
Digi - 20-101-1194 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor Rabbit 3000

Co-Processor -

Speed 44.2MHz

Flash Size 512KB (Internal), 8MB (External)

RAM Size 1MB

Connector Type 2 IDC Headers 2x17, 1 IDC Header 2x5

Size / Dimension 1.85" x 2.73" (47mm x 69mm)

Operating Temperature -40°C ~ 85°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/20-101-1194

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/20-101-1194-4510385
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

2. GETTING STARTED

This chapter explains how to set up and use the RCM3309/
RCM3319 modules with the accompanying Prototyping Board.

NOTE: It is assumed that you have a Development Kit. If you purchased an RCM3309 or
RCM3319 module by itself, you will have to adapt the information in this chapter and
elsewhere to your test and development setup.

2.1 Install Dynamic C
To develop and debug programs for the RCM3309/RCM3319 (and for all other Rabbit
hardware), you must install and use Dynamic C.

If you have not yet installed Dynamic C, do so now by inserting the Dynamic C CD from
the Development Kit in your PC’s CD-ROM drive. If autorun is enabled, the CD installa-
tion will begin automatically.

If autorun is disabled or the installation otherwise does not start, use the Windows
Start | Run menu or Windows Disk Explorer to launch setup.exe from the root folder
of the CD-ROM.

The installation program will guide you through the installation process. Most steps of the
process are self-explanatory.

Dynamic C uses a COM (serial) port to communicate with the target development system.
The installation allows you to choose the COM port that will be used. The default selec-
tion is COM1. Select any available USB port for Dynamic C’s use. This selection can be
changed later within Dynamic C.

NOTE: The installation utility does not check the selected COM port in any way. Speci-
fying a port in use by another device (mouse, modem, etc.) may lead to a message such
as "could not open serial port" when Dynamic C is started.

Once your installation is complete, you will have up to three icons on your PC desktop.
One icon is for Dynamic C, one opens the documentation menu, and the third is for the
Rabbit Field Utility, a tool used to download precompiled software to a target system.

If you have purchased the optional Dynamic C Rabbit Embedded Security Pack, install it
after installing Dynamic C. You must install the Rabbit Embedded Security Pack in the
same directory where Dynamic C was installed.
User’s Manual 9

2.2.2 Step 2 — Connect Programming Cable

The programming cable connects the RCM3309/RCM3319 to the PC running Dynamic C
to download programs and to monitor the RCM3309/RCM3319 module during debugging.

Connect the 10-pin connector of the programming cable labeled PROG to header J1 on
the RCM3309/RCM3319 as shown in Figure 3. There is a small dot on the circuit board
next to pin 1 of header J1. Be sure to orient the marked (usually red) edge of the cable
towards pin 1 of the connector. (Do not use the DIAG connector, which is used for a non-
programming serial connection.)

Figure 3. Connect Programming Cable and Power Supply

Connect the other end of the programming cable to an available USB port on your PC or
workstation. Your PC should recognize the new USB hardware, and the LEDs in the
shrink-wrapped area of the USB programming cable will flash.

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�

�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

���������	

$�

�
�

��

��

�
�

 �

$�

�
�

��

 �� �

�

 �� �� �� �
 �

�

���

�
�

�
�

�
�

�
�

���

$�

�
�

$�

�
�

�
��

���
�

��
��$

���

���

�
��

�
�

�
�� ���

�
��

 �
�

 �
��

 �
�

 �
�

��

 �

�
��

�
��

�
��

���

��

�
�

�
��

�
��

�
��

�
��

�
��

���

���

�
�
$�

�
��

���

�
��

���
��

���������

���
���

���

���
���

���

�
��

��� $�

���

���

�
��

�
��

���

���
��
���

�

�
��

� $
�

�
��

�
��

�

�

 �
��

 �
��

���
���

 �
��

�
��

��

�
��

�
��

 ��� ���

$�

��

���

���

�
��

��
���
��

���

�
�

��

��

�
�
�

�
�
�

�
�
	

�
�

�
�
�

�
�

�
�

��

�
��

�����))

�

$��

��

�
��

�
��

�
��

��
�

�
�
�
�

�-.-/01�0120

�
��
	�������	���

�
�
�
�

 �

�-
���
���3-/4

�560/4�478�954-�6.-4

�/066�1-:5�-5�;.93<
6573�3.=2�954-�3.7;0�

�
�

�����
�����	���

����
����	���������	
User’s Manual 11

2.2.3 Step 3 — Connect Power

When all other connections have been made, you can connect power to the Prototyping
Board.

First, prepare the AC adapter for the country where it will be used by selecting the plug.
The RCM3909/RCM3319 Development Kit presently includes Canada/Japan/U.S., Aus-
tralia/N.Z., U.K., and European style plugs. Snap in the top of the plug assembly into the
slot at the top of the AC adapter as shown in Figure 3, then press down on the spring-
loaded clip below the plug assembly to allow the plug assembly to click into place.

Connect the AC adapter to 3-pin header J2 on the Prototyping Board as shown in Figure 3.

Plug in the AC adapter. The red CORE LED on the Prototyping Board should light up. The
RCM3309/RCM3319 and the Prototyping Board are now ready to be used.

NOTE: A RESET button is provided on the Prototyping Board to allow a hardware reset
without disconnecting power.
12 RabbitCore RCM3309/RCM3319

3.2 Sample Programs
Of the many sample programs included with Dynamic C, several are specific to the
RCM3309 and the RCM3319. Sample programs illustrating the general operation of the
RCM3309/RCM3319, serial communication, and the serial flash are provided in the
SAMPLES\RCM3300 folder. Each sample program has comments that describe the purpose
and function of the program. Follow the instructions at the beginning of the sample pro-
gram. Note that the RCM3309/RCM3319 must be installed on the Prototyping Board
when using the sample programs described in this chapter.

• CONTROLLED.c—Demonstrates use of the digital outputs by having you turn the
LEDs on the Prototyping Board on or off from the STDIO window on your PC.

Once you compile and run CONTROLLED.C, the following display will appear in the
Dynamic C STDIO window.

Press “2” or “3” or “4”or “5”on your keyboard to select LED DS3 or DS4 or DS5 or
DS6 on the Prototyping Board. Then follow the prompt in the Dynamic C STDIO win-
dow to turn the LED on or off.

• FLASHLED.c—Demonstrates assembly-language program by flashing the USR LED
on the RCM3309/RCM3319 and LEDs DS3, DS4, DS5, and DS6 on the Prototyping
Board.

• SWRELAY.c—Demonstrates the relay-switching function call using the relay installed
on the Prototyping Board through screw-terminal header J17.

• TOGGLESWITCH.c—Uses costatements (cooperative multitasking) to detect switches
S2 and S3 using debouncing. The corresponding LEDs (DS3 and DS4) will turn on or
off.

Once you have loaded and executed these five programs and have an understanding of
how Dynamic C and the RCM3309/RCM3319 modules interact, you can move on and try
the other sample programs, or begin building your own.
16 RabbitCore RCM3309/RCM3319

Notes

1. When using pins 33–34 on header J3 to drive LEDs, these pins can handle a sinking
current of up to 8 mA.

2. The VRAM voltage is temperature-dependent. If the VRAM voltage drops below about
1.2 V to 1.5 V, the contents of the battery-backed SRAM may be lost. If VRAM drops
below 1.0 V, the 32 kHz oscillator could stop running. Pay careful attention to this volt-
age if you draw any current from this pin.

H
ea

de
r J

62

20 PG7 Input/Output RXE
Serial Port E

21 PG6 Input/Output TXE

22 PG5 Input/Output RCLKE Serial Clock E input

23 PG4 Input/Output TCLKE Serial Clock E ouput

24 /IOWR Output External write strobe

25 /IORD Output External read strobe

26–27 SMODE0,
SMODE1

(0,0)—start executing at address zero
(0,1)—cold boot from slave port
(1,0)—cold boot from clocked Serial Port A

SMODE0 =1, SMODE1 = 1
Cold boot from asynchronous Serial Port A at
2400 bps (programming cable connected)

Also connected to
programming cable

28 /RESET_IN Input Input to Reset Generator

29 VRAM Output See Notes below table

30 VBAT_EXT 3 V battery Input Minimum battery
voltage 2.85 V

31 +3.3 VIN Power Input 3.15–3.45 V DC

32 GND

33 n.c. Reserved for future use

34 GND

Table 2. RCM3309/RCM3319 Pinout Configurations (continued)

Pin Pin Name Default Use Alternate Use Notes
26 RabbitCore RCM3309/RCM3319

4.1.1 Memory I/O Interface

The Rabbit 3000 address lines (A0–A18) and all the data lines (D0–D7) are routed
internally to the onboard flash memory and SRAM chips. I/O write (/IOWR) and I/O read
(/IORD) are available for interfacing to external devices.

Parallel Port A can also be used as an external I/O data bus to isolate external I/O from the
main data bus. Parallel Port B pins PB2–PB5 and PB7 can also be used as an auxiliary
address bus.

When using the auxiliary I/O bus for a digital output or the LCD/keypad module on the
Prototyping Board, or for any other reason, you must add the following line at the begin-
ning of your program.

#define PORTA_AUX_IO // required to enable auxiliary I/O bus

4.1.2 LEDs

The RCM3309/RCM3319 has three Ethernet status LEDs located beside the RJ-45
Ethernet jack—these are discussed in Section 4.2.

Addiitionally, there is one dual LED DS4. PD1 on the Rabbit 3000’s Parallel Port D is
used to enable the serial flash, and is connected to the green CE LED at DS4, which blinks
when data are being written to or read from the serial flash. The red BSY LED at DS4 is a
user-programmable LED, and is controlled by PD0. The CONTROLLED.C and FLASHLED.C
sample programs in the Dynamic C SAMPLES\RCM3300 folder show how to set up and
use this user-programmable LED.

4.1.3 Other Inputs and Outputs

The status, /RESET_IN, SMODE0, and SMODE1 I/O are normally associated with the
programming port. Since the status pin is not used by the system once a program has been
downloaded and is running, the status pin can then be used as a general-purpose CMOS
output. The programming port is described in more detail in Section 4.2.3.

/RES is an output from the reset circuitry that can be used to reset external peripheral
devices.
User’s Manual 27

• SMTP.C—This program demonstrates using the SMTP library to send an e-mail when
the S2 and S3 switches on the Prototyping Board are pressed. LEDs DS3 and DS4 on
the Prototyping Board will light up when e-mail is being sent.

6.6.1 RabbitWeb Sample Programs

The following sample programs are in the Dynamic C SAMPLES\RCM3300\TCPIP\
RABBITWEB folder.

• BLINKLEDS.C—This program demonstrates a basic example to change the rate at
which the DS3 and DS4 LEDs on the Prototyping Board blink.

• DOORMONITOR.C—The optional LCD/keypad module (see Appendix C) must be plugged
in to the Prototyping Board when using this sample program. This program demon-
strates adding and monitoring passwords entered via the LCD/keypad module.

• SPRINKLER.C—This program demonstrates how to schedule times for the relay and
digital outputs in a 24-hour period.

6.6.2 Remote Application Update

The following programs that make up the featured application for the RCM3309/
RCM3319 can be found in the SAMPLES\RCM3300\RemoteApplicationUpdate folder.

• DLP_STATIC.C—This program uses the TCP/IP LIB\TCPIP\HTTP.LIB library, and
outputs a basic static Web page.

• DLP_WEB.C—This program outlines a basic download program with a Web interface.

Complete information on the use of these programs is provided in the Remote Application
Update instructions, which are available with the online documentation.

6.6.3 Dynamic C FAT File System, RabbitWeb, and SSL Libraries

The Dynamic C FAT File System, RabbitWeb, and Secure Sockets Layer (SSL) libraries
have been integrated into a sample program for the RCM3309 and the RCM3319. The sam-
ple program requires that you have installed the optional Rabbit Embedded Security Pack.

TIP: Before running any of the sample programs described in this section, you should
look at and run sample programs for the TCP/IP LIB\TCPIP\ZSERVER.LIB library,
the FAT file system, RabbitWeb, SSL, the download manager, and HTTP upload to
become more familiar with their operation.

The INTEGRATION.C sample program in the SAMPLES\RCM3300\Module_Integra-
tion folder demonstrates the use of the TCP/IP LIB\TCPIP\ZSERVER.LIB library and
FAT file system functionality with RabbitWeb dynamic HTML content, all secured using
SSL. The sample program also supports dynamic updates of both the application and its
resources using the Rabbit Download Manager (DLM) and HTTP upload capability,
respectively—note that neither of these currently supports SSL security.

First, you need to format and partition the serial flash. Find the FMT_DEVICE.C sample
program in the Dynamic C SAMPLES\FileSystem folder. Open this sample program
with the File > Open menu, then compile and run it by pressing F9. FMT_DEVICE.C
User’s Manual 63

Figure A-4 shows a typical timing diagram for the Rabbit 3000 microprocessor external I/O
read and write cycles.

Figure A-4. I/O Read and Write Cycles—No Extra Wait States

NOTE: /IOCSx can be programmed to be active low (default) or active high.

�71/

�71/

�/��
�	���%1� �	��7�����
��
	������	���
�	��8

���

�F�
G�H

�/��
�	���%1�9
����7�����
��
	������	���
�	��8

���

�F�
G�H

����

�����

�� �:

�� �: ��

�����

��

��$%	�

�����+

���*�

��$%	�

F�G�H �����

�604=3

�?-.1

���+

�����+

���+

�����+

����

��$%	�

���+

�����+

����

��$%	�

�����
F�G�H

���+
���+

�����+

���*�

���+

�����+

���*�

��$%	� ��$%	�

�
&I! �
!&I
74 RabbitCore RCM3309/RCM3319

A.5 Jumper Configurations
Figure A-5 shows the jumper locations used to configure the various RCM3309/
RCM3319 options. The black square indicates pin 1.

Figure A-5. Location of RCM3309/RCM3319 Configurable Positions

Table A-8 lists the configuration options.

Table A-8. RCM3309/RCM3319 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 Serial Flash Chip Enable Indicator 1–2 ×

JP2 ACT or PD1 Output
on J61 pin 34

1–2 ACT ×
2–3 PD1

JP3 LINK or PD0 Output
on J61 pin 33

1–2 LINK ×
2–3 PD0

JP4 ENET or PE0 Output
on J62 pin 19

1–2 ENET

2–3 PE0 ×

JP5 NAND Flash Chip Enable
1–2 Reserved for future use

n.c.
2–3 PD1 controls NAND Flash

 �
�� ���

 �
�

 �
�

 �
�

 �

 �
��

 �
��

 �
�

 �
�

 �
�

 �
��

,�������

 ��

 �!""#$% �!""&$
78 RabbitCore RCM3309/RCM3319

• Module Extension Headers—The complete pin set of the RCM3309/RCM3319
module is duplicated at headers J8 and J9. Developers can solder wires directly into the
appropriate holes, or, for more flexible development, 2 × 17 header strips with a 0.1"
pitch can be soldered into place. See Figure B-4 for the header pinouts.

• Digital I/O—Four digital inputs are available on screw-terminal header J6. See
Figure B-4 for the header pinouts.

• RS-232—Two 3-wire serial ports or one 5-wire RS-232 serial port are available on the
Prototyping Board at screw-terminal header J14.

• RS-485—One RS-485 serial port is available on the Prototyping Board at screw-termi-
nal header J14.

• Quadrature Decoder—Four quadrature decoder inputs (PF0–PF3) from the Rabbit
3000 chip are available on screw-terminal header J5. See Figure B-4 for the header
pinouts.

• H-Bridge Motor Driver—Two pairs of H-bridge motor drivers are supported using
screw-terminal headers J3 and J4 on the Prototyping Board for stepper-motor control.
See Figure B-4 for the header pinouts.

• RabbitNet Port—One RS-422 RabbitNet port (shared with the serial flash interface) is
available to allow RabbitNet peripheral cards to be used with the Prototyping Board.

• Serial Flash Interface—One serial flash interface (shared with the RabbitNet port) is
available to allow Rabbit’s SF1000 series serial flash to be used on the Prototyping
Board.
84 RabbitCore RCM3309/RCM3319

The Prototyping Board comes with a 220 Ω termination resistor and two 681 Ω bias resis-
tors installed and enabled with jumpers across pins 1–2 and 5–6 on header JP5, as shown
in Figure B-9.

Figure B-9. RS-485 Termination and Bias Resistors

For best performance, the termination resistors in a multidrop network should be enabled
only on the end nodes of the network, but not on the intervening nodes. Jumpers on boards
whose termination resistors are not enabled may be stored across pins 1–3 and 4–6 of
header JP5.

B.4.7 RabbitNet Ports

The RJ-45 jack labeled RabbitNet is a clocked SPI RS-422 serial I/O expansion port for
use with RabbitNet peripheral boards. The RabbitNet jack does not support Ethernet con-
nections. Header JP3 must have pins 2–3 jumpered when using the RabbitNet port.

The RabbitNet port is enabled in software by setting PD2 = 1. Note that the RabbitNet
port and the J11 interface cannot be used simultaneously.

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
	
�
��
��
%
��

�
&
�

�
�

	
�

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

��

��

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

 �
�

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���
�
��

$

���
��

�
��

���� �������������� ������
������� ����$�

�$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$�

���

 ��

�
��

�
��

�
�� �
��

$)

$)�
����*

$)�
����*

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

$)�

)�

�)��

�)��

�)��

�)��

�)���)�

�%�,���

�%�,�

 ��

�
�

$�

�
��

�
��

�
��

�
��

�
�

�)�

�)�
�

�

�

�

�

�

�

�
��

�
��

�
�

�
��

�

�

�
��

������	�������

�

�

�

�

�
�
�
��

(�
�
�
�
��

(�

���
���
���
���

$�

�
�

��

��

�
�

 �

$�

�
�

��

 �� �

�

 �� �� �� �
 �

�

���

�
�

�
�

�
�

�
�

���

$�

�
�

$�

�
�

�
��

���
�

��
��$

���

���

�
��

�
�

�
�� ���

�
��

 �
�

 �
��

 �
�

 �
�

��

 �

�
��

�
��

�
��

���

��

�
�

�
��

�
��

�
��

�
��

�
��

���

���

�
�
$�

�
��

���

�
��

���
��

���������

���
���

���

���
���

���

�
��

��� $�

���

���

�
��

�
��

���

���
��
���

�

�
��

� $
�

�
��

�
��

�

�

 �
��

 �
��

���
���

 �
��

�
��

��

�
��

�
��

 ��� ���

$�

��

���

���

�
��

��
���
��

���

�
�

��

��

�
�
�

�
�
�

�
�
	

�
�

�
�
�

�
�

�
�

��

�
��

�����))

�

$��

��

�
��

�
��

�
��

?	���
�
(��	���

���
�����

���
�����

���
�����

��
�

��
'

�

�

������
����	�

���

���

$�� �

� �

�

�
�
��

 �

�

�

�

�

�

User’s Manual 95

Table B-4 lists the configuration options using jumpers.

Table B-4. Prototyping Board Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 Stepper Motor Power-Supply
Options (U2)

1–2
9–10 Onboard power supply ×
3–4
7–8 External power supply

JP2 Stepper Motor Power-Supply
Options (U3)

1–2
9–10 Onboard power supply ×
3–4
7–8 External power supply

JP3 PF0 Option
1–2 Quadrature decoder inputs enabled

2–3 RabbitNet/Serial Flash interface
enabled ×

JP4 RCM3309/RCM3319 Power
Supply 2–3 RCM3309/RCM3319 powered via

Prototyping Board ×

JP5 RS-485 Bias and Termination
Resistors

1–2
5–6

Bias and termination resistors
connected ×

1–3
4–6

Bias and termination resistors not
connected (parking position for
jumpers)
User’s Manual 99

102 RabbitCore RCM3309/RCM3319

C.3 Keypad Labeling
The keypad may be labeled according to your needs. A template is provided in Figure C-4
to allow you to design your own keypad label insert.

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Figure C-5. Removing and Inserting Keypad Label

The sample program KEYBASIC.C in the 122x32_1x7 folder in SAMPLES\LCD_KEYPAD
shows how to reconfigure the keypad for different applications.

�"��
B��C

�"�

B��C

�0E371�.780.�96�.-;7401
����	�4?0�8.=0�J0E371�@7440"
106 RabbitCore RCM3309/RCM3319

C.8.3 LCD Display

The functions used to control the LCD display are contained in the GRAPHIC.LIB library
located in the Dynamic C LIB\DISPLAYS\GRAPHIC library folder. When x and y coordi-
nates on the display screen are specified, x can range from 0 to 121, and y can range from
0 to 31. These numbers represent pixels from the top left corner of the display.

glInit

void glInit(void);

DESCRIPTION

Initializes the display devices, clears the screen.

RETURN VALUE

None.

SEE ALSO

glDispOnOFF, glBacklight, glSetContrast, glPlotDot, glBlock, glPlotDot,
glPlotPolygon, glPlotCircle, glHScroll, glVScroll, glXFontInit, glPrintf,
glPutChar, glSetBrushType, glBuffLock, glBuffUnlock, glPlotLine

glBackLight

void glBackLight(int onOff);

DESCRIPTION

Turns the display backlight on or off.

PARAMETER

onOff turns the backlight on or off
1—turn the backlight on
0—turn the backlight off

RETURN VALUE

None.

SEE ALSO

glInit, glDispOnoff, glSetContrast
User’s Manual 115

glFontCharAddr

unsigned long glFontCharAddr(fontInfo *pInfo, char letter);

DESCRIPTION

Returns the xmem address of the character from the specified font set.

PARAMETERS

pInfo pointer to the xmem address of the bitmap font set.

letter an ASCII character.

RETURN VALUE

xmem address of bitmap character font, column major and byte-aligned.

SEE ALSO

glPutFont, glPrintf

glPutFont

void glPutFont(int x, int y, fontInfo *pInfo, char code);

DESCRIPTION

Puts an entry from the font table to the page buffer and on the LCD if the buffer is un-
locked. Each font character's bitmap is column major and byte-aligned. Any portion of
the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS

x the x coordinate (column) of the top left corner of the text.

y the y coordinate (row) of the top left corner of the text.

pInfo a pointer to the font descriptor.

code the ASCII character to display.

RETURN VALUE

None.

SEE ALSO

glFontCharAddr, glPrintf
User’s Manual 127

glGetBrushType

int glGetBrushType(void);

DESCRIPTION

Gets the current method (or color) of pixels drawn by subsequent graphic calls.

RETURN VALUE

The current brush type.

SEE ALSO

glSetBrushType

glXGetBitmap

void glXGetBitmap(int x, int y, int bmWidth, int bmHeight,
unsigned long xBm);

DESCRIPTION

Gets a bitmap from the LCD page buffer and stores it in xmem RAM. This function
automatically calls glXGetFastmap if the left edge of the bitmap is byte-aligned and
the left edge and width are each evenly divisible by 8.

This function call is intended for use only when a graphic engine is used to interface with
the LCD/keypad module.

PARAMETERS

x the x coordinate in pixels of the top left corner of the bitmap (x
must be evenly divisible by 8).

y the y coordinate in pixels of the top left corner of the bitmap.

bmWidth the width in pixels of the bitmap (must be evenly divisible by 8).

bmHeight the height in pixels of the bitmap.

xBm the xmem RAM storage address of the bitmap.

RETURN VALUE

None.
User’s Manual 133

TextBorder

void TextBorder(windowFrame *wPtr);

DESCRIPTION

This function displays the border for a given window frame. This function will auto-
matically adjust the text window parameters to accommodate the space taken by the
text border. This adjustment will only occur once after the TextBorderInit()
function executes.

NOTE: Execute the TextWindowFrame() function before using this function.

PARAMETER

wPtr a pointer to the window frame descriptor.

RETURN VALUE

None.

SEE ALSO

TextBorderInit, TextGotoXY, TextPutChar, TextWindowFrame,
TextCursorLocation

TextGotoXY

void TextGotoXY(windowFrame *window, int col, int row);

DESCRIPTION

Sets the cursor location to display the next character. The display location is based on
the height and width of the character to be displayed.

NOTE: Execute the TextWindowFrame() function before using this function.

PARAMETERS

window a pointer to a font descriptor.

col a character column location.

row a character row location.

RETURN VALUE

None.

SEE ALSO

TextPutChar, TextPrintf, TextWindowFrame
146 RabbitCore RCM3309/RCM3319

TextCursorLocation

void TextCursorLocation(windowFrame *window, int *col, int *row);

DESCRIPTION

Gets the current cursor location that was set by a graphic Text... function.

NOTE: Execute the TextWindowFrame() function before using this function.

PARAMETERS

window a pointer to a font descriptor.

col a pointer to cursor column variable.

row a pointer to cursor row variable.

RETURN VALUE

Lower word = Cursor Row location
Upper word = Cursor Column location

SEE ALSO

TextGotoXY, TextPrintf, TextWindowFrame, TextCursorLocation
User’s Manual 147

rn_read

int rn_read(int handle, int regno, char *recdata, int datalen);

DESCRIPTION

Reads a string from the specified device and register. Waits for results. This function will
check device information to determine that the peripheral card is connected to a master.

PARAMETERS

handle is an address index to device information. Use rn_device() or
rn_find() to establish the handle.

regno is the command register number as designated by each device.

recdata is a pointer to the address of the string to read from the device.

datalen is the number of bytes to read (0–15).

NOTE: A data length of 0 will transmit the one-byte command register number.

RETURN VALUE

The status byte from the previous command.

-1 means that device information indicates the peripheral card is not connected to the
master, and -2 means that the data length was greater than 15.

SEE ALSO

rn_write
User’s Manual 171

