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2–6 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
LAB Control Signals
LAB Interconnects
The LAB local interconnect is driven by column and row interconnects and LE 
outputs in the same LAB. Neighboring LABs, phase-locked loops (PLLs), M9K RAM 
blocks, and embedded multipliers from the left and right can also drive the local 
interconnect of a LAB through the direct link connection. The direct link connection 
feature minimizes the use of row and column interconnects, providing higher 
performance and flexibility. Each LE can drive up to 48 LEs through fast local and 
direct link interconnects.

Figure 2–5 shows the direct link connection.

LAB Control Signals
Each LAB contains dedicated logic for driving control signals to its LEs. The control 
signals include:

■ Two clocks

■ Two clock enables

■ Two asynchronous clears

■ One synchronous clear

■ One synchronous load

You can use up to eight control signals at a time. Register packing and synchronous 
load cannot be used simultaneously.

Each LAB can have up to four non-global control signals. You can use additional LAB 
control signals as long as they are global signals.

Synchronous clear and load signals are useful for implementing counters and other 
functions. The synchronous clear and synchronous load signals are LAB-wide signals 
that affect all registers in the LAB.

Figure 2–5. Cyclone IV Device Direct Link Connection
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3–12 Chapter 3: Memory Blocks in Cyclone IV Devices
Memory Modes
In true dual-port mode, you can access any memory location at any time from either 
port A or port B. However, when accessing the same memory location from both 
ports, you must avoid possible write conflicts. When you attempt to write to the same 
address location from both ports at the same time, a write conflict happens. This 
results in unknown data being stored to that address location. There is no conflict 
resolution circuitry built into the Cyclone IV devices M9K memory blocks. You must 
handle address conflicts external to the RAM block.

Figure 3–11 shows true dual-port timing waveforms for the write operation at port A 
and read operation at port B. Registering the outputs of the RAM simply delays the q 
outputs by one clock cycle.

Shift Register Mode
Cyclone IV devices M9K memory blocks can implement shift registers for digital 
signal processing (DSP) applications, such as finite impulse response (FIR) filters, 
pseudo-random number generators, multi-channel filtering, and auto-correlation and 
cross-correlation functions. These and other DSP applications require local data 
storage, traditionally implemented with standard flipflops that quickly exhaust many 
logic cells for large shift registers. A more efficient alternative is to use embedded 
memory as a shift register block, which saves logic cell and routing resources.

The size of a (w × m × n) shift register is determined by the input data width (w), the 
length of the taps (m), and the number of taps (n), and must be less than or equal to 
the maximum number of memory bits, which is 9,216 bits. In addition, the size of 
(w × n) must be less than or equal to the maximum width of the block, which is 36 bits. 
If you need a larger shift register, you can cascade the M9K memory blocks.

Figure 3–11. Cyclone IV Devices True Dual-Port Timing Waveform
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–15
Clock Networks
From the clock sources listed above, only two clock input pins, two out of four PLL 
clock outputs (two clock outputs from either adjacent PLLs), one DPCLK pin, and one 
source from internal logic can drive into any given clock control block, as shown in 
Figure 5–1 on page 5–11. 

Out of these six inputs to any clock control block, the two clock input pins and two 
PLL outputs are dynamically selected to feed a GCLK. The clock control block 
supports static selection of the signal from internal logic.

Figure 5–5 shows a simplified version of the clock control blocks on each side of the 
Cyclone IV GX device periphery.

The inputs to the five clock control blocks on each side of the Cyclone IV E device 
must be chosen from among the following clock sources:

■ Three or four clock input pins, depending on the specific device

■ Five PLL counter outputs

■ Two DPCLK pins and two CDPCLK pins from both the left and right sides and four 
DPCLK pins from both the top and bottom

■ Five signals from internal logic

From the clock sources listed above, only two clock input pins, two PLL clock outputs, 
one DPCLK or CDPCLK pin, and one source from internal logic can drive into any given 
clock control block, as shown in Figure 5–1 on page 5–11. 

Out of these six inputs to any clock control block, the two clock input pins and two 
PLL outputs are dynamically selected to feed a GCLK. The clock control block 
supports static selection of the signal from internal logic.

Figure 5–5. Clock Control Blocks on Each Side of Cyclone IV GX Device

Notes to Figure 5–5:

(1) The EP4CGX15 device has two DPCLK pins; the EP4CGX22 and EP4CGX30 devices have four DPCLK pins; the 
EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices have six DPCLK pins.

(2) Each clock control block in the EP4CGX15, EP4CGX22, and EP4CGX30 devices can drive five GCLK networks. Each 
clock control block in the EP4CGX50, EP4CGX75, EP4CGX110, and EP4CGX150 devices can drive six GCLK 
networks.
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Chapter 5: Clock Networks and PLLs in Cyclone IV Devices 5–31
Hardware Features
■ When using manual clock switchover, the difference between inclk0 and inclk1 
can be more than 20%. However, differences between the two clock sources 
(frequency, phase, or both) can cause the PLL to lose lock. Resetting the PLL 
ensures that the correct phase relationships are maintained between the input and 
output clocks.

■ Both inclk0 and inclk1 must be running when the clkswitch signal goes high to 
start the manual clock switchover event. Failing to meet this requirement causes 
the clock switchover to malfunction.

■ Applications that require a clock switchover feature and a small frequency drift 
must use a low-bandwidth PLL. When referencing input clock changes, the 
low-bandwidth PLL reacts slower than a high-bandwidth PLL. When the 
switchover happens, the low-bandwidth PLL propagates the stopping of the clock 
to the output slower than the high-bandwidth PLL. The low-bandwidth PLL 
filters out jitter on the reference clock. However, the low-bandwidth PLL also 
increases lock time.

■ After a switchover occurs, there may be a finite resynchronization period for the 
PLL to lock onto a new clock. The exact amount of time it takes for the PLL to 
re-lock is dependent on the PLL configuration.

■ If the phase relationship between the input clock to the PLL and output clock from 
the PLL is important in your design, assert areset for 10 ns after performing a 
clock switchover. Wait for the locked signal (or gated lock) to go high before 
re-enabling the output clocks from the PLL.

■ Figure 5–20 shows how the VCO frequency gradually decreases when the primary 
clock is lost and then increases as the VCO locks on to the secondary clock. After 
the VCO locks on to the secondary clock, some overshoot can occur (an 
over-frequency condition) in the VCO frequency.

■ Disable the system during switchover if the system is not tolerant to frequency 
variations during the PLL resynchronization period. You can use the clkbad0 and 
clkbad1 status signals to turn off the PFD (pfdena = 0) so the VCO maintains its 
last frequency. You can also use the switchover state machine to switch over to the 
secondary clock. Upon enabling the PFD, output clock enable signals (clkena) can 
disable clock outputs during the switchover and resynchronization period. After 
the lock indication is stable, the system can re-enable the output clock or clocks.

Figure 5–20. VCO Switchover Operating Frequency

Fvco 

Primary Clock Stops Running

Switchover Occurs

VCO Tracks Secondary Clock 

Frequency Overshoot
October 2012 Altera Corporation Cyclone IV Device Handbook,
Volume 1



Chapter 6: I/O Features in Cyclone IV Devices 6–31
High-Speed I/O Standards Support
Figure 6–14 shows a typical BLVDS topology with multiple transmitter and receiver 
pairs. 

The BLVDS I/O standard is supported on the top, bottom, and right I/O banks of 
Cyclone IV devices. The BLVDS transmitter uses two single-ended output buffers 
with the second output buffer programmed as inverted, while the BLVDS receiver 
uses a true LVDS input buffer. The transmitter and receiver share the same pins. An 
output-enabled (OE) signal is required to tristate the output buffers when the LVDS 
input buffer receives a signal.

f For more information, refer to the Cyclone IV Device Datasheet chapter.

Designing with BLVDS
The BLVDS bidirectional communication requires termination at both ends of the bus 
in BLVDS. The termination resistor (RT) must match the bus differential impedance, 
which in turn depends on the loading on the bus. Increasing the load decreases the 
bus differential impedance. With termination at both ends of the bus, termination is 
not required between the two signals at the input buffer. A single series resistor (RS) is 
required at the output buffer to match the output buffer impedance to the 
transmission line impedance. However, this series resistor affects the voltage swing at 
the input buffer. The maximum data rate achievable depends on many factors.

1 Altera recommends that you perform simulation using the IBIS model while 
considering factors such as bus loading, termination values, and output and input 
buffer location on the bus to ensure that the required performance is achieved.

f For more information about BLVDS interface support in Altera devices, refer to 
AN 522: Implementing Bus LVDS Interface in Supported Altera Device Families.

Figure 6–14. BLVDS Topology with Cyclone IV Devices Transmitters and Receivers
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6–40 Chapter 6: I/O Features in Cyclone IV Devices
Document Revision History
February 2010 2.0

■ Added Cyclone IV E devices information for the Quartus II software version 9.1 SP1 
release.

■ Updated Table 6–2, Table 6–3, and Table 6–10.

■ Updated “I/O Banks” section.

■ Added Figure 6–9.

■ Updated Figure 6–10 and Figure 6–11.

■ Added Table 6–4, Table 6–6, and Table 6–8.

November 2009 1.0 Initial release.

Table 6–12. Document Revision History (Part 2 of 2)

Date Version Changes
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1



7–12 Chapter 7: External Memory Interfaces in Cyclone IV Devices
Cyclone IV Devices Memory Interfaces Features
In Cyclone IV devices, the DM pins are preassigned in the device pinouts. The 
Quartus II Fitter treats the DQ and DM pins in a DQS group equally for placement 
purposes. The preassigned DQ and DM pins are the preferred pins to use.

Some DDR2 SDRAM and DDR SDRAM devices support error correction coding 
(ECC), a method of detecting and automatically correcting errors in data 
transmission. In 72-bit DDR2 or DDR SDRAM, there are eight ECC pins and 64 data 
pins. Connect the DDR2 and DDR SDRAM ECC pins to a separate DQS or DQ group in 
Cyclone IV devices. The memory controller needs additional logic to encode and 
decode the ECC data.

Address and Control/Command Pins
The address signals and the control or command signals are typically sent at a single 
data rate. You can use any of the user I/O pins on all I/O banks of Cyclone IV devices 
to generate the address and control or command signals to the memory device.

1 Cyclone IV devices do not support QDR II SRAM in the burst length of two.

Memory Clock Pins
In DDR2 and DDR SDRAM memory interfaces, the memory clock signals (CK and 
CK#) are used to capture the address signals and the control or command signals. 
Similarly, QDR II SRAM devices use the write clocks (K and K#) to capture the 
address and command signals. The CK/CK# and K/K# signals are generated to 
resemble the write-data strobe using the DDIO registers in Cyclone IV devices.

1 CK/CK# pins must be placed on differential I/O pins (DIFFIO in Pin Planner) and in 
the same bank or on the same side as the data pins. You can use either side of the 
device for wraparound interfaces. As seen in the Pin Planner Pad View, CK0 cannot be 
located in the same row and column pad group as any of the interfacing DQ pins.

f For more information about memory clock pin placement, refer to Volume 2: Device, 
Pin, and Board Layout Guidelines of the External Memory Interface Handbook.

Cyclone IV Devices Memory Interfaces Features
This section discusses Cyclone IV memory interfaces, including DDR input registers, 
DDR output registers, OCT, and phase-lock loops (PLLs).

DDR Input Registers
The DDR input registers are implemented with three internal logic element (LE) 
registers for every DQ pin. These LE registers are located in the logic array block (LAB) 
adjacent to the DDR input pin. 
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–11
Configuration
This four-pin interface connects to Cyclone IV device pins, as shown in Figure 8–2.

1 To tri-state the configuration bus for AS configuration schemes, you must tie nCE high 
and nCONFIG low.

1 The 25- resistor at the near end of the serial configuration device for DATA[0] works 
to minimize the driver impedance mismatch with the board trace and reduce the 
overshoot seen at the Cyclone IV device DATA[0] input pin.

In the single-device AS configuration, the maximum board loading and board trace 
length between the supported serial configuration device and the Cyclone IV device 
must follow the recommendations in Table 8–7 on page 8–18.

The DCLK generated by the Cyclone IV device controls the entire configuration cycle 
and provides timing for the serial interface. Cyclone IV devices use an internal 
oscillator or an external clock source to generate the DCLK. For Cyclone IV E devices, 
you can use a 40-MHz internal oscillator to generate the DCLK and for Cyclone IV GX 
devices you can use a slow clock (20 MHz maximum) or a fast clock 
(40 MHz maximum) from the internal oscillator or an external clock from CLKUSR to 
generate the DCLK. There are some variations in the internal oscillator frequency 
because of the process, voltage, and temperature (PVT) conditions in Cyclone IV 

Figure 8–2. Single-Device AS Configuration

Notes to Figure 8–2: 
(1) Connect the pull-up resistors to the VCCIO supply of the bank in which the pin resides. 
(2) Cyclone IV devices use the ASDO-to-ASDI path to control the configuration device.
(3) The nCEO pin is left unconnected or used as a user I/O pin when it does not feed the nCE pin of another device.
(4) The MSEL pin settings vary for different configuration voltage standards and POR time. To connect the MSEL pins, 

refer to Table 8–3 on page 8–8, Table 8–4 on page 8–8, and Table 8–5 on page 8–9. Connect the MSEL pins directly 
to VCCA or GND.

(5) Connect the series resistor at the near end of the serial configuration device.
(6) These pins are dual-purpose I/O pins. The nCSO pin functions as FLASH_nCE pin in AP mode. The ASDO pin functions 

as the DATA[1] pin in AP and FPP modes.
(7) Only Cyclone IV GX devices have an option to select CLKUSR (40 MHz maximum) as the external clock source for 

DCLK.
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–79
Remote System Upgrade
The remote system upgrade status register is updated by the dedicated error 
monitoring circuitry after an error condition, but before the factory configuration is 
loaded.

User Watchdog Timer
The user watchdog timer prevents a faulty application configuration from indefinitely 
stalling the device. The system uses the timer to detect functional errors after an 
application configuration is successfully loaded into the Cyclone IV device.

The user watchdog timer is a counter that counts down from the initial value loaded 
into the remote system upgrade control register by the factory configuration. The 
counter is 29 bits wide and has a maximum count value of 229. When specifying the 
user watchdog timer value, specify only the most significant 12 bits. The remote 
system upgrade circuitry appends 17'b1000 to form the 29-bits value for the watchdog 
timer. The granularity of the timer setting is 217 cycles. The cycle time is based on the 
frequency of the 10-MHz internal oscillator or CLKUSR (maximum frequency of 
40 MHz). 

Table 8–27 lists the operating range of the 10-MHz internal oscillator.

The user watchdog timer begins counting after the application configuration enters 
device user mode. This timer must be periodically reloaded or reset by the application 
configuration before the timer expires by asserting RU_nRSTIMER. If the application 
configuration does not reload the user watchdog timer before the count expires, a 
time-out signal is generated by the remote system upgrade dedicated circuitry. The 
time-out signal tells the remote system upgrade circuitry to set the user watchdog 
timer status bit (Wd) in the remote system upgrade status register and reconfigures the 
device by loading the factory configuration.

1 To allow the remote system upgrade dedicated circuitry to reset the watchdog timer, 
you must assert the RU_nRSTIMER signal active for a minimum of 250 ns. This is 
equivalent to strobing the reset_timer input of the ALTREMOTE_UPDATE 
megafunction high for a minimum of 250 ns.

Errors during configuration are detected by the CRC engine. Functional errors must 
not exist in the factory configuration because it is stored and validated during 
production and is never updated remotely.

Table 8–26. Control Register Contents After an Error or Reconfiguration Trigger Condition 

Reconfiguration Error/Trigger Control Register Setting In Remote Update

nCONFIG reset All bits are 0

nSTATUS error All bits are 0

CORE triggered reconfiguration Update register

CRC error All bits are 0

Wd time out All bits are 0

Table 8–27. 10-MHz Internal Oscillator Specifications  

Minimum Typical Maximum Unit

5 6.5 10 MHz
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



1–8 Chapter 1: Cyclone IV Transceivers Architecture
Transmitter Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

at time n + 2 is encoded as a positive disparity code group. In the same example, the 
current running disparity at time n + 5 indicates that the K28.5 in time n + 6 should be 
encoded with a positive disparity. Because tx_forcedisp is high at time n + 6, and 
tx_dispval is high, the K28.5 at time n + 6 is encoded as a negative disparity code 
group.

Miscellaneous Transmitter PCS Features
The transmitter PCS supports the following additional features:

■ Polarity inversion—corrects accidentally swapped positive and negative signals 
from the serial differential link during board layout by inverting the polarity of 
each bit. An optional tx_invpolarity port is available to dynamically invert the 
polarity of every bit of the 8-bit or 10-bit input data to the serializer in the 
transmitter datapath. Figure 1–9 shows the transmitter polarity inversion feature.

1 tx_invpolarity is a dynamic signal and might cause initial disparity errors 
at the receiver of an 8B/10B encoded link. The downstream system must be 
able to tolerate these disparity errors.

Figure 1–9. Transmitter Polarity Inversion
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1–20 Chapter 1: Cyclone IV Transceivers Architecture
Receiver Channel Datapath

Cyclone IV Device Handbook, February 2015 Altera Corporation
Volume 2

Table 1–4 lists the synchronization state machine parameters for the word aligner in 
this mode.

After deassertion of the rx_digitalreset signal in automatic synchronization state 
machine mode, the word aligner starts looking for the synchronization code groups, 
word alignment pattern or its complement in the received data stream. When the 
programmed number of valid synchronization code groups or ordered sets are 
received, the rx_syncstatus signal is driven high to indicate that synchronization is 
acquired. The rx_syncstatus signal is constantly driven high until the programmed 
number of erroneous code groups are received without receiving intermediate good 
groups; after which the rx_syncstatus signal is driven low. The word aligner 
indicates loss of synchronization (rx_syncstatus signal remains low) until the 
programmed number of valid synchronization code groups are received again.

In addition to restoring word boundaries, the word aligner supports the following 
features:

■ Programmable run length violation detection—detects consecutive 1s or 0s in the 
data stream, and asserts run length violation signal (rx_rlv) when a preset run 
length threshold (maximum number of consecutive 1s or 0s) is detected. The 
rx_rlv signal in each channel is clocked by its parallel recovered clock and is 
asserted for a minimum of two recovered clock cycles to ensure that the FPGA 
fabric clock can latch the rx_rlv signal reliably because the FPGA fabric clock 
might have phase differences, ppm differences (in asynchronous systems), or both, 
with the recovered clock. Table 1–5 lists the run length violation circuit detection 
capabilities.

Table 1–4. Synchronization State Machine Parameters 

Parameter Allowed Values

Number of erroneous code groups received to lose synchronization 1–64

Number of continuous good code groups received to reduce the 
error count by one 1–256

Table 1–5. Run Length Violation Circuit Detection Capabilities

Supported Data Width
Detector Range Increment Step 

SettingsMinimum Maximum

8-bit 4 128 4

10-bit 5 160 5



1–22 Chapter 1: Cyclone IV Transceivers Architecture
Receiver Channel Datapath
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synchronization state machine mode. In bit-slip mode, you can dynamically 
enable the receiver bit reversal using the rx_revbitorderwa port. When enabled, 
the 8-bit or 10-bit data D[7..0] or D[9..0] at the output of the word aligner is 
rewired to D[0..7] or D[0..9] respectively. Figure 1–20 shows the receiver bit 
reversal feature.

1 When using the receiver bit reversal feature to receive MSB-to-LSB 
transmission, reversal of the word alignment pattern is required.

■ Receiver bit-slip indicator—provides the number of bits slipped in the word 
aligner for synchronization with rx_bitslipboundaryselectout signal. For usage 
details, refer to “Receive Bit-Slip Indication” on page 1–76.

Deskew FIFO
This module is only available when used for the XAUI protocol and is used to align all 
four channels to meet the maximum skew requirement of 40 UI (12.8 ns) as seen at the 
receiver of the four lanes. The deskew operation is compliant to the PCS deskew state 
machine diagram specified in clause 48 of the IEEE P802.3ae specification. 

The deskew circuitry consists of a 16-word deep deskew FIFO in each of the four 
channels, and control logics in the central control unit of the transceiver block that 
controls the deskew FIFO write and read operations in each channel.

For details about the deskew FIFO operations for channel deskewing, refer to “XAUI 
Mode” on page 1–67.

Figure 1–20. Receiver Bit Reversal (1)

Note to Figure 1–20:

(1) The rx_revbitordwa port is dynamic and is only available when the word aligner is configured in bit-slip mode.
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Chapter 1: Cyclone IV Transceivers Architecture 1–39
Transceiver Clocking Architecture
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The channel datapath clocking is similar between bonded channels in ×2 and ×4 
configurations.

Figure 1–38 shows the datapath clocking in Transmitter Only operation for ×2 and ×4 
bonded configurations. In these configurations, each bonded channel selects the 
high-speed clock from one the supported PLLs. The high-speed clock in each bonded 
channel feeds the respective serializer for parallel to serial operation. The common 
bonded low-speed clock feeds to each bonded channel that is used for the following 
blocks in each transmitter PCS channel:

■ 8B/10B encoder

■ read clock of byte serializer

■ read clock of TX phase compensation FIFO

Figure 1–37. Clock Distribution in Bonded (×2 and ×4) Channel Configuration for Transceivers in F484 and Larger 
Packages

Notes to Figure 1–37:

(1) High-speed clock.
(2) Low-speed clock.
(3) Bonded common low-speed clock path.
(4) These PLLs have restricted clock driving capability and may not reach all connected channels. For details, refer to Table 1–10.

(3)
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■ transmitter in electrical idle

■ receiver signal detect

■ receiver spread spectrum clocking

Low-Latency PCS Operation

When configured in low-latency PCS operation, the following blocks in the 
transceiver PCS are bypassed, resulting in a lower latency PCS datapath:

■ 8B/10B encoder and decoder

■ word aligner

■ rate match FIFO

■ byte ordering

Figure 1–47 shows the transceiver channel datapath in Basic mode with low-latency 
PCS operation.
.

Transmitter in Electrical Idle

The transmitter buffer supports electrical idle state, where when enabled, the 
differential output buffer driver is tri-stated. During electrical idle, the output buffer 
assumes the common mode output voltage levels. For details about the electrical idle 
features, refer to “PCI Express (PIPE) Mode” on page 1–52. 

1 The transmitter in electrical idle feature is required for compliance to the version 2.00 
of PHY Interface for the PCI Express (PIPE) Architecture specification for PCIe 
protocol implementation.

Signal Detect at Receiver

Signal detect at receiver is only supported when 8B/10B encoder/decoder block is 
enabled.

Figure 1–47. Transceiver Channel Datapath in Basic Mode with Low-Latency PCS Operation
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Dynamic Reconfiguration Reset Sequences
When using dynamic reconfiguration in data rate divisions in PLL reconfiguration or 
channel reconfiguration mode, use the following reset sequences.

Reset Sequence in PLL Reconfiguration Mode
Use the example reset sequence shown in Figure 2–11 when you use the PLL dynamic 
reconfiguration controller to change the data rate of the transceiver channel. In this 
example, PLL dynamic reconfiguration is used to dynamically reconfigure the data 
rate of the transceiver channel configured in Basic ×1 mode with the receiver CDR in 
automatic lock mode.

As shown in Figure 2–11, perform the following reset procedure when using the PLL 
dynamic reconfiguration controller to change the configuration of the PLLs in the 
transmitter channel:

1. Assert the tx_digitalreset, rx_analogreset, and rx_digitalreset signals. The 
pll_configupdate signal is asserted (marker 1) by the ALTPLL_RECONFIG 
megafunction after the final data bit is sent out. The pll_reconfig_done signal is 
asserted (marker 2) to inform the ALTPLL_RECONFIG megafunction that the scan 
chain process is completed. The ALTPLL_RECONFIG megafunction then asserts 
the pll_areset signal (marker 3) to reset the transceiver PLL.

Figure 2–11. Reset Sequence When Using the PLL Dynamic Reconfiguration Controller to Change 
the Data Rate of the Transceiver Channel

Notes to Figure 2–11:

(1) The pll_configupdate and pll_areset signals are driven by the ALTPLL_RECONFIG megafunction. For more 
information, refer to AN 609: Implementing Dynamic Reconfiguration in Cyclone IV GX Devices and the Cyclone IV 
Dynamic Reconfiguration chapter.

(2) For tLTD_Auto duration, refer to the Cyclone IV Device Datasheet chapter.

Output Status Signals

pll_reconfig_done

5

tx_digitalreset

pll_configupdate (1)

Reset and Control Signals

rx_analogreset

8
rx_digitalreset

pll_locked

3

pll_areset (1)

1

2

6

tLTD_Auto (2)

4

Five parallel clock cycles

rx_freqlocked

7

http://www.altera.com/literature/an/an609.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-52003.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-52003.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyiv-53001.pdf
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Figure 3–4 shows the write transaction waveform for Method 1.

Read Transaction

For example, to read the existing VOD values from the transmit VOD control registers of 
the transmitter portion of a specific channel controlled by the ALTGX_RECONFIG 
instance, perform the following steps:

1. Set the logical_channel_address input port to the logical channel address of the 
transceiver channel whose PMA controls you want to read (for example, 
tx_vodctrl_out).

2. Set the rx_tx_duplex_sel port to 2'b10 so that only the transmit PMA controls are 
read from the transceiver channel. 

3. Ensure that the busy signal is low before you start a read transaction. 

4. Assert the read signal for one reconfig_clk clock cycle. This initiates the read 
transaction. 

The busy output status signal is asserted high to indicate that the dynamic 
reconfiguration controller is busy reading the PMA control values. When the read 
transaction has completed, the busy signal goes low. The data_valid signal is asserted 
to indicate that the data available at the read control signal is valid.

Figure 3–4. Write Transaction Waveform—Use ‘logical_channel_address port’ Option

Notes to Figure 3–4:

(1) In this waveform example, you are writing to only the transmitter portion of the channel.
(2) In this waveform example, the number of channels connected to the dynamic reconfiguration controller is four. Therefore, the 

logical_channel_address port is 2 bits wide.

(2) 2'b00 2'b01

busy

(1) 2'b00 2'b10

3'b111 3'b001

reconfig_clk

write_all

rx_tx_duplex_sel [1:0]

logical_channel_address [1:0]

tx_vodctrl [2:0]



1–20 Chapter 1: Cyclone IV Device Datasheet
Switching Characteristics

MHz

MHz

AUI 

 frequency 

ode.
igh in 

Unit
PLD-Transceiver Interface

Interface speed 
(F324 and smaller 
package)

— 25 — 125 25 — 125 25 — 125

Interface speed 
(F484 and larger 
package)

— 25 — 156.25 25 — 156.25 25 — 156.25

Digital reset pulse 
width — Minimum is 2 parallel clock cycles

Notes to Table 1–21:

(1) This specification is valid for transmitter output jitter specification with a maximum total jitter value of 112 ps, typically for 3.125 Gbps SRIO and X
protocols.

(2) The minimum reconfig_clk frequency is 2.5 MHz if the transceiver channel is configured in Transmitter Only mode. The minimum reconfig_clk
is 37.5 MHz if the transceiver channel is configured in Receiver Only or Receiver and Transmitter mode.

(3) The device cannot tolerate prolonged operation at this absolute maximum.
(4) The rate matcher supports only up to ±300 parts per million (ppm).
(5) Supported for the F169 and F324 device packages only.
(6) Supported for the F484, F672, and F896 device packages only. Pending device characterization.
(7) To support CDR ppm tolerance greater than ±300 ppm, implement ppm detector in user logic and configure CDR to Manual Lock Mode.
(8) Asynchronous spread-spectrum clocking is not supported.
(9) For the EP4CGX30 (F484 package only), EP4CGX50, and EP4CGX75 devices, the CDR ppl tolerance is ±200 ppm.
(10) Time taken until pll_locked goes high after pll_powerdown deasserts.
(11) Time that the CDR must be kept in lock-to-reference mode after rx_analogreset deasserts and before rx_locktodata is asserted in manual m
(12) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode (Figure 1–2), or after rx_freqlocked signal goes h

automatic mode (Figure 1–3).
(13) Time taken to recover valid data after the rx_locktodata signal is asserted in manual mode.
(14) Time taken to recover valid data after the rx_freqlocked signal goes high in automatic mode.
(15) To support data rates lower than the minimum specification through oversampling, use the CDR in LTR mode only.

Table 1–21. Transceiver Specification for Cyclone IV GX Devices (Part 4 of 4)

Symbol/
Description Conditions

C6 C7, I7 C8

Min Typ Max Min Typ Max Min Typ Max
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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Figure 1–4 shows the differential receiver input waveform.

Figure 1–5 shows the transmitter output waveform.

Table 1–22 lists the typical VOD for Tx term that equals 100  .

Figure 1–4. Receiver Input Waveform
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Figure 1–5. Transmitter Output Waveform
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Table 1–22. Typical VOD Setting, Tx Term = 100 

Symbol
VOD Setting (mV)

1 2 3 4 (1) 5 6

VOD differential peak 
to peak typical (mV) 400 600 800 900 1000 1200

Note to Table 1–22:

(1) This setting is required for compliance with the PCIe protocol.
Cyclone IV Device Handbook, December 2016 Altera Corporation
Volume 3
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