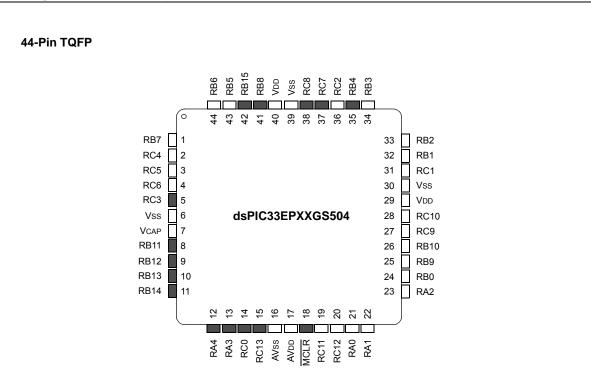


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs502-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin	Pin Function	Pin	Pin Function
1	PGEC1/AN21/SDA1/ RP39 /RB7	23	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2
2	AN1ALT/ RP52 /RC4	24	AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0
3	AN0ALT/RP53/RC5	25	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9
4	AN17/ RP54 /RC6	26	AN5/CMP2D/CMP3B/ISRC3/RP42/RB10
5	RP51/RC3	27	AN11/PGA1N3/ RP57 /RC9
6	Vss	28	AN10/PGA1P4/EXTREF2/RP58/RC10
7	VCAP	29	VDD
8	TMS/PWM3H/RP43/RB11	30	Vss
9	TCK/PWM3L/ RP44 /RB12	31	AN8/PGA2P4/CMP4C/RP49/RC1
10	PWM2H/ RP45 /RB13	32	OSC1/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1
11	PWM2L/ RP46 /RB14	33	OSC2/CLKO/AN7/PGA1N2/CMP3D/CMP4B/RP34/RB2
12	PWM1H/RA4	34	PGED2/AN18/DACOUT1/INT0/RP35/RB3
13	PWM1L/RA3	35	PGEC2/ADTRG31/ RP36 /RB4
14	FLT12/ RP48 /RC0	36	AN9/CMP4D/EXTREF1/RP50 /RC2
15	FLT11/ RP61 /RC13	37	ASDA1/ RP55 /RC7
16	AVss	38	ASCL1/RP56/RC8
17	AVDD	39	Vss
18	MCLR	40	VDD
19	AN12/ISRC1/ RP59 /RC11	41	PGED3/SDA2/FLT31/RP40/RB8
20	AN14/PGA2N3/ RP60 /RC12	42	PGEC3/SCL2/RP47/RB15
21	AN0/PGA1P1/CMP1A/RA0	43	TDO/AN19/PGA2N2/ RP37 /RB5
22	AN1/PGA1P2/PGA2P1/CMP1B/RA1	44	PGED1/TDI/AN20/SCL1/RP38/RB6

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

TADLE	4-J.			IONEI	THINOU			INFUT CAFTURE I THROUGH INFUT CAFTURE 4 REGISTER MAP										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1CON1	0140	—	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		—	—	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC1CON2	0142	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC1BUF	0144								Input Capt	ture 1 Buffe	er Register							xxxx
IC1TMR	0146								Input Cap	ture 1 Time	er Register							0000
IC2CON1	0148	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC2CON2	014A	IC32 ICTRIG TRIGSTAT - SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0 000							000D									
IC2BUF	014C	Input Capture 2 Buffer Register xxx						xxxx										
IC2TMR	014E								Input Cap	ture 2 Time	er Register							0000
IC3CON1	0150	_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0	_	_	_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0	0000
IC3CON2	0152	—	—	_	-	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC3BUF	0154								Input Capt	ture 3 Buffe	er Register							xxxx
IC3TMR	0156								Input Cap	ture 3 Time	er Register							0000
IC4CON1	0158	ICSIDL ICTSEL2 ICTSEL1 ICTSEL0 ICI1 ICI0 ICOV ICBNE ICM2 ICM1 ICM0 000							0000									
IC4CON2	015A	_	_	_	—	_	_	_	IC32	ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000D
IC4BUF	015C	Input Capture 4 Buffer Register xxx					xxxx											
IC4TMR	015E								Input Cap	ture 4 Time	er Register							0000

TABLE 4-5: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 4 REGISTER MAP

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: I2C1 AND I2C2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1CONL	0200	I2CEN	_	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1CONH	0202	—	_	—	_	_	_	—	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C1STAT	0204	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	0206	_	—	_	_	—	_					I2C1 Addr	ess Register					0000
I2C1MSK	0208	_	—	_	_	—	_				I2C1 SI	ave Mode A	ddress Mask	Register				0000
I2C1BRG	020A							Baud Rate Generator Register						0000				
I2C1TRN	020C	_	—	_	_	—	_	I2C1 Transmit Register					OOFF					
I2C1RCV	020E	_	—	_	_	—	_	—	_				I2C1 Receiv	ve Register				0000
I2C2CON1	0210	I2CEN	—	I2CSIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2CON2	0212	_	_	_	_	_	_	_	_	_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000
I2C2STAT	0214	ACKSTAT	TRSTAT	ACKTIM	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	0216	_	_	_	_	_	_					I2C2 Addr	ess Register					0000
I2C2MSK	0218	_	—	_	_	—	_				12C2 SI	ave Mode A	ddress Mask	Register				0000
I2C2BRG	021A							Baud Rate Generator Register					0000					
I2C2TRN	021C	_	—	_	_	—	_	—	_				I2C2 Transr	nit Register				OOFF
I2C2RCV	021E	_	_	-	—	—	_	—	—				I2C2 Receiv	ve Register				0000
Legend:	– unim	nlamontad	road as '0'	Peact val	uoo oro obc	we in hove	dooimal	•	-		- - - - - I2C2 Receive Register 0000							•

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	— — — — — UART1 Transmit Register xxxx							xxxx								
U1RXREG	0226	_	_	_	UART1 Receive Register 0000					0000								
U1BRG	0228							Baud Rate	e Generate	or Prescaler	Register							0000
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	—	UART2 Transmit Register						xxxx				
U2RXREG	0236	_	- - - - UART2 Receive Register 000						0000									
U2BRG	0238							Baud Rate Generator Prescaler Register 000						0000				

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Function	RPnR<5:0>	Output Name			
Default PORT	000000	RPn tied to Default Pin			
U1TX	000001	RPn tied to UART1 Transmit			
U1RTS	000010	RPn tied to UART1 Request-to-Send			
U2TX	000011	RPn tied to UART2 Transmit			
U2RTS	000100	RPn tied to UART2 Request-to-Send			
SDO1	000101	RPn tied to SPI1 Data Output			
SCK1	000110	RPn tied to SPI1 Clock Output			
SS1	000111	RPn tied to SPI1 Slave Select			
SDO2	001000	RPn tied to SPI2 Data Output			
SCK2	001001	RPn tied to SPI2 Clock Output			
SS2	001010	RPn tied to SPI2 Slave Select			
OC1	010000	RPn tied to Output Compare 1 Output			
OC2	010001	RPn tied to Output Compare 2 Output			
OC3	010010	RPn tied to Output Compare 3 Output			
OC4	010011	RPn tied to Output Compare 4 Output			
ACMP1	011000	RPn tied to Analog Comparator 1 Output			
ACMP2	011001	RPn tied to Analog Comparator 2 Output			
ACMP3	011010	RPn tied to Analog Comparator 3 Output			
SYNCO1	101101	RPn tied to PWM Primary Master Time Base Sync Output			
SYNCO2	101110	RPn tied to PWM Secondary Master Time Base Sync Output			
REFCLKO	110001	RPn tied to Reference Clock Output			
ACMP4	110010	RPn tied to Analog Comparator 4 Output			
PWM4H	110011	RPn tied to PWM Output Pins Associated with PWM Generator 4			
PWM4L	110100	RPn tied to PWM Output Pins Associated with PWM Generator 4			
PWM5H	110101	RPn tied to PWM Output Pins Associated with PWM Generator 5			
PWM5L	110110	RPn tied to PWM Output Pins Associated with PWM Generator 5			

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

REGISTER 10-17: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| SYNCI2R7 | SYNCI2R6 | SYNCI2R5 | SYNCI2R4 | SYNCI2R3 | SYNCI2R2 | SYNCI2R1 | SYNCI2R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 SYNCI2R<7:0>: Assign PWM Synchronization Input 2 to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 •

• 00000001 = Input tied to RP1 00000000 = Input tied to Vss

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15	·		•				bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0

bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP45R<5:0>: Peripheral Output Function is Assigned to RP45 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP44R<5:0>: Peripheral Output Function is Assigned to RP44 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-27: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP47R<5:0>:** Peripheral Output Function is Assigned to RP47 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP46R<5:0>:** Peripheral Output Function is Assigned to RP46 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = OCxRS compare event is used for synchronization
 - 11110 = INT2 pin synchronizes or triggers OCx
 - 11101 = INT1 pin synchronizes or triggers OCx
 - 11100 = Reserved
 - 11011 = CMP4 module synchronizes or triggers OCx
 - 11010 = CMP3 module synchronizes or triggers OCx
 - 11001 = CMP2 module synchronizes or triggers OCx
 - 11000 = CMP1 module synchronizes or triggers OCx
 - 10111 = Reserved
 - 10110 = Reserved
 - 10101 = Reserved
 - 10100 = Reserved
 - 10011 = IC4 input capture interrupt event synchronizes or triggers OCx
 - 10010 = IC3 input capture interrupt event synchronizes or triggers OCx
 - 10001 = IC2 input capture interrupt event synchronizes or triggers OCx
 - 10000 = IC1 input capture interrupt event synchronizes or triggers OCx
 - 01111 = Timer5 synchronizes or triggers OCx
 - 01110 = Timer4 synchronizes or triggers OCx
 - 01101 = Timer3 synchronizes or triggers OCx
 - 01100 = Timer2 synchronizes or triggers OCx (default)
 - 01011 = Timer1 synchronizes or triggers OCx
 - 01010 = Reserved
 - 01001 = Reserved
 - 01000 = IC4 input capture event synchronizes or triggers OCx
 - 00111 = IC3 input capture event synchronizes or triggers OCx
 - 00110 = IC2 input capture event synchronizes or triggers OCx
 - 00101 = IC1 input capture event synchronizes or triggers OCx
 - 00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$
 - 00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$
 - 00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$
 - 00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$
 - 00000 = No sync or trigger source for OCx
- Note 1: Do not use the OCx module as its own synchronization or trigger source.
 - 2: When the OCy module is turned off, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 **HRPDIS HRDDIS** ___ BLANKSEL3 BLANKSEL2 BLANKSEL1 **BLANKSEL0** _ bit 15 bit 8 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CHOPSEL3 CHOPSEL2 CHOPSEL1 CHOPSEL0 CHOPHEN CHOPLEN bit 7 bit 0 Leaend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 HRPDIS: High-Resolution PWMx Period Disable bit 1 = High-resolution PWMx period is disabled to reduce power consumption 0 = High-resolution PWMx period is enabled bit 14 HRDDIS: High-Resolution PWMx Duty Cycle Disable bit 1 = High-resolution PWMx duty cycle is disabled to reduce power consumption 0 = High-resolution PWMx duty cycle is enabled bit 13-12 Unimplemented: Read as '0' bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register). 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM5H is selected as the state blank source 0100 = PWM4H is selected as the state blank source 0011 = PWM3H is selected as the state blank source 0010 = PWM2H is selected as the state blank source 0001 = PWM1H is selected as the state blank source 0000 = No state blanking bit 7-6 Unimplemented: Read as '0' bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits The selected signal will enable and disable (chop) the selected PWMx outputs. 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM5H is selected as the chop clock source 0100 = PWM4H is selected as the chop clock source 0011 = PWM3H is selected as the chop clock source 0010 = PWM2H is selected as the chop clock source 0001 = PWM1H is selected as the chop clock source 0000 = Chop clock generator is selected as the chop clock source bit 1 **CHOPHEN:** PWMxH Output Chopping Enable bit 1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled bit 0 CHOPLEN: PWMxL Output Chopping Enable bit 1 = PWMxL chopping function is enabled 0 = PWMxL chopping function is disabled

REGISTER 15-26: AUXCONx: PWMx AUXILIARY CONTROL REGISTER (x = 1 to 5)

-	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0										
FRMEN	SPIFSD	FRMPOL	_	—	_	—	_										
bit 15	·						bit 8										
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0										
—	— — — — FRMDLY SP																
bit 7							bit 0										
Legend:																	
R = Readab	ole bit	W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'											
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	nown										
bit 15	FRMEN: Fran	med SPIx Suppo	ort bit														
			•	pin is used as	the frame syn	c pulse input/out	1 = Framed SPIx support is enabled (\overline{SSx} pin is used as the frame sync pulse input/output)										
	0 = Framed S	0 = Framed SPIx support is disabled															
	SPIFSD: Frame Sync Pulse Direction Control bit																
bit 14	SPIFSD: Fran	me Sync Pulse [Direction Co	ntrol bit													
bit 14	SPIFSD: Fran 1 = Frame sy	••	Direction Co slave)	ntrol bit													
bit 14 bit 13	SPIFSD: Fran 1 = Frame sy 0 = Frame sy	me Sync Pulse I nc pulse input (s	Direction Co slave) (master)	ntrol bit													
	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output	Direction Co slave) (master) Polarity bit e-high	ntrol bit													
	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ	Direction Col slave) (master) Polarity bit e-high e-low	ntrol bit													
bit 13	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fran 1 = Frame sy 0 = Frame sy Unimplemen	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ	Direction Col slave) (master) Polarity bit e-high e-low														
bit 13 bit 12-2	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy Unimplemen FRMDLY: Fra 1 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ ted: Read as '0	Direction Col slave) (master) Polarity bit e-high e-low , Edge Select les with the f	t bit îrst bit clock													
bit 13 bit 12-2 bit 1	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy Unimplement FRMDLY: Fra 1 = Frame sy 0 = Frame sy	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ ted: Read as '0 ame Sync Pulse nc pulse coincid	Direction Col slave) (master) Polarity bit e-high e-low , Edge Select les with the f es the first b	t bit îrst bit clock													
bit 13 bit 12-2	SPIFSD: Fran 1 = Frame sy 0 = Frame sy FRMPOL: Fra 1 = Frame sy 0 = Frame sy Unimplement FRMDLY: Fra 1 = Frame sy 0 = Frame sy SPIBEN: Ent	me Sync Pulse I nc pulse input (s nc pulse output ame Sync Pulse nc pulse is activ nc pulse is activ ted: Read as '0 ame Sync Pulse nc pulse coincid nc pulse preced	Direction Con slave) (master) Polarity bit e-high e-low , Edge Select les with the f es the first b nable bit	t bit îrst bit clock													

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 19-5: ADCON3L: ADC CONTROL REGISTER 3 LOW

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HSC	R/W-0	R-0, HSC
REFSEL2	REFSEL1	REFSEL0	SUSPEND	SUSPCIE	SUSPRDY	SHRSAMP	CNVRTCH
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWLCTRG	SWCTRG	CNVCHSEL5	CNVCHSEL4	CNVCHSEL3	CNVCHSEL2	CNVCHSEL1	CNVCHSEL0
bit 7							bit 0

Legend:	U = Unimplemented bit, read	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit HSC = Hardware Settable/Clearable bit						
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-13 **REFSEL<2:0>:** ADC Reference Voltage Selection bits

Value	VREFH	VREFL
000	AVdd	AVss

001-111 = Unimplemented: Do not use bit 12 SUSPEND: All ADC Cores Triggers Disable bit 1 = All new trigger events for all ADC cores are disabled 0 = All ADC cores can be triggered bit 11 SUSPCIE: Suspend All ADC Cores Common Interrupt Enable bit 1 = Common interrupt will be generated when ADC core triggers are suspended (SUSPEND bit = 1) and all previous conversions are finished (SUSPRDY bit becomes set) 0 = Common interrupt is not generated for suspend ADC cores event bit 10 SUSPRDY: All ADC Cores Suspended Flag bit 1 = All ADC cores are suspended (SUSPEND bit = 1) and have no conversions in progress 0 = ADC cores have previous conversions in progress bit 9 SHRSAMP: Shared ADC Core Sampling Direct Control bit This bit should be used with the individual channel conversion trigger controlled by the CNVRTCH bit. It connects an analog input, specified by the CNVCHSEL<5:0> bits, to the shared ADC core and allows extending the sampling time. This bit is not controlled by hardware and must be cleared before the conversion starts (setting CNVRTCH to '1'). 1 = Shared ADC core samples an analog input specified by the CNVCHSEL<5:0> bits 0 = Sampling is controlled by the shared ADC core hardware bit 8 **CNVRTCH:** Software Individual Channel Conversion Trigger bit 1 = Single trigger is generated for an analog input specified by the CNVCHSEL<5:0> bits; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Next individual channel conversion trigger can be generated bit 7 SWLCTRG: Software Level-Sensitive Common Trigger bit 1 = Triggers are continuously generated for all channels with the software, level-sensitive common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers 0 = No software, level-sensitive common triggers are generated SWCTRG: Software Common Trigger bit bit 6 1 = Single trigger is generated for all channels with the software, common trigger selected as a source in the ADTRIGxL and ADTRIGxH registers; when the bit is set, it is automatically cleared by hardware on the next instruction cycle 0 = Ready to generate the next software, common trigger CNVCHSEL <5:0>: Channel Number Selection for Software Individual Channel Conversion Trigger bits bit 5-0

These bits define a channel to be converted when the CNVRTCH bit is set.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—		SYNCTRG3	SYNCTRG2	SYNCTRG1	SYNCTRGO
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_		_	SAMC3EN	SAMC2EN	SAMC1EN	SAMCOEN
oit 7							bit (
_egend:							
-egend. R = Readab	le hit	W = Writable	hit	II = I Inimplem	ented bit, read	l as 'N'	
n = Value a		'1' = Bit is set		0' = Bit is clea		x = Bit is unkr	own
oit 15-12	Unimpleme	ented: Read as '	0'				
pit 11	SYNCTRG3	: Dedicated AD	C Core 3 Trigg	ger Synchronizat	ion bit		
				core source cloc	k (TCORESRC)		
		C core triggers a	-				
bit 10				ger Synchronizat			
		ers are synchror C core triggers a		core source cloc onized	K (ICORESRC)		
oit 9			-	ger Synchronizat	ion bit		
				core source cloc			
		C core triggers a			. ,		
oit 8	SYNCTRG	: Dedicated AD	C Core 0 Trigg	ger Synchronizat	ion bit		
		ers are synchror C core triggers a		core source cloc onized	k (TCORESRC)		
oit 7-4		ented: Read as '	-				
oit 3	SAMC3EN:	Dedicated ADC	Core 3 Conve	ersion Delay Ena	ble bit		
				elayed and the		continue samp	ling during the
				s in the ADCORE			-4
		gger, the sampli re clock cycle	ng will be sto	pped immediatel	y and the conv	version will be	started on the
oit 2	SAMC2EN:	Dedicated ADC	Core 2 Conve	ersion Delay Ena	ble bit		
				elayed and the A		continue samp	ling during the
				s in the ADCORE		eraion will be	atartad an the
		re clock cycle	ng will be sto	pped immediatel	y and the com		started on the
oit 1		-	Core 1 Conve	ersion Delay Ena	ble bit		
				elayed and the A		continue samp	ling during the
				s in the ADCORE			
		gger, the sampli re clock cycle	ng will be sto	pped immediatel	y and the conv	version will be	started on the
oit O		-	Core 0 Conve	ersion Delay Ena	ble bit		
				elayed and the A		continue samp	ling during the
				s in the ADCORE		-	-
				pped immediatel			

REGISTER 19-13: ADLVLTRGL: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER LOW

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVLE	N<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LVL	EN<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at I		'1' = Bit is set		(0) = Bit is cleared x = Bit is unknown			nown

bit 15-0 LVLEN<15:0>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

REGISTER 19-14: ADLVLTRGH: ADC LEVEL-SENSITIVE TRIGGER CONTROL REGISTER HIGH

<u>– – – – – – – –</u> bit 15 bit 8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit 8	—	_	—	—	—	—	—	—
	bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			LVLEN•	<21:16>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 LVLEN<21:16>: Level Trigger for Corresponding Analog Input Enable bits

1 = Input trigger is level-sensitive

0 = Input trigger is edge-sensitive

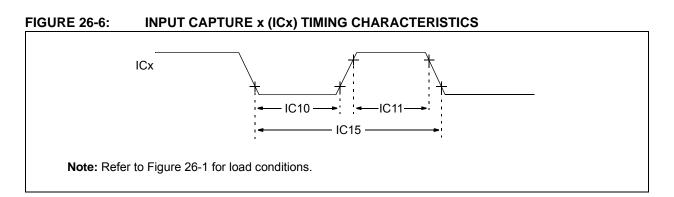
REGISTER 19-26: ADTRIGXL: ADC CHANNEL TRIGGER x SELECTION REGISTER LOW (x = 0 to 5) (CONTINUED)

bit 4-0 TRGSRC(4x)<4:0>: Trigger Source Selection for Corresponding Analog Inputs bits

- 11111 = ADTRG31
- 11110 = Reserved
- 11101 = Reserved
- 11100 = PWM Generator 5 current-limit trigger
- 11011 = PWM Generator 4 current-limit trigger
- 11010 = PWM Generator 3 current-limit trigger
- 11001 = PWM Generator 2 current-limit trigger
- 11000 = PWM Generator 1 current-limit trigger
- 10111 = Output Compare 2 trigger
- 10110 = Output Compare 1 trigger 10101 = Reserved
- 10100 = Reserved
- 10011 = PWM Generator 5 secondary trigger
- 10010 = PWM Generator 4 secondary trigger
- 10001 = PWM Generator 3 secondary trigger
- 10000 = PWM Generator 2 secondary trigger
- 01111 = PWM Generator 1 secondary trigger
- 01110 = PWM secondary Special Event Trigger
- 01101 = Timer2 period match
- 01100 = Timer1 period match
- 01011 = Reserved
- 01010 = Reserved
- 01001 = PWM Generator 5 primary trigger
- 01000 = PWM Generator 4 primary trigger
- 00111 = PWM Generator 3 primary trigger
- 00110 = PWM Generator 2 primary trigger
- 00101 = PWM Generator 1 primary trigger
- 00100 = PWM Special Event Trigger
- 00011 = Reserved
- 00010 = Level software trigger
- 00001 = Common software trigger
- 00000 = No trigger is enabled

REGISTER 19-29: ADCAL0H: ADC CALIBRATION REGISTER 0 HIGH

R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0				
CAL3RDY	—	—	_	_	CAL3DIFF	CAL3EN	CAL3RUN				
bit 15						1	bit 8				
R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0				
CAL2RDY		—			CAL2DIFF	CAL2EN	CAL2RUN				
bit 7	•	·	•		·	•	bit 0				
Legend:		r = Reserved	bit	U = Unimpler	nented bit, read	l as '0'					
R = Readabl	= Readable bit W = Writable bit				vare Settable/C	learable bit					
-n = Value at	n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15		Dedicated ADC			g bit						
		ed ADC Core 3 o									
bit 14-12	 0 = Dedicated ADC Core 3 calibration is in progress Unimplemented: Read as '0' 										
bit 11	-	Aust be written a									
bit 10	CAL3DIFF: Dedicated ADC Core 3 Differential-Mode Calibration bit										
bit to	1 = Dedicated ADC Core 3 will be calibrated in Differential Input mode										
		ed ADC Core 3 v		•							
bit 9	CAL3EN: De	edicated ADC C	ore 3 Calibratio	on Enable bit							
		ed ADC Core 3 o	calibration bits	(CALxRDY, CA	LxDIFF and CA	LxRUN) can b	e accessed by				
	software	ed ADC Core 3	calibration bite	are disabled							
bit 8		Dedicated ADC									
DILO		it is set by soft			ore 3 calibratio	n cycle is star	ted: this hit is				
		tically cleared by									
		e can start the n		cycle							
bit 7	CAL2RDY: [Dedicated ADC	Core 2 Calibra	tion Status Flag	g bit						
		ed ADC Core 2 d									
		ed ADC Core 2 c		progress							
bit 6-4	-	nted: Read as '									
bit 3		Aust be written a									
bit 2		Dedicated ADC									
		ed ADC Core 2 v ed ADC Core 2 v				1					
bit 1		edicated ADC C		-							
					LxDIFF and CA	(LxRUN) can b	e accessed by				
		 1 = Dedicated ADC Core 2 calibration bits (CALxRDY, CALxDIFF and CALxRUN) can be accessed by software 									
		ed ADC Core 2									
bit 0		Dedicated ADC									
		it is set by soft		icated ADC Co	ore 2 calibratio	n cycle is star	ted; this bit is				
		tically cleared by e can start the n		cvcle							
	o Sonwan			0,00							


TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTI	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No.	Тур.	Max.	Units	Units Conditions			
Operating Curr	rent (IDD) ⁽¹⁾						
DC20d	7	12	mA	-40°C			
DC20a	7	12	mA	+25°C	3.3V	10 MIPS	
DC20b	7	12	mA	+85°C	3.3V		
DC20c	7	12	mA	+125°C	-		
DC22d	11	19	mA	-40°C			
DC22a	11	19	mA	+25°C	3.3V	20 MIPS	
DC22b	11	19	mA	+85°C	3.3V	20 101195	
DC22c	11	19	mA	+125°C			
DC24d	19	30	mA	-40°C			
DC24a	19	30	mA	+25°C	3.3∨	40 MIPS	
DC24b	19	30	mA	+85°C	5.50	40 1011-3	
DC24c	19	30	mA	+125°C	-		
DC25d	26	41	mA	-40°C			
DC25a	26	41	mA	+25°C	3.3∨	60 MIPS	
DC25b	26	41	mA	+85°C	5.50	00 WIF 3	
DC25c	26	41	mA	+125°C			
DC26d	30	46	mA	-40°C			
DC26a	30	46	mA	+25°C	3.3V	70 MIPS	
DC26b	30	46	mA	+85°C			
DC27d	51	81	mA	-40°C		70 14100	
DC27a	51	81	mA	+25°C	3.3V	70 MIPS (Note 2)	
DC27b	52	82	mA	+85°C		(1010 2)	

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- · CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while(1) statement
- JTAG is disabled
- **2:** For this specification, the following test conditions apply:
 - · APLL clock is enabled
 - All 5 PWMs enabled and operating at maximum speed (PTCON2<2:0> = 000), PTPER = 1000h, 50% duty cycle
 - All other peripherals are disabled (corresponding PMDx bits are set)

TABLE 26-27: INPUT CAPTURE x MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Conditions		
IC10	TCCL	ICx Input Low Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15		
IC11	ТссН	ICx Input High Time	Greater of: 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15	N = Prescale Value (1, 4, 16)	
IC15	TCCP	ICx Input Period	Greater of: 25 + 50 or (1 Tcy/N) + 50	_	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

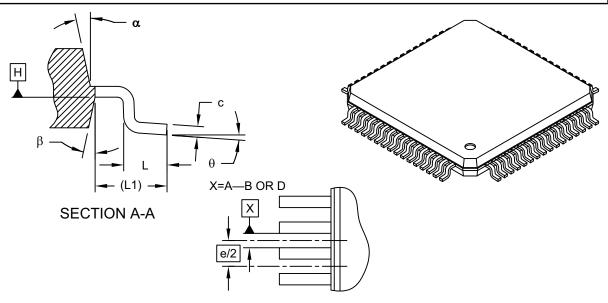
TABLE 26-43: ADC MODULE SPECIFICATIONS (CONTINUED)

		STICS	Standard O (unless oth	erwise stat	ed) ⁽⁵⁾		
			Operating te	emperature		°C for Industrial 5°C for Extended	
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions
		ADC	Accuracy: S	Single-Ende	d Input		·
AD20b	Nr	Resolution		12		bits	
AD21b	INL	Integral Nonlinearity	> -3	_	< 3	LSb	AVss = 0V, AVDD = 3.3V
AD22b	DNL	Differential Nonlinearity	> -1	-	< 1.5	LSb	AVss = 0V, AVdd = 3.3V (Note 2)
AD23b	Gerr	Gain Error (Dedicated Core)	> 5	13	< 20	LSb	AVss = 0V, AVdd = 3.3V
		Gain Error (Shared Core)	> -1	5	< 10	LSb	
AD24b	EOFF	Offset Error (Dedicated Core)	> 2	10	< 18	LSb	AVss = 0V, AVdd = 3.3V
		Offset Error (Shared Core)	> 2	8	< 15	LSb	
AD25b		Monotonicity		_	_		Guaranteed
	•		Dynamic P	erformance	e		
AD31b	SINAD	Signal-to-Noise and Distortion	63	-	> 65	dB	(Notes 3, 4)
AD34b	ENOB	Effective Number of Bits	10.3	_	—	bits	(Notes 3, 4)

Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.

3: These parameters are characterized but not tested in manufacturing.


4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

NOTES:

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	Units	Ν	IILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1			
Foot Angle	¢	0°	3.5°	7°
Overall Width	Е		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

PMD60	
PORTA (dsPIC33EPXXGS502 Devices)62	
PORTA (dsPIC33EPXXGS504/505 Devices)63	
PORTA (dsPIC33EPXXGS506 Devices)64	
PORTB (dsPIC33EPXXGS502 Devices)	
PORTB (dsPIC33EPXXGS504/505 Devices)63	
PORTB (dsPIC33EPXXGS506 Devices)	
PORTC (dsPIC33EPXXGS504/505 Devices)63	
PORTC (dsPIC33EPXXGS506 Devices)	
PORTD (dsPIC33EPXXGS506 Devices)65	
Programmable Gain Amplifier60	
PWM	
PWM Generator 149	
PWM Generator 250	
PWM Generator 350	
PWM Generator 451	
PWM Generator 551	
SPI1 and SPI253	
System Control59	
Timer1 through Timer546	
UART1 and UART252	
Registers	
ACLKCON (Auxiliary Clock Divisor Control)	
ADCAL0H (ADC Calibration 0 High)256	
ADCAL0L (ADC Calibration 0 Low)	
ADCAL1H (ADC Calibration 1 High)257	
ADCMPxCON (ADC Digital Comparator x	
Control)	
ADCMPxENH (ADC Digital Comparator x	
Channel Enable High)259	
ADCMPxENL (ADC Digital Comparator x	
Channel Enable Low)	
ADCON1H (ADC Control 1 High)233	
ADCON1L (ADC Control 1 Low)	
ADCON2H (ADC Control 2 High)235	
ADCON2L (ADC Control 2 Low)	
ADCON3H (ADC Control 3 High)	
ADCON3L (ADC Control 3 Low)	
ADCON4H (ADC Control 4 High)	
ADCON4L (ADC Control 4 Low)	
ADCON5H (ADC Control 5 High)241	
ADCON5L (ADC Control 5 Low)	
ADCORExH (Dedicated ADC Core x	
Control High)243	
ADCORExL (Dedicated ADC Core x	
Control Low)	
ADEIEH (ADC Early Interrupt Enable High)	
ADEIEL (ADC Early Interrupt Enable Low)	
ADEISTATH (ADC Early Interrupt Status High)246	
ADEISTATL (ADC Early Interrupt Status Low)	
ADFLxCON (ADC Digital Filter x Control)	
ADIEH (ADC Interrupt Enable High)	
ADIEL (ADC Interrupt Enable Low)	
ADLVLTRGH (ADC Level-Sensitive Trigger	
Control High)244	
ADLVLTRGL (ADC Level-Sensitive Trigger	
Control Low)	
ADMOD0H (ADC Input Mode Control 0 High)247	
ADMODOL (ADC Input Mode Control 0 Low)	
ADMOD1L (ADC Input Mode Control 1 Low)	
ADSTATH (ADC Data Ready Status High)	
ADSTATL (ADC Data Ready Status Low)	
ADTRIGXH (ADC Channel Trigger x	
Selection High)	

ADTRIGxL (ADC Channel Trigger x
Selection Low) 251
ALTDTRx (PWMx Alternate Dead-Time) 197
AUXCONx (PWMx Auxiliary Control)
CHOP (PWMx Chop Clock Generator)
CLKDIV (Clock Divisor)
CMPxDAC (Comparator x DAC Control)
CORCON (Core Control)
CTXTSTAT (CPU W Register Context Status)
DEVID (Device ID)
DEVREV (Device Revision)
DTRx (PWMx Dead-Time) 197
FCLCONx (PWMx Fault Current-Limit Control) 201
I2CxCONH (I2Cx Control High)
I2CxCONL (I2Cx Control Low)
I2CxMSK (I2Cx Slave Mode Address Mask)
ICxCON1 (Input Capture x Control 1)
ICxCON2 (Input Capture x Control 2)
INTCON1 (Interrupt Control 1)
INTCON2 (Interrupt Control 2)
INTCON3 (Interrupt Control 3) 100
INTCON4 (Interrupt Control 4) 100
INTTREG (Interrupt Control and Status) 101
IOCONx (PWMx I/O Control)
ISRCCON (Constant-Current Source Control)
LEBCONx (PWMx Leading-Edge Blanking Control)
LEBDLYx (PWMx Leading-Edge
Blanking Delay)
LFSR (Linear Feedback Shift)
MDC (PWMx Master Duty Cycle) 191
NVMADR (Nonvolatile Memory
Lower Address) 83
NVMADRU (Nonvolatile Memory
Upper Address)
NVMCON (Nonvolatile Memory (NVM) Control)
NVMKEY (Nonvolatile Memory Key)
OCxCON1 (Output Compare x Control 1)
OCxCON2 (Output Compare x Control 2)
OSCCON (Oscillator Control)
OSCTUN (FRC Oscillator Tuning) 111
PDCx (PWMx Generator Duty Cycle) 194
PGAxCAL (PGAx Calibration) 274
PGAxCON (PGAx Control)
PHASEx (PWMx Primary Phase-Shift)
PLLFBD (PLL Feedback Divisor)
PMD1 (Peripheral Module Disable Control 1)
PMD2 (Peripheral Module Disable Control 2)
PMD4 (Peripheral Module Disable Control 4)
PMD6 (Peripheral Module Disable Control 6)
PMD6 (Peripheral Module Disable Control 6)
PMD7 (Peripheral Module Disable Control 7)
PMD7 (Peripheral Module Disable Control 7)
PMD7 (Peripheral Module Disable Control 7)122PMD8 (Peripheral Module Disable Control 8)123PTCON (PWMx Time Base Control)185PTCON2 (PWMx Clock Divider Select 2)186
PMD7 (Peripheral Module Disable Control 7)