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2–2 Chapter 2: Logic Elements and Logic Array Blocks in Cyclone IV Devices
Logic Elements
Figure 2–1 shows the LEs for Cyclone IV devices.

LE Features
You can configure the programmable register of each LE for D, T, JK, or SR flipflop 
operation. Each register has data, clock, clock enable, and clear inputs. Signals that 
use the global clock network, general-purpose I/O pins, or any internal logic can 
drive the clock and clear control signals of the register. Either general-purpose I/O 
pins or the internal logic can drive the clock enable. For combinational functions, the 
LUT output bypasses the register and drives directly to the LE outputs.

Each LE has three outputs that drive the local, row, and column routing resources. The 
LUT or register output independently drives these three outputs. Two LE outputs 
drive the column or row and direct link routing connections, while one LE drives the 
local interconnect resources. This allows the LUT to drive one output while the 
register drives another output. This feature, called register packing, improves device 
utilization because the device can use the register and the LUT for unrelated 
functions. The LAB-wide synchronous load control signal is not available when using 
register packing. For more information about the synchronous load control signal, 
refer to “LAB Control Signals” on page 2–6.

The register feedback mode allows the register output to feed back into the LUT of the 
same LE to ensure that the register is packed with its own fan-out LUT, providing 
another mechanism for improved fitting. The LE can also drive out registered and 
unregistered versions of the LUT output.

Figure 2–1. Cyclone IV Device LEs 
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5–38 Chapter 5: Clock Networks and PLLs in Cyclone IV Devices
PLL Reconfiguration
Figure 5–25 shows the scan chain bit order sequence for one PLL post-scale counter in 
PLLs of Cyclone IV devices. 

Charge Pump and Loop Filter
You can reconfigure the charge pump and loop filter settings to update the PLL 
bandwidth in real time. Table 5–8 through Table 5–10 list the possible settings for 
charge pump current (ICP), loop filter resistor (R), and capacitor (C) values for PLLs of 
Cyclone IV devices.

Figure 5–25. Scan Chain Bit Order
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Table 5–8. Charge Pump Bit Control

CP[2] CP[1] CP[0] Setting (Decimal)

0 0 0 0

1 0 0 1

1 1 0 3

1 1 1 7

Table 5–9. Loop Filter Resistor Value Control

LFR[4] LFR[3] LFR[2] LFR[1] LFR[0] Setting 
(Decimal)

0 0 0 0 0 0

0 0 0 1 1 3

0 0 1 0 0 4

0 1 0 0 0 8

1 0 0 0 0 16

1 0 0 1 1 19

1 0 1 0 0 20

1 1 0 0 0 24

1 1 0 1 1 27

1 1 1 0 0 28

1 1 1 1 0 30
Cyclone IV Device Handbook, October 2012 Altera Corporation
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6–12 Chapter 6: I/O Features in Cyclone IV Devices
I/O Standards
2.5-V LVTTL / 
LVCMOS Single-ended JESD8-5 3.3/3.0/2.5

(3) 2.5 v v v v v
1.8-V LVTTL / 
LVCMOS Single-ended JESD8-7 1.8/1.5 (3) 1.8 v v v v v
1.5-V LVCMOS Single-ended JESD8-11 1.8/1.5 (3) 1.5 v v v v v
1.2-V LVCMOS (4) Single-ended JESD8-12A 1.2 1.2 v v v v v
SSTL-2 Class I, 
SSTL-2 Class II

voltage-
referenced JESD8-9A 2.5 2.5 v v v v v

SSTL-18 Class I, 
SSTL-18 Class II

voltage-
referenced JESD815 1.8 1.8 v v v v v

HSTL-18 Class I, 
HSTL-18 Class II

voltage-
referenced JESD8-6 1.8 1.8 v v v v v

HSTL-15 Class I, 
HSTL-15 Class II

voltage-
referenced JESD8-6 1.5 1.5 v v v v v

HSTL-12 Class I voltage-
referenced JESD8-16A 1.2 1.2 v v v v v

HSTL-12 Class II (9) voltage-
referenced JESD8-16A 1.2 1.2 v v v — —

PCI and PCI-X Single-ended — 3.0 3.0 v v v v v
Differential SSTL-2 
Class I or Class II

Differential 
(5) JESD8-9A

— 2.5 — v — — —

2.5 — v — — v —

Differential SSTL-18 
Class I or Class II

Differential 
(5) JESD815

— 1.8 — v — — —

1.8 — v — — v —

Differential HSTL-18 
Class I or Class II

Differential 
(5) JESD8-6

— 1.8 — v — — —

1.8 — v — — v —

Differential HSTL-15 
Class I or Class II

Differential 
(5) JESD8-6

— 1.5 — v — — —

1.5 — v — — v —

Differential HSTL-12 
Class I or Class II

Differential 
(5) JESD8-16A

— 1.2 — v — — —

1.2 — v — — v —

PPDS (6) Differential — — 2.5 — v v — v
LVDS (10) Differential ANSI/TIA/

EIA-644 2.5 2.5 v v v v v
RSDS and 
mini-LVDS (6) Differential — — 2.5 — v v — v
BLVDS (8) Differential — 2.5 2.5 — — v — v

Table 6–3. Cyclone IV Devices Supported I/O Standards and Constraints (Part 2 of 3)

I/O Standard Type Standard 
Support

VCCIO Level (in V) Column I/O Pins Row I/O Pins (1)

Input Output CLK, 
DQS PLL_OUT

User 
I/O 

Pins

CLK, 
DQS

User I/O 
Pins
Cyclone IV Device Handbook, March 2016 Altera Corporation
Volume 1





Chapter 7: External Memory Interfaces in Cyclone IV Devices 7–15
Cyclone IV Devices Memory Interfaces Features
Figure 7–9 illustrates how the second output enable register extends the DQS 
high-impedance state by half a clock cycle during a write operation.

OCT with Calibration
Cyclone IV devices support calibrated on-chip series termination (RS OCT) in both 
vertical and horizontal I/O banks. To use the calibrated OCT, you must use the RUP 
and RDN pins for each RS OCT control block (one for each side). You can use each 
OCT calibration block to calibrate one type of termination with the same VCCIO for 
that given side. 

f For more information about the Cyclone IV devices OCT calibration block, refer to the 
Cyclone IV Device I/O Features chapter. 

PLL
When interfacing with external memory, the PLL is used to generate the memory 
system clock, the write clock, the capture clock and the logic-core clock. The system 
clock generates the DQS write signals, commands, and addresses. The write-clock is 
shifted by -90° from the system clock and generates the DQ signals during writes. You 
can use the PLL reconfiguration feature to calibrate the read-capture phase shift to 
balance the setup and hold margins.

1 The PLL is instantiated in the ALTMEMPHY megafunction. All outputs of the PLL are 
used when the ALTMEMPHY megafunction is instantiated to interface with external 
memories. PLL reconfiguration is used in the ALTMEMPHY megafunction to 
calibrate and track the read-capture phase to maintain the optimum margin.

f For more information about usage of PLL outputs by the ALTMEMPHY 
megafunction, refer to the External Memory Interface Handbook.

Figure 7–9. Extending the OE Disable by Half a Clock Cycle for a Write Transaction (1)

Note to Figure 7–9:

(1) The waveform reflects the software simulation result. The OE signal is an active low on the device. However, the 
Quartus II software implements the signal as an active high and automatically adds an inverter before the AOE register 
D input.
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Chapter 8: Configuration and Remote System Upgrades in Cyclone IV Devices 8–49
Configuration
You can perform JTAG testing on Cyclone IV devices before, during, and after 
configuration. Cyclone IV devices support the BYPASS, IDCODE, and SAMPLE 
instructions during configuration without interrupting configuration. All other JTAG 
instructions can only be issued by first interrupting configuration and 
reprogramming I/O pins with the ACTIVE_DISENGAGE and CONFIG_IO instructions.

The CONFIG_IO instruction allows you to configure the I/O buffers through the JTAG 
port and interrupts configuration when issued after the ACTIVE_DISENGAGE 
instruction. This instruction allows you to perform board-level testing prior to 
configuring the Cyclone IV device or waiting for a configuration device to complete 
configuration. Prior to issuing the CONFIG_IO instruction, you must issue the 
ACTIVE_DISENGAGE instruction. This is because in Cyclone IV devices, the CONFIG_IO 
instruction does not hold nSTATUS low until reconfiguration, so you must disengage 
the active configuration mode controller when active configuration is interrupted. 
The ACTIVE_DISENGAGE instruction places the active configuration mode controllers in 
an idle state prior to JTAG programming. Additionally, the ACTIVE_ENGAGE instruction 
allows you to re-engage a disengaged active configuration mode controller. 

1 You must follow a specific flow when executing the ACTIVE_DISENGAGE, CONFIG_IO, 
and ACTIVE_ENGAGE JTAG instructions in Cyclone IV devices. 

The chip-wide reset (DEV_CLRn) and chip-wide output enable (DEV_OE) pins in 
Cyclone IV devices do not affect JTAG boundary-scan or programming operations. 
Toggling these pins do not affect JTAG operations (other than the usual 
boundary-scan operation).

When designing a board for JTAG configuration of Cyclone IV devices, consider the 
dedicated configuration pins. Table 8–15 describes how you must connect these pins 
during JTAG configuration.

Table 8–15. Dedicated Configuration Pin Connections During JTAG Configuration

Signal Description

nCE

On all Cyclone IV devices in the chain, nCE must be driven low by connecting it to GND, pulling it low 
through a resistor, or driving it by some control circuitry. For devices that are also in multi-device AS, AP, 
PS, or FPP configuration chains, you must connect the nCE pins to GND during JTAG configuration or 
JTAG configured in the same order as the configuration chain.

nCEO On all Cyclone IV devices in the chain, nCEO is left floating or connected to the nCE of the next device.

MSEL
These pins must not be left floating. These pins support whichever non-JTAG configuration that you used 
in production. If you only use JTAG configuration, tie these pins to GND.

nCONFIG
Driven high by connecting to the VCCIO supply of the bank in which the pin resides and pulling up through 
a resistor or driven high by some control circuitry.

nSTATUS
Pull to the VCCIO supply of the bank in which the pin resides through a 10-k resistor. When configuring 
multiple devices in the same JTAG chain, each nSTATUS pin must be pulled up to the VCCIO individually.

CONF_DONE

Pull to the VCCIO supply of the bank in which the pin resides through a 10-k resistor. When configuring 
multiple devices in the same JTAG chain, each CONF_DONE pin must be pulled up to VCCIO supply of the 
bank in which the pin resides individually. CONF_DONE going high at the end of JTAG configuration 
indicates successful configuration.

DCLK Must not be left floating. Drive low or high, whichever is more convenient on your board.
May 2013 Altera Corporation Cyclone IV Device Handbook,
Volume 1



9–2 Chapter 9: SEU Mitigation in Cyclone IV Devices
User Mode Error Detection
Configuration error detection determines if the configuration data received through 
an external memory device is corrupted during configuration. To validate the 
configuration data, the Quartus® II software uses a function to calculate the CRC 
value for each configuration data frame and stores the frame-based CRC value in the 
configuration data as part of the configuration bit stream.

During configuration, Cyclone IV devices use the same methodology to calculate the 
CRC value based on the frame of data that is received and compares it against the 
frame CRC value in the data stream. Configuration continues until either the device 
detects an error or all the values are calculated.

In addition to the frame-based CRC value, the Quartus II software generates a 32-bit 
CRC value for the whole configuration bit stream. This 32-bit CRC value is stored in 
the 32-bit storage register at the end of the configuration and is used for user mode 
error detection that is discussed in “User Mode Error Detection”. 

User Mode Error Detection

1 User mode error detection is available in Cyclone IV GX and Cyclone IV E devices 
with 1.2-V core voltage. Cyclone IV E devices with 1.0-V core voltage do not support 
user mode error detection.

Soft errors are changes in a configuration random-access memory (CRAM) bit state 
due to an ionizing particle. Cyclone IV devices have built-in error detection circuitry 
to detect data corruption by soft errors in the CRAM cells. 

This error detection capability continuously computes the CRC of the configured 
CRAM bits based on the contents of the device and compares it with the 
pre-calculated CRC value obtained at the end of the configuration. If the CRCs match, 
there is no error in the current configuration CRAM bits. The process of error 
detection continues until the device is reset (by setting nCONFIG to low).

The Cyclone IV device error detection feature does not check memory blocks and I/O 
buffers. These device memory blocks support parity bits that are used to check the 
contents of memory blocks for any error. The I/O buffers are not verified during error 
detection because the configuration data uses flip-flops as storage elements that are 
more resistant to soft errors. Similar flip-flops are used to store the pre-calculated CRC 
and other error detection circuitry option bits.

The error detection circuitry in Cyclone IV devices uses a 32-bit CRC IEEE 802 
standard and a 32-bit polynomial as the CRC generator. Therefore, a single 32-bit CRC 
calculation is performed by the device. If a soft error does not occur, the resulting 
32-bit signature value is 0x00000000, that results in a 0 on the CRC_ERROR output 
signal. If a soft error occurs in the device, the resulting signature value is non-zero and 
the CRC_ERROR output signal is 1.

You can inject a soft error by changing the 32-bit CRC storage register in the CRC 
circuitry. After verifying the induced failure, you can restore the 32-bit CRC value to 
the correct CRC value with the same instruction and inserting the correct value. 

1 Before updating it with a known bad value, Altera recommends reading out the 
correct value.
Cyclone IV Device Handbook, May 2013 Altera Corporation
Volume 1
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1– 8 C ha pter 1: C y clo n e I V  Trans ce i v ers Architecture
Transmitter Channel Datapath
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a t time n + 2 is enco de d as a posi t i v e disp a r i t y code grou p . In the sam e exam p l e , the 
curre n t ru nn i n g disp a ri t y at time n + 5 indic a t e s tha t the K28.5 in time n + 6 sho u l d be 
enco d e d with a posit i v e disp a ri t y. Beca u se tx_forcedisp is high at time n + 6, and 
tx_dispval is high, the K28.5 at time n + 6 is encod e d as a nega t i v e disp a r i t y code 
grou p.

Miscellaneous Transmitter PCS Features
T h e tra n sm i tt er PCS sup p o r ts the fol lo w i n g add it io n al featu re s :

■ Po l a r it y inv er s io n — c o rre c t s acc id e n t a l ly swa p p e d pos it i v e and neg a t i v e sig n a l s 
from the seria l diff ere n t i a l link du ring boa rd la you t by inv ert i n g the pola ri t y of 
each bit. An optio n a l tx_invpolarity port is avail a b l e to dyna m ic a l ly inv e r t the 
pola ri t y of ev ery bit of the 8-b it or 10-b it inp ut data to the serial i z e r in the 
trans m i t t e r dat ap a t h . Fig u re 1–9  show s the tra n s m i t t e r po lar i t y inve rs i o n feat u re .

1 tx_invpolarity is a dyna m i c sign a l and migh t cau se ini t i a l dis p a r i t y erro r s 
at the recei v e r of an 8B/10B enco de d link . The down stre a m syst e m must be 
able to tole ra t e the se disp a r ity erro r s .

Figure 1 –9. Transmitter Polarity Inversion
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Transmitter Output Buffer
Fi g u re 1–11  shows the tran s m i t t er outp u t buffe r bloc k diag ra m .

T h e Cyclo n e IV GX tran s m itt e r outp u t buff er s supp o r t the 1.5-V PCML I/O standa rd 
and are powe red by VCCH_GXB power pins with 2.5-V su pp l y. The 2.5-V supp l y on 
VCCH_GXB pins are regu lat ed int e rn a ll y to 1.5-V for the tran sm itt er out p ut buff e rs . The 
trans m i t t e r ou tpu t buffe r s su ppo r t the follo w i n g addit i o n a l fea tu re s :

■ P ro g r a m m a b l e diff ere n t i a l outp u t volt a g e (V OD )—cu sto m ize s the V OD  up to 
1200 mV to handl e diff e re n t trace leng t h s , vari o u s ba ck p l a n e s , and va ri o u s 
rece i v e r requi rem en t s.

■ P ro g r a m m a b l e pre- em p h a s i s — b o o s t s high - f re q u e nc y comp o n e nt s in the 
trans m i t t e d signa l to ma xim i z e the da ta eye open i n g at the far- en d . The 
high - f req ue n c y comp o n e n t s migh t be atte n u a t e d in the tra n s m i s s i o n medi a du e to 
data -d e p e n d e n t jit ter and int ers y m b o l inte r f ere n c e (ISI) effe c t s . The requ i re m e n t 
for pre- e m p h a s i s incre a se s as the data rate s thro u g h lega c y back p l a ne s incre a se .

■ P ro g r a m m a b l e diff ere n t i a l on-c hi p term i n a t i o n (OCT)—p ro v i d e s cali b r a t e d OCT 
at diffe re n t i a l 100  or 150 w i t h on-c h i p tra n s m i t t e r comm o n mode volt a ge 
(V CM ) at 0.65 V. V CM  is tri- s t a t e d when you disa b l e the OCT to use exte r n a l 
termi n a ti o n .

1 D i s a b l e OCT to use ext er n a l term i n a t i o n if the link requ i re s a 85  termi n a t i o n , such 
as when you are int er f a c i n g with cert a i n PCIe Gen1 or Gen2 capab l e devi c e s . 

f T h e Cycl o n e IV GX tran s m i t t e r outp u t bu ff e r s are curre n t - m o d e driv e r s. The resu l t i n g 
V OD  volta ge is theref o re a functi o n of the trans m i t t e r termin a ti o n val ue. For lis ts of 
suppo r t e d V OD  set t i n gs , refe r to the Cyclone IV Device Data Sheet .

F i g ure 1 –11. Transmitter Output Buffer Block D ia gram

Note to Figure 1–11:

(1) Receiver detect function is specific for PCIe protocol implementation only. For more information, refer to “PCI 
Express (PIPE) Mode” on page 1–52.
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