
Digi - 20-101-1195 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Obsolete

Module/Board Type MPU Core

Core Processor Rabbit 3000

Co-Processor -

Speed 44.2MHz

Flash Size 512KB (Internal), 4MB (External)

RAM Size 1MB

Connector Type 2 IDC Headers 2x17, 1 IDC Header 2x5

Size / Dimension 1.85" x 2.73" (47mm x 69mm)

Operating Temperature -40°C ~ 85°C

Purchase URL https://www.e-xfl.com/product-detail/digi-international/20-101-1195

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/20-101-1195-4509981
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

1.3 Advantages of the RCM3309 and RCM3319
• Fast time to market using a fully engineered, “ready-to-run/ready-to-program” micro-

processor core.

• Competitive pricing when compared with the alternative of purchasing and assembling
individual components.

• Easy C-language program development and debugging

• Program download utility (Rabbit Field Utility) and cloning board options for rapid
production loading of programs.

• Generous memory size allows large programs with tens of thousands of lines of code,
and substantial data storage.

• Integrated Ethernet port for network connectivity, with royalty-free TCP/IP software.

• Ideal for network-enabling security and access systems, home automation, HVAC
systems, and industrial controls
User’s Manual 5

If Dynamic C appears to compile the BIOS successfully, but you then receive a communi-
cation error message when you compile and load a sample program, it is possible that your
PC cannot handle the higher program-loading baud rate. Try changing the maximum
download rate to a slower baud rate as follows.

• Locate the Serial Options dialog on the “Communications” tab in the Dynamic C
Options > Project Options menu. Select a slower Max download baud rate. Click OK
to save.

If a program compiles and loads, but then loses target communication before you can
begin debugging, it is possible that your PC cannot handle the default debugging baud
rate. Try lowering the debugging baud rate as follows.

• Locate the Serial Options dialog in the Dynamic C Options > Project Options >
Communications menu. Choose a lower debug baud rate. Click OK to save.

Press <Ctrl-Y> to force Dynamic C to recompile the BIOS. The LEDs on the USB pro-
gramming cable will blink and you should receive a Bios compiled successfully
message.

2.5 Where Do I Go From Here?
If the sample program ran fine, you are now ready to go on to other sample programs and to
develop your own applications. The source code for the sample programs is provided to allow
you to modify them for your own use. The RCM3309/RCM3319 User’s Manual also
provides complete hardware reference information and describes the software function calls
for the RCM3309 and the RCM3319, the Prototyping Board, and the optional LCD/keypad
module.

For advanced development topics, refer to the Dynamic C User’s Manual and the
Dynamic C TCP/IP User’s Manual, also in the online documentation set.

2.5.1 Technical Support

NOTE: If you purchased your RCM3309/RCM3319 through a distributor or through a
Rabbit partner, contact the distributor or partner first for technical support.

If there are any problems at this point:

• Use the Dynamic C Help menu to get further assistance with Dynamic C.

• Check the Rabbit Technical Bulletin Board and forums at www.rabbit.com/support/bb/
and at www.rabbit.com/forums/.

• Use the Technical Support e-mail form at www.rabbit.com/support/.
14 RabbitCore RCM3309/RCM3319

http://www.rabbit.com/support/bb/index.html
http://www.rabbit.com/support/questionSubmit.shtml
http://www.rabbitsemiconductor.com/forums/

Figure 6 shows the use of the Rabbit 3000 microprocessor ports in the RCM3309/
RCM3319 modules.

Figure 6. Use of Rabbit 3000 Ports

The ports on the Rabbit 3000 microprocessor used in the RCM3309/RCM3319 are config-
urable, and so the factory defaults can be reconfigured. Table 2 lists the Rabbit 3000
factory defaults and the alternate configurations.

 ����,�-
"###

��")�� ��")�
 ��")��

���'��� ���'���

�	�'�	�<
�	�'�	�

�
�'�
�

��	�
����

���*�

7$)�,*�3
���	#&!"�

�%������'-%!"
�%$+!���")

�!$%�	#&!��%���

��2
$��'.�
$))!"0
�'..�")
%$�,

��")��
4�!"#$%���")����8��5

�"�3"$&&#(3
��")

4�!"#$%���")��5

�),!"(!)
��")��	4?0/504�69257.6

���<����<�����$�
���<���	�	�<

���
	�<����
	�

���<����

���<����

��")�9
4�!"#$%���")����8�
5

��")�
 �%�'�%�

��	�

���'���
���'���

2#��1�:;�

���'���<
���'��

��")�9
4��!"#$%���")�5

��")��
4��),!"(!)���")5
User’s Manual 23

5.1.1 Developing Programs Remotely with Dynamic C

Dynamic C is an integrated development environment that allows you to edit, compile,
and debug your programs. Dynamic C has the ability to allow programming over the
Internet or local Ethernet. This is accomplished in one of two ways.

1. Via the RabbitLink, which allows a Rabbit-based target to have programs downloaded
to it and debugged with the same ease as exists when the target is connected directly to
a PC.

2. The RCM3309/RCM3319 has a featured remote application update written specifically
to allow the RCM3309/RCM3319 to be programmed over the Internet or local Ethernet.
These programs, DLP_STATIC.C and DLP_WEB.C, are available in the Dynamic C
SAMPLES\RCM3300\RemoteApplicationUpdate folder. Complete information on
the use of these programs is provided in the Remote Application Update instructions,
which are available with the online documentation.

Dynamic C provides sample programs to illustrate the use of a download manager.
User’s Manual 37

digOut

void digOut(int channel, int value);

DESCRIPTION

Writes a value to an output channel on Prototyping Board header J10. Do not use this
function if you have installed the stepper motor chips at U2 and U3.

PARAMETERS

channel output channel 0–7 (OUT00–OUT07).

value value (0 or 1) to output.

RETURN VALUE

None.

SEE ALSO

brdInit
42 RabbitCore RCM3309/RCM3319

5.2.6.5 RabbitNet Port

The function calls described in this section are used to configure the RabbitNet port on the
Prototyping Board for use with RabbitNet peripheral cards. The user’s manual for the spe-
cific peripheral card you are using contains additional function calls related to the Rabbit-
Net protocol and the individual peripheral card. Appendix 0 provides additional
information about the RabbitNet.

These RabbitNet peripheral cards are available at the present time.

Before using the RabbitNet port, add the following lines at the start of your program.

#define RN_MAX_DEV 10 // max number of devices
#define RN_MAX_DATA 16 // max number of data bytes in any transaction
#define RN_MAX_PORT 2 // max number of serial ports

Set the following bits in RNSTATUSABORT to abort transmitting data after the status byte is
returned. This does not affect the status byte and still can be interpreted. Set any bit com-
bination to abort:

bit 7—device busy is hard-coded into driver
bit 5—identifies router or slave
bits 4,3,2—peripheral-board-specific bits
bit 1—command rejected
bit 0—watchdog timeout

#define RNSTATUSABORT 0x80
 // hard-coded driver default to abort if the peripheral board is busy

rn_sp_info

void rn_sp_info();

DESCRIPTION

Provides rn_init() with the serial port control information needed for RCM3309/
RCM3319 modules.

RETURN VALUE

None.

• Digital I/O Card (RN1100)

• A/D Converter Card (RN1200)

• D/A Converter Card (RN1300)

• Relay Card (RN1400)

• Keypad/Display Interface (RN1600)
User’s Manual 47

6.4.1 How to Set IP Addresses in the Sample Programs

With the introduction of Dynamic C 7.30 we have taken steps to make it easier to run
many of our sample programs. You will see a TCPCONFIG macro. This macro tells
Dynamic C to select your configuration from a list of default configurations. You will
have three choices when you encounter a sample program with the TCPCONFIG macro.

1. You can replace the TCPCONFIG macro with individual MY_IP_ADDRESS, MY_NET-
MASK, MY_GATEWAY, and MY_NAMESERVER macros in each program.

2. You can leave TCPCONFIG at the usual default of 1, which will set the IP configurations
to 10.10.6.100, the netmask to 255.255.255.0, and the nameserver and gateway
to 10.10.6.1. If you would like to change the default values, for example, to use an IP
address of 10.1.1.2 for the RCM3309/RCM3319 board, and 10.1.1.1 for your PC,
you can edit the values in the section that directly follows the “General Configuration”
comment in the TCP_CONFIG.LIB library. You will find this library in the LIB\TCPIP
directory.

3. You can create a CUSTOM_CONFIG.LIB library and use a TCPCONFIG value greater
than 100. Instructions for doing this are at the beginning of the TCP_CONFIG.LIB
library in the LIB\TCPIP directory.

There are some other “standard” configurations for TCPCONFIG that let you select differ-
ent features such as DHCP. Their values are documented at the top of the TCP_CONFIG.
LIB library in the LIB\TCPIP directory. More information is available in the Dynamic C
TCP/IP User’s Manual.
60 RabbitCore RCM3309/RCM3319

A.5 Jumper Configurations
Figure A-5 shows the jumper locations used to configure the various RCM3309/
RCM3319 options. The black square indicates pin 1.

Figure A-5. Location of RCM3309/RCM3319 Configurable Positions

Table A-8 lists the configuration options.

Table A-8. RCM3309/RCM3319 Jumper Configurations

Header Description Pins Connected Factory
Default

JP1 Serial Flash Chip Enable Indicator 1–2 ×

JP2 ACT or PD1 Output
on J61 pin 34

1–2 ACT ×
2–3 PD1

JP3 LINK or PD0 Output
on J61 pin 33

1–2 LINK ×
2–3 PD0

JP4 ENET or PE0 Output
on J62 pin 19

1–2 ENET

2–3 PE0 ×

JP5 NAND Flash Chip Enable
1–2 Reserved for future use

n.c.
2–3 PD1 controls NAND Flash

 �
�� ���

 �
�

 �
�

 �
�

 �

 �
��

 �
��

 �
�

 �
�

 �
�

 �
��

,�������

 ��

 �!""#$% �!""&$
78 RabbitCore RCM3309/RCM3319

B.3 Power Supply
The RCM3309/RCM3319 requires a regulated 3.15 V to 3.45 V DC power source to oper-
ate. Depending on the amount of current required by the application, different regulators
can be used to supply this voltage.

The Prototyping Board has an onboard +5 V switching power regulator from which a
+3.3 V linear regulator draws its supply. Thus both +5 V and +3.3 V are available on the
Prototyping Board.

The Prototyping Board itself is protected against reverse polarity by a diode at D1 as
shown in Figure B-3.

Figure B-3. Prototyping Board Power Supply

���	�����*	�
�	�$�����

�
�
*
	
�

��

 �

���M%

������
$�

��"��!

�

�

�

�

�

�
�����

�

���M% ����M%

�
�!

��

��
����M&

�
��
���

�*���&������*	���	�$�����

���
$�

���
�

���M%
User’s Manual 87

Figure B-11 shows the stepper-motor driver circuit.

Figure B-11. Stepper-Motor Driver Circuit

The stepper motor(s) can be powered either from the onboard power supply or from an
external power based on the jumper settings on headers JP1 and JP2.

Table B-3. Stepper Motor Power-Supply Options

Header Pins Connected Factory
Default

JP1

1–2
9–10 Onboard power supply to U2 ×
3–4
7–8 External power supply to U2

JP2

1–2
9–10 Onboard power supply to U3 ×
3–4
7–8 External power supply to U3

 �

�

�

�

$�

�

�

�

�

��

��

�

�

�

��

�

�

	����	�

	����	�

�������K
������'K

��
�J
�

��
�J
�

����
�

!���

�
��

�
��

�
��

�
��

!��(

�$��

�$��

�$��

�$��

���

���

���

���

��
�J
�

��
�J
�

 �

�

�

�

$�

�

�

�

�

��

��

�

�

�

��

�

�

	����	�

	����	�

�������K
������'K

��
�J
�

��
�J
�

����
�

!��(

�
��

�
��

�
��

�
��

!���

@
�$��

�$��

�$��

�$��

���

���

���

���

��
�J
�

��
�J
�

@ �%�

�%

�%�

�%�
User’s Manual 97

C.3 Keypad Labeling
The keypad may be labeled according to your needs. A template is provided in Figure C-4
to allow you to design your own keypad label insert.

Figure C-4. Keypad Template

To replace the keypad legend, remove the old legend and insert your new legend prepared
according to the template in Figure C-4. The keypad legend is located under the blue key-
pad matte, and is accessible from the left only as shown in Figure C-5.

Figure C-5. Removing and Inserting Keypad Label

The sample program KEYBASIC.C in the 122x32_1x7 folder in SAMPLES\LCD_KEYPAD
shows how to reconfigure the keypad for different applications.

�"��
B��C

�"�

B��C

�0E371�.780.�96�.-;7401
����	�4?0�8.=0�J0E371�@7440"
106 RabbitCore RCM3309/RCM3319

C.5 Mounting LCD/Keypad Module on the Prototyping Board
Install the LCD/keypad module on header sockets LCD1JA, LCD1JB, and LCD1JC of the
Prototyping Board as shown in Figure C-7. Be careful to align the pins over the headers,
and do not bend them as you press down to mate the LCD/keypad module with the Proto-
typing Board.

Figure C-7. Install LCD/Keypad Module on Prototyping Board

��
�
�� ��
�

�	

�

�	

�

�	

�
�

�
�

 �
�

�
�

�

�

�

�)��

�)��

�)��

�������	�

�
���

��

�
��

�
��

�
��

�������
�

�

�
��

���

�
�

�
	
��

�
�
�
��
�
�
�
��
�
�
��
��

�
��
�
�
�
��
�
�
�

��

�	���
�
�����������

�

��
� � ��
� �

�! ��
	
�

�	

�

�	

�

�	

�

�	

�

�
�

�
�

�
�

�

�

�

�

��
� �

 ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 �

�
�
�

�
�
�

�
�
�

�
�
�

��

��
�

�
	
��

�
��

�
�
	

�"

�
�
�#

��
��
!

 ��

$��$��

���

�
�� �
�����

���

���

�
��

�
��

�
��

�	����
%���&�
��
	�

�
��

�
�
 ��

 �

�
�

�
�

�
�

�
�

�

�
�

��

�� $�

�
��

�� $���

���

�����

�

 �

 �
 �

 �
��
��������������������������������
!�
!��������
����
����
�����

!��'��
������������������!���!�������	����������������!��'

 �

�� �� �� ��

��

��

!��

��	�

���

��
�

��

���

�	�

�	�

�	�

�%�

�%

���

��

���

���

 �

��

��"��!

!���

���
	�

����

���

���

�	�

�	�

�	

���

���

���

�������

�
%
��
��
%
��
��
	
�

�������
�����������
����

��
�	�	�

 �

�� ��

���

�
�

�
�

�

���

���

���

��

���

���

�%�

�%�

���

���

���

���

����

����

�
�

�
�

�
�

���

���

���

���

���

���

�%�

�%�

���

���

��

���

��

 � �

��
��

�
�

�

�

�
�

�
�

��

��
�
�

�

��

��

�
��

�)�

�)�

�)�

�)�

�)

�)�

���

���

 �
�

�)�

�)�

�)�

��

���

�
� �	

�
�	

	

�
��

 �
�

 ��

��� ���

��� �

���

�
��

$

���
��

�

�
��

���������������������
��������

�$� �$�

��
���

$�

$�
����

&(
��!	�

����

&(
��!	�

$�

��
 ��� ��� ���

 �� ���

$��

���

�
��

��

���
 �

���

���

�
��

$��
��

 ��

�
��

�
��

�
�� �
��

$)

$)�
$)�

$)�
$)�
)�

�)��

�)��

�)��

�)��

�)��

�)�

)�

�
�

 ��
�
�

��

���

�

�
�

��
�

��
�

��
�

��
�

��
	

�
��

�
��

�
��

�
��

���	

��
��
��
�

�� �+	����+	�����
����+%����+%����
�����
����
'

�� �� �� ��

���

������������

���	���
$�	

��
�	��

$�

��
��

��"��!

�
�!

��"��!

�
�!

$�

������

$�
�
�

��

��

�
�
 �

$�

�
�

��

 �� �

�

 �� �� �� �
 �

�

���

�
�

�
�

�
�

�
�

���

$�

�
�

$�

�
�

�
��

���
�

��
��$

���

���
�
��

�
�

�
�� ���

�
��

 �
�

 �
��

 �
�

 �
�

��

 �

�
��

�
��

�
��

���

��

�
�

�
��

�
��

�
��

�
��

�
��

���

���

�
�
$�

�
��

���

�
��

���
��

���������

���
���

���

���
���

���

�
��

��� $�

���

���

�
��

�
��

���

���
��
���

�

�
��

� $
�

�
��

�
��

�

�

 �
��

 �
��

���
���

 �
��

�
��

��

�
��

�
��

 ��� ���

$�

��

���

���

�
��

��
���
��

���

�
�

��

��

�
�
�

�
�
�

�
�
	

�
�

�
�
�

�
�

�
�

��

�
��

�����))

�

$��

��

�
��

�
��

�
��

�����
 ������
108 RabbitCore RCM3309/RCM3319

C.7 Sample Programs
Sample programs illustrating the use of the LCD/keypad module with the Prototyping
Board are provided in the SAMPLES\RCM3300\LCD_KEYPAD folder.

These sample programs use the external I/O bus on the Rabbit 3000 chip, and so the
#define PORTA_AUX_IO line is already included in the sample programs.

Each sample program has comments that describe the purpose and function of the pro-
gram. Follow the instructions at the beginning of the sample program. To run a sample
program, open it with the File menu (if it is not still open), then compile and run it by
pressing F9. The RCM3309/RCM3319 must be connected to a PC using the programming
cable as described in Chapter 2, “Getting Started.”

Complete information on Dynamic C is provided in the Dynamic C User’s Manual.

• KEYPADTOLED.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message
on the LCD when a key press is detected. The DS3, DS4, DS5, and DS6 LEDs on the
Prototyping Board and the red BSY LED (DS4) on the RCM3309/RCM3319 module
will also light up.

• LCDKEYFUN.C—This program demonstrates how to draw primitive features from the
graphic library (lines, circles, polygons), and also demonstrates the keypad with the key
release option.

• SWITCHTOLCD.C—This program demonstrates the use of the external I/O bus. The
program will light up an LED on the LCD/keypad module and will display a message on
the LCD when a switch press is detected. The DS1 and DS2 LEDs on the Prototyping
Board will also light up.

Additional sample programs are available in the SAMPLES\LCD_KEYPAD\122x32_1x7
folder.
112 RabbitCore RCM3309/RCM3319

glFontCharAddr

unsigned long glFontCharAddr(fontInfo *pInfo, char letter);

DESCRIPTION

Returns the xmem address of the character from the specified font set.

PARAMETERS

pInfo pointer to the xmem address of the bitmap font set.

letter an ASCII character.

RETURN VALUE

xmem address of bitmap character font, column major and byte-aligned.

SEE ALSO

glPutFont, glPrintf

glPutFont

void glPutFont(int x, int y, fontInfo *pInfo, char code);

DESCRIPTION

Puts an entry from the font table to the page buffer and on the LCD if the buffer is un-
locked. Each font character's bitmap is column major and byte-aligned. Any portion of
the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS

x the x coordinate (column) of the top left corner of the text.

y the y coordinate (row) of the top left corner of the text.

pInfo a pointer to the font descriptor.

code the ASCII character to display.

RETURN VALUE

None.

SEE ALSO

glFontCharAddr, glPrintf
User’s Manual 127

glPrintf

void glPrintf(int x, int y, fontInfo *pInfo, char *fmt, ...);

DESCRIPTION

Prints a formatted string (much like printf) on the LCD screen. Only the character
codes that exist in the font set are printed, all others are skipped. For example, '\b', '\t',
'\n' and '\r' (ASCII backspace, tab, new line, and carriage return, respectively) will be
printed if they exist in the font set, but will not have any effect as control characters.
Any portion of the bitmap character that is outside the LCD display area will be clipped.

PARAMETERS

x the x coordinate (column) of the upper left corner of the text.

y the y coordinate (row) of the upper left corner of the text.

pInfo a pointer to the font descriptor.

fmt pointer to a formatted string.

... formatted string conversion parameter(s).

EXAMPLE

glprintf(0,0, &fi12x16, "Test %d\n", count);

RETURN VALUE

None.

SEE ALSO

glXFontInit
130 RabbitCore RCM3309/RCM3319

glBuffLock

void glBuffLock(void);

DESCRIPTION

Increments LCD screen locking counter. Graphic calls are recorded in the LCD mem-
ory buffer and are not transferred to the LCD if the counter is non-zero.

NOTE: glBuffLock() and glBuffUnlock() can be nested up to a level of 255, but be
sure to balance the calls. It is not a requirement to use these procedures, but a set of
glBuffLock() and glBuffUnlock() bracketing a set of related graphic calls speeds
up the rendering significantly.

RETURN VALUE

None.

SEE ALSO

glBuffUnlock, glSwap

glBuffUnlock

void glBuffUnlock(void);

DESCRIPTION

Decrements the LCD screen locking counter. The contents of the LCD buffer are trans-
ferred to the LCD if the counter goes to zero.

RETURN VALUE

None.

SEE ALSO

glBuffLock, glSwap
User’s Manual 131

glPlotDot

void glPlotDot(int x, int y);

DESCRIPTION

Draws a single pixel in the LCD buffer, and on the LCD if the buffer is unlocked. If the
coordinates are outside the LCD display area, the dot will not be plotted.

PARAMETERS

x the x coordinate of the dot.

y the y coordinate of the dot.

RETURN VALUE

None.

SEE ALSO

glPlotline, glPlotPolygon, glPlotCircle

glPlotLine

void glPlotLine(int x0, int y0, int x1, int y1);

DESCRIPTION

Draws a line in the LCD buffer, and on the LCD if the buffer is unlocked. Any portion
of the line that is beyond the LCD display area will be clipped.

PARAMETERS

x0 the x coordinate of one endpoint of the line.

y0 the y coordinate of one endpoint of the line.

x1 the x coordinate of the other endpoint of the line.

y1 the y coordinate of the other endpoint of the line.

RETURN VALUE

None.

SEE ALSO

glPlotDot, glPlotPolygon, glPlotCircle
User’s Manual 135

glXPutBitmap

void glXPutBitmap(int left, int top, int width, int height,
unsigned long bitmap);

DESCRIPTION

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This
function calls glXPutFastmap() automatically if the bitmap is byte-aligned (the
left edge and the width are each evenly divisible by 8).

Any portion of a bitmap image or character that is outside the LCD display area will be
clipped.

PARAMETERS

left the top left corner of the bitmap.

top the top left corner of the bitmap.

width the width of the bitmap.

height the height of the bitmap.

bitmap the address of the bitmap in xmem.

RETURN VALUE

None.

SEE ALSO

glXPutFastmap, glPrintf
142 RabbitCore RCM3309/RCM3319

glXPutFastmap

void glXPutFastmap(int left, int top, int width, int height,
unsigned long bitmap);

DESCRIPTION

Draws bitmap in the specified space. The data for the bitmap are stored in xmem. This
function is like glXPutBitmap(), except that it is faster. The restriction is that the
bitmap must be byte-aligned.

Any portion of a bitmap image or character that is outside the LCD display area will be
clipped.

PARAMETERS

left the top left corner of the bitmap, must be evenly divisible by 8,
otherwise truncates.

top the top left corner of the bitmap.

width the width of the bitmap, must be evenly divisible by 8, otherwise
truncates.

height the height of the bitmap.

bitmap the address of the bitmap in xmem.

RETURN VALUE

None.

SEE ALSO

glXPutBitmap, glPrintf
User’s Manual 143

rn_sw_wdt

int rn_sw_wdt(int handle, float timeout);

DESCRIPTION

Sets software watchdog timeout period. Call this function prior to enabling the software
watchdog timer. This function will check device information to determine that the periph-
eral card is connected to a master.

PARAMETERS

handle is an address index to device information. Use rn_device() or
rn_find() to establish the handle.

timeout is a timeout period from 0.025 to 6.375 seconds in increments of
0.025 seconds. Entering a zero value will disable the software
watchdog timer.

RETURN VALUE

The status byte from the previous command.

-1 means that device information indicates the peripheral card is not connected to the
master.
User’s Manual 173

