pins in any sequence. The V_{CCINT}, V_{CCA}, and V_{CCIO} must have a monotonic rise to their steady state levels. All V_{CCA} pins must be powered to 2.5V (even when PLLs are not used), and must be powered up and powered down at the same time.

After the Cyclone IV device enters the user mode, the POR circuit continues to monitor the V_{CCINT} and V_{CCA} pins so that a brown-out condition during user mode is detected. If the V_{CCINT} or V_{CCA} voltage sags below the POR trip point during user mode, the POR circuit resets the device. If the V_{CCIO} voltage sags during user mode, the POR circuit does not reset the device.

[•] For more information about the hot-socketing specification, refer to the *Cyclone IV Device Datasheet* chapter and the *Hot-Socketing and Power-Sequencing Feature and Testing for Altera Devices* white paper.

Architectural Overview

Figure 1–3 shows the Cyclone IV GX transceiver channel datapath.

Figure 1–3. Transceiver Channel Datapath for Cyclone IV GX Devices

Each transceiver channel consists of a transmitter and a receiver datapath. Each datapath is further structured into the following:

- Physical media attachment (PMA)—includes analog circuitry for I/O buffers, clock data recovery (CDR), serializer/deserializer (SERDES), and programmable pre-emphasis and equalization to optimize serial data channel performance.
- Physical coding sublayer (PCS)—includes hard logic implementation of digital functionality within the transceiver that is compliant with supported protocols.

Outbound parallel data from the FPGA fabric flows through the transmitter PCS and PMA, is transmitted as serial data. Received inbound serial data flows through the receiver PMA and PCS into the FPGA fabric. The transceiver supports the following interface widths:

- FPGA fabric-transceiver PCS—8, 10, 16, or 20 bits
- PMA-PCS—8 or 10 bits
- ***** The transceiver channel interfaces through the PIPE when configured for PCIe protocol implementation. The PIPE is compliant with version 2.00 of the *PHY Interface for the PCI Express Architecture* specification.

Block	Port Name	Input/ Output	Clock Domain	Description				
				Rate match FIFO full status indicator.				
			Synchronous to tx clkout	A high level indicates the rate match FIFO is full.				
	rx_rmfifofull	Output	(non-bonded modes) or coreclkout (bonded modes)	 Driven for a minimum of two serial clock cycles in configurations without a byte serializer and a minimum of three recovered clock cycles in configurations with a byte serializer. 				
				Rate match FIFO empty status indicator.				
			Synchronous to ty clicout	A high level indicates the rate match FIFO is empty.				
	rx_rmfifoempty	Output	(non-bonded modes) or coreclkout (bonded modes)	Driven for a minimum of two serial clock cycles in configurations without a byte serializer and a minimum of three recovered clock cycles in configurations with a byte serializer.				
				8B/10B decoder control or data identifier.				
	rx_ctrldetect	Output	Synchronous to tx_clkout (non-bonded modes) or	 A high level indicates received code group is a /Kx.y/ control code group. 				
			coreclkout (bonded modes)	 A low level indicates received code group is a /Dx.y/ data code group. 				
				8B/10B code group violation or disparity error indicator.				
		Output		 A high level indicates that a code group violation or disparity error was detected on the associated received code group. 				
	rx_errdetect		Synchronous to tx_clkout (non-bonded modes) or coreclkout (bonded modes)	 Use with the rx_disperr signal to differentiate between a code group violation or a disparity error as follows: [rx_errdetect:rx_disperr] 				
RX PCS				 2'b00—no error 				
				 2'b10—code group violation 				
				 2'b11—disparity error or both 				
			Synchronous to tx_clkout	8B/10B disparity error indicator.				
	rx_disperr	Output	(non-bonded modes) or coreclkout (bonded modes)	 A high level indicates that a disparity error was detected on the associated received code group. 				
				8B/10B current running disparity indicator.				
	rx_runningdisp	Output	Synchronous to tx_clkout (non-bonded modes) or	 A high level indicates a positive current running disparity at the end of the decoded byte 				
			coreclkout (bonded modes)	 A low level indicates a negative current running disparity at the end of the decoded byte 				
				Enable byte ordering control				
	rx_enabyteord	Input	Asynchronous signal	 A low-to-high transition triggers the byte ordering block to restart byte ordering operation. 				
				Byte ordering status indicator.				
	rx_byteorder alignstatus	Output	Synchronous to tx_clkout (non-bonded modes) or coreclkout (bonded modes)	A high level indicates that the byte ordering block has detected the programmed byte ordering pattern in the least significant byte of the received data from the byte deserializer.				
			Synchronous to tx_clkout	Parallel data output from the receiver to the FPGA fabric.				
	rx_dataout	Output	(non-bonded modes) or coreclkout (bonded modes)	 Bus width depends on channel width multiplied by number of channels per instance. 				

Table 1–27. Receiver Ports in ALTGX Megafunction for Cyclone IV GX (Part 2 of 3)

All Supported Functional Modes Except the PCIe Functional Mode

This section describes reset sequences for transceiver channels in bonded and non-bonded configurations. Timing diagrams of some typical configurations are shown to facilitate proper reset sequence implementation. In these functional modes, you can set the receiver CDR either in automatic lock or manual lock mode.

In manual lock mode, the receiver CDR locks to the reference clock (lock-to-reference) or the incoming serial data (lock-to-data), depending on the logic levels on the rx_locktorefclk and rx_locktodata signals. With the receiver CDR in manual lock mode, you can either configure the transceiver channels in the Cyclone IV GX device in a non-bonded configuration or a bonded configuration. In a bonded configuration, for example in XAUI mode, four channels are bonded together.

Table 2–4 lists the lock-to-reference (LTR) and lock-to-data (LTD) controller lock modes for the rx_locktorefclk and rx_locktodata signals.

rx_locktorefclk	rx_locktodata	LTR/LTD Controller Lock Mode
1	0	Manual, LTR Mode
—	1	Manual, LTD Mode
0	0	Automatic Lock Mode

Table 2–4. Lock-To-Reference and Lock-To-Data Modes

Bonded Channel Configuration

In a bonded channel configuration, you can reset all the bonded channels simultaneously. Examples of bonded channel configurations are the XAUI, PCIe Gen1 ×2 and ×4, and Basic ×2 and ×4 functional modes. In Basic ×2 and ×4 functional mode, you can bond **Transmitter Only** channels together.

In XAUI mode, the receiver and transmitter channels are bonded. Each of the receiver channels in this mode has its own rx_freqlocked output status signals. You must consider the timing of these signals in the reset sequence.

Table 2–5 lists the reset and power-down sequences for bonded configurations under the stated functional modes.

Table 2–5.	Reset and	Power-Down	Sequences 1	for Bonded	Channel	Configurations
------------	-----------	------------	-------------	------------	---------	----------------

Channel Set Up	Receiver CDR Mode	Refer to
Transmitter Only	Basic ×2 and ×4	"Transmitter Only Channel" on page 2–7
Receiver and Transmitter	Automatic lock mode for XAUI functional mode	"Receiver and Transmitter Channel—Receiver CDR in Automatic Lock Mode" on page 2–8
Receiver and Transmitter	Manual lock mode for XAUI functional mode	"Receiver and Transmitter Channel—Receiver CDR in Manual Lock Mode" on page 2–9

Receiver and Transmitter Channel—Receiver CDR in Automatic Lock Mode

This configuration contains both a transmitter and receiver channel. When the receiver CDR is in automatic lock mode, use the reset sequence shown in Figure 2–4.

Figure 2–4. Sample Reset Sequence for Bonded Configuration Receiver and Transmitter Channels—Receiver CDR in Automatic Lock Mode

Notes to Figure 2-4:

- (1) The number of rx freqlocked [n] signals depend on the number of channels configured. n=number of channels.
- (2) For t_{LTD Auto} duration, refer to the *Cyclone IV Device Datasheet* chapter.
- (3) The busy signal is asserted and deasserted only during initial power up when offset cancellation occurs. In subsequent reset sequences, the busy signal is asserted and deasserted only if there is a read or write operation to the ALTGX_RECONFIG megafunction.

As shown in Figure 2–4, perform the following reset procedure for the receiver CDR in automatic lock mode configuration:

- 1. After power up, assert pll_areset for a minimum period of 1 µs (the time between markers 1 and 2).
- 2. Keep the tx_digitalreset, rx_analogreset, and rx_digitalreset signals asserted during this time period. After you deassert the pll_areset signal, the multipurpose PLL starts locking to the input reference clock.
- 3. After the multipurpose PLL locks, as indicated by the pll_locked signal going high, deassert the tx_digitalreset signal. At this point, the transmitter is ready for data traffic.

Port Name	Input/ Output	Description		
FPGA Fabric and ALTGX_RECONFIG Interface Signals				
		Assert this signal for one $reconfig_clk$ clock cycle to initiate a write transaction from the ALTGX_RECONFIG instance to the ALTGX instance.		
		You can use this signal in two ways for .mif-based modes:		
write_all	Input	Continuous write operation—select the Enable continuous write of all the words needed for reconfiguration option to pulse the write_all signal only once for writing a whole .mif. The What is the read latency of the MIF contents option is available for selection in this case only. Enter the desired latency in terms of the reconfig_clk cycles.		
		Regular write operation—when the Enable continuous write of all the words needed for reconfiguration option is disabled, every word of the .mif requires its own write cycle.		
		This signal is used to indicate the busy status of the dynamic reconfiguration controller during offset cancellation. After the device powers up, this signal remains low for the first reconfig_clk clock cycle. It then is asserted and remains high when the dynamic reconfiguration controller performs offset cancellation on all the receiver channels connected to the ALTGX_RECONFIG instance.		
busy	Output	Deassertion of the busy signal indicates the successful completion of the offset cancellation process.		
		 PMA controls reconfiguration mode—this signal is high when the dynamic reconfiguration controller performs a read or write transaction. 		
		 Channel reconfiguration modes—this signal is high when the dynamic reconfiguration controller writes the .mif into the transceiver channel. 		
read	Input	Assert this signal for one reconfig_clk clock cycle to initiate a read transaction. The read port is applicable only to the PMA controls reconfiguration mode. The read port is available when you select Analog controls in the Reconfiguration settings screen and select at least one of the PMA control ports in the Analog controls screen.		
		Applicable only to PMA controls reconfiguration mode. This port indicates the validity of the data read from the transceiver by the dynamic reconfiguration controller.		
data_valid	Output	The data on the output read ports is valid only when the ${\tt data_valid}$ is high.		
		This signal is enabled when you enable at least one PMA control port used in read transactions, for example tx_vodctrl_out.		
error	Output	This indicates that an unsupported operation was attempted. You can select this in the Error checks screen. The dynamic reconfiguration controller deasserts the busy signal and asserts the error signal for two reconfig_clk cycles when you attempt an unsupported operation. For more information, refer to "Error Indication During Dynamic Reconfiguration" on page 3–36.		

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 2 of 7)

Port Name	Input/ Output	Description				
	Input	This is an optional pre-emphasis write control for the transmit buffer. Depending on what value you set at this input, the controller dynamically writes the value to the pre-emphasis control register of the transmit buffer.				
		The width of this signal is fixed to 5 bits if you enable either the Use 'logical_channel_address' port for Analog controls reconfiguration option or the Use same control signal for all the channels option in the Analog controls screen. Otherwise, the width of this signal is 5 bits per channel.				
		tx_preemp[40] Corresponding ALTGX Corresponding settings emp		Corresponding pre- emphasis setting (mA)		
		00000	0	Disabled		
tx_preemp[40] ⁽¹⁾		00001	1	0.5		
		00101	5	1.0		
		01001	9	1.5		
		01101	13	2.0		
		10000	16	2.375		
		10001	17	2.5		
		10010	18	2.625		
		10011	19	2.75		
		10100	20	2.875		
		10101	21	3.0		
		All other values => N/A				
	Input	This is an optional write control to write an equalization control value for the receive side of the PMA.				
rx_eqctr1[30] ⁽¹⁾		The width of this signal is fixed to 4 bits if you enable either the Use 'logical_channel_address' port for Analog controls reconfiguration option or the Use same control signal for all the channels option in the Analog controls screen. Otherwise, the width of this signal is 4 bits per channel.				
		rx_eqctr1[30] Corresponding ALTGX instance settings				
		0001	Low			
		0101 Medium Low				
		0100	Medium High			
		0111	High			
		All other values $=> N_{i}$	Ά			

Table 3–2. Dynamic Reconfiguration Controller Port List (ALTGX_RECONFIG Instance) (Part 5 of 7)

The **Offset cancellation for Receiver channels** option is automatically enabled in both the ALTGX and ALTGX_RECONFIG MegaWizard Plug-In Managers for **Receiver and Transmitter** and **Receiver only** configurations. It is not available for **Transmitter only** configurations. For **Receiver and Transmitter** and **Receiver only** configurations, you must connect the necessary interface signals between the ALTGX_RECONFIG and ALTGX (with receiver channels) instances.

Offset cancellation is automatically executed once every time the device is powered on. The control logic for offset cancellation is integrated into the dynamic reconfiguration controller. You must connect the ALTGX_RECONFIG instance to the ALTGX instances (with receiver channels) in your design. You must connect the reconfig_fromgxb, reconfig_togxb, and necessary clock signals to both the ALTGX_RECONFIG and ALTGX (with receiver channels) instances.

When the device powers up, the dynamic reconfiguration controller initiates offset cancellation on the receiver channel by disconnecting the receiver input pins from the receiver data path. Subsequently, the offset cancellation process goes through different states and culminates in the offset cancellation of the receiver buffer.

Offset cancellation process only occurs one time after power up and does not occur when subsequent reconfig_reset is asserted. If you assert reconfig_reset after the offset cancellation process is completed, the offset cancellation process will not run again.

If you assert reconfig_reset upon power up; offset cancellation will not begin until reconfig_reset is deasserted. If you assert reconfig_reset after power up but before offset cancellation process is completed; offset cancellation will not complete and restart only when reconfig_reset is deasserted.

Figure 3–2 shows the connection for offset cancellation mode.

Figure 3–2. ALTGX and ALTGX_RECONFIG Connection for the Offset Cancellation Process

Note to Figure 3-2:

(1) This block is active during the offset cancellation process.

- The dynamic reconfiguration controller sends and receives data to the transceiver channel through the reconfig_togxb and reconfig_fromgxb signals.
- The gxb_powerdown signal must not be asserted during the offset cancellation sequence.

Table 3–5 describes the <code>rx_dataoutfull[31..0]</code> FPGA fabric-Transceiver channel interface signals.

Table 3–5. rx_da	taoutfull[310] FPGA Fa	abric-Transceiver Chan	nel Interface Signal D	escriptions (Part 1 of 3)

FPGA Fabric-Transceiver Channel Interface Description	Receive Signal Description (Based on Cyclone IV GX Supported FPGA Fabric-Transceiver Channel Interface Widths)		
	The following signals are used in 8-bit 8B/10B modes:		
	<pre>rx_dataoutfull[7:0]: 8-bit decoded data (rx_dataout)</pre>		
	<pre>rx_dataoutfull[8]: Control bit (rx_ctrldetect)</pre>		
	<pre>rx_dataoutfull[9]: Code violation status signal (rx_errdetect)</pre>		
	rx_dataoutfull[10]: rx_syncstatus		
8-bit FPGA fabric-Transceiver	<pre>rx_dataoutfull[11]: Disparity error status signal (rx_disperr)</pre>		
Channel Interface	<pre>rx_dataoutfull[12]: Pattern detect status signal (rx_patterndetect)</pre>		
	<pre>rx_dataoutfull[13]: Rate Match FIFO deletion status indicator (rx_rmfifodatadeleted) in non-PCI Express (PIPE) functional modes.</pre>		
	<pre>rx_dataoutfull[14]: Rate Match FIFO insertion status indicator (rx_rmfifodatainserted) in non-PCI Express (PIPE) functional modes.</pre>		
	<pre>rx_dataoutfull[14:13]: PCI Express (PIPE) functional mode (rx_pipestatus)</pre>		
	<pre>rx_dataoutfull[15]: 8B/10B running disparity indicator (rx_runningdisp)</pre>		
	<pre>rx_dataoutfull[9:0]: 10-bit un-encoded data (rx_dataout)</pre>		
	rx_dataoutfull[10]:rx_syncstatus		
	<pre>rx_dataoutfull[11]: 8B/10B disparity error indicator (rx_disperr)</pre>		
10-hit FPGA fabric-Transceiver	rx_dataoutfull[12]:rx_patterndetect		
Channel Interface	<pre>rx_dataoutfull[13]: Rate Match FIFO deletion status indicator (rx_rmfifodatadeleted) in non-PCI Express (PIPE) functional modes</pre>		
	<pre>rx_dataoutfull[14]: Rate Match FIFO insertion status indicator (rx_rmfifodatainserted) in non-PCI Express (PIPE) functional modes</pre>		
	<pre>rx_dataoutfull[15]: 8B/10B running disparity indicator (rx_runningdisp)</pre>		

3–24

Recommended Operating Conditions

This section lists the functional operation limits for AC and DC parameters for Cyclone IV devices. Table 1–3 and Table 1–4 list the steady-state voltage and current values expected from Cyclone IV E and Cyclone IV GX devices. All supplies must be strictly monotonic without plateaus.

 Table 1–3. Recommended Operating Conditions for Cyclone IV E Devices (1), (2) (Part 1 of 2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ccint} (3)	Supply voltage for internal logic, 1.2-V operation	—	1.15	1.2	1.25	V
	Supply voltage for internal logic, 1.0-V operation	_	0.97	1.0	1.03	V
V _{CCIO} (3), (4)	Supply voltage for output buffers, 3.3-V operation	—	3.135	3.3	3.465	V
	Supply voltage for output buffers, 3.0-V operation	_	2.85	3	3.15	V
	Supply voltage for output buffers, 2.5-V operation	_	2.375	2.5	2.625	V
	Supply voltage for output buffers, 1.8-V operation	_	1.71	1.8	1.89	V
	Supply voltage for output buffers, 1.5-V operation	—	1.425	1.5	1.575	V
	Supply voltage for output buffers, 1.2-V operation	—	1.14	1.2	1.26	V
V _{CCA} (3)	Supply (analog) voltage for PLL regulator	—	2.375	2.5	2.625	V
1 ((2)	Supply (digital) voltage for PLL, 1.2-V operation	—	1.15	1.2	1.25	V
VCCD_PLL	Supply (digital) voltage for PLL, 1.0-V operation	—	0.97	Typ Max 1.2 1.25 1.0 1.03 3 3.465 3 3.465 3 3.15 2.5 2.625 1.8 1.89 1.2 1.26 1.3 1.89 1.5 1.575 1.2 1.26 5 2.5 2.625 1.2 1.26 5 2.5 2.625 1.2 1.26 5 2.5 2.625 1.2 1.26 5 2.5 2.625 1.2 1.26 5 2.5 2.625 1.2 1.25 1.03 3.6 85 125 125 5 50 m: 5 3 ms	1.03	V
VI	Input voltage	—	-0.5		3.6	V
V ₀	Output voltage	—	0		V _{CCIO}	V
TJ		For commercial use	0		85	°C
	Operating junction tomperature	For industrial use	-40		100	°C
		For extended temperature	-40		125	°C
		For automotive use	-40		1.26 2.625 1.25 1.03 3.6 V _{CCI0} 85 100 125 125 50 ms 3 ms	°C
t _{RAMP}	Power supply ramp time	Standard power-on reset (POR) ⁽⁵⁾	50 µs	_	50 ms	_
		Fast POR (6)	50 µs		3 ms	