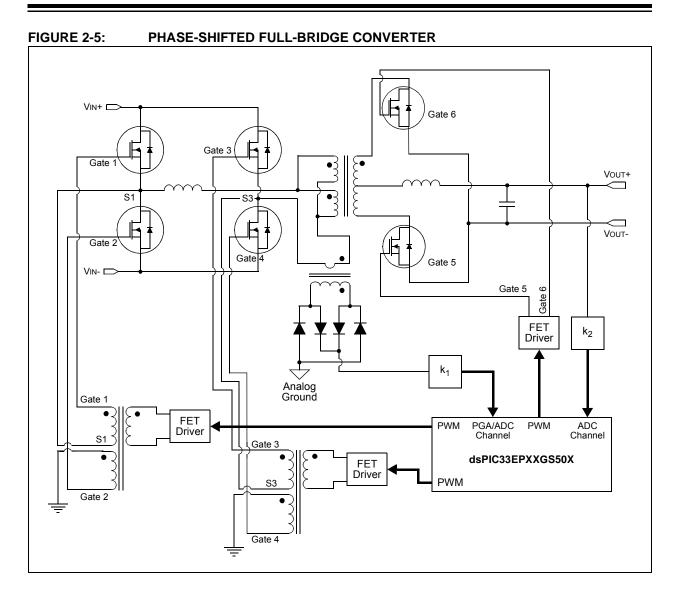


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs502-i-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG 0 = Stack frame is not active; W14 and W15 address the base Data Space
bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
—	—	—	—	—	CCTXI2	CCTXI1	CCTXI0			
bit 15 bit										
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
	—	—	_	—	MCTXI2	MCTXI1	MCTXI0			
bit 7							bit 0			
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	s cleared x = Bit is unknown					

bit 15-11	Unimplemented: Read as '0'
bit 10-8	CCTXI<2:0>: Current (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 is currently in use
	001 = Alternate Working Register Set 1 is currently in use
	000 = Default register set is currently in use
bit 7-3	Unimplemented: Read as '0'
bit 2-0	MCTXI<2:0>: Manual (W Register) Context Identifier bits
	111 = Reserved
	•
	•
	•
	011 = Reserved
	010 = Alternate Working Register Set 2 was most recently manually selected
	001 = Alternate Working Register Set 1 was most recently manually selected
	000 = Default register set was most recently manually selected

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

7	GOTO Instruction	0x000000
	Reset Address	0x000002
Ð	Interrupt Vector Table	0x000004 0x0001FE
User Memory Space	User Program Flash Memory (22,207 instructions)	0x000200 0x00AF7E
er Mem	Device Configuration	0x00AF80 0x00AFFE
Use		0x00B000
	Unimplemented	
	(Read '0's)	
	Reserved	0x7FFFFE 0x800000 0x800E46
	Calibration Data	0x800E48
	Reserved	0x800E78 0x800E7A 0x800EFE
Configuration Memory Space	UDID	0x800F00 0x800F08 0x800F0A
nory S	Reserved	0x800F7E
n Mer	User OTP Memory	0x800F80 0x800FFC
Iratio	Reserved	0x801000
onfigu	Write Latches	0xF9FFFE 0xFA0000
ŏ		0xFA0002 0xFA0004
	Reserved	
	DEVID	0xFEFFFE 0xFF0000
	Reserved	0xFF0002 0xFF0004
_		0xFFFFFE

Note: Memory areas are not shown to scale.

TABLE 4-6: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 4 REGISTER MAP																		
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—	ENFLTA	—	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							0	utput Comp	are 1 Seco	ndary Regist	er						xxxx
OC1R	0906								Output	Compare 1	Register							xxxx
OC1TMR	0908								Time	r Value 1 Re	egister							xxxx
OC2CON1	090A		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		—	ENFLTA		—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV		—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E							0	utput Comp	are 2 Seco	ndary Regist	er						xxxx
OC2R	0910								Output	Compare 2	Register							xxxx
OC2TMR	0912								Time	r Value 2 Re	egister							xxxx
OC3CON1	0914		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		—	ENFLTA		—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV		—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							0	utput Comp	are 3 Seco	ndary Regist	er						xxxx
OC3R	091A								Output	Compare 3	Register							xxxx
OC3TMR	091C								Time	r Value 3 Re	egister							xxxx
OC4CON1	091E		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		—	ENFLTA		—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV		-		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							0	utput Comp	are 4 Seco	ndary Regist	er						xxxx
OC4R	0924								Output	Compare 4	Register							xxxx
OC4TMR	0926		Timer Value 4 Register xxxx									xxxx						

-

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-37 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-37:	OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND
	PSV SPACE BOUNDARIES ^(2,3,4)

O/U,			Before		After			
0/0, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description	
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page	
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1	
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1	
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1	
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page	

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x7FFF).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	_
bit 15		· · ·			•		bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bit	t	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSRC	CADR<15:8>					
bit 15									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			NVMSR	CADR<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

TABLE 7-1: INTERRUPT VECTOR DETAILS

	Vector	IRQ		Inte	errupt Bit Lo	cation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
	Hi	ghest Nat	ural Order Priority	•		
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
Reserved	12	4	0x00001C	_		_
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
ADC – ADC Global Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
Reserved	22	14	0x000030	_	_	_
NVM – NVM Write Complete	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12>
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
CMP1 – Analog Comparator 1 Interrupt	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
Reserved	29-32	21-24	0x00003E-0x000044	_	_	_
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>
Reserved	42-44	34-36	0x000058-0x00005C	—	_	_
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>
Reserved	47-56	39-48	0x000062-0x000074	_	_	_
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
Reserved	59-61	51-53	0x00007A-0x00007E	_	_	_
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>
Reserved	63-64	55-54	0x000082-0x000084	—		_
PSEM – PWM Special Event Match	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>
Reserved	66-72	58-64	0x000088-0x000094	—		_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
Reserved	75-80	67-72	0x00009A-0x0000A4	—		_

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	—	_	—	—	—	_	PLLDIV8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
			PLLDI	V<7:0>				
bit 7							bit 0	
Legend:								
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-9	Unimplemen	ted: Read as ')'					
bit 8-0	PLLDIV<8:0>	-: PLL Feedbac	k Divisor bits (also denoted a	is 'M', PLL mul	tiplier)		
	111111111	= 513						
	•							
	•							
	•							
	000110000=	= 50 (default)						
	•							
	•							
	• 000000010 =	= 4						
	00000010-	– –						

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

000000001 = 3 000000000 = 2

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	
_	—	—	—	—	CMPMD	—	_	
bit 15	bit 15						bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
_	_	—	—	_	—	I2C2MD	—	
bit 7							bit 0	
Legend:								
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			own	
bit 15-11	Unimplement	ted: Read as '	כ'					
bit 10	CMPMD: Con	nparator Modul	le Disable bit					
	1 = Comparat	or module is di	sabled					
	0 = Comparat	or module is ei	nabled					
bit 9-2	Unimplement	ted: Read as '	כי					
bit 1	1 I2C2MD: I2C2 Module Disable bit							
		ule is disabled						
	0 = I2C2 mod	ule is enabled						

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
11.0		11.0	11.0		11.0	11.0	11.0

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2-0	Unimplemented: Read as '0'

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP37R<5:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP36R<5:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-23: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP39R<5:0>:** Peripheral Output Function is Assigned to RP39 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP38R<5:0>:** Peripheral Output Function is Assigned to RP38 Output Pin bits (see Table 10-2 for peripheral function numbers)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0
bit 15	·		•				bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0

bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP45R<5:0>: Peripheral Output Function is Assigned to RP45 Output Pin bits (see Table 10-2 for peripheral function numbers)
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP44R<5:0>: Peripheral Output Function is Assigned to RP44 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-27: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 7

bit 13-8 **RP47R<5:0>:** Peripheral Output Function is Assigned to RP47 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP46R<5:0>:** Peripheral Output Function is Assigned to RP46 Output Pin bits (see Table 10-2 for peripheral function numbers)

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Timers" (DS70362) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

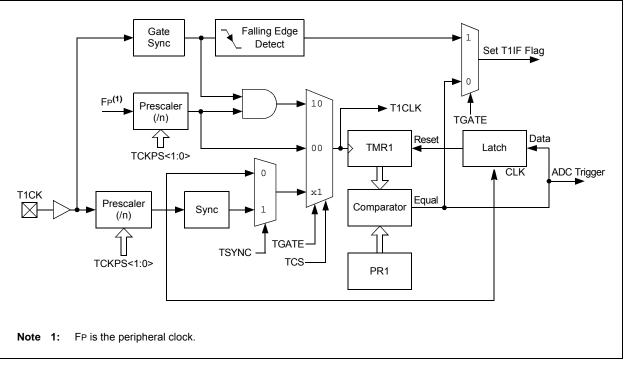
- Can be Operated in Asynchronous Counter mode from an External Clock Source
- The External Clock Input (T1CK) can Optionally be Synchronized to the Internal Device Clock and the Clock Synchronization is Performed after the Prescaler
- A block diagram of Timer1 is shown in Figure 11-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit settings for different operating modes are provided in Table 11-1.

Mode	TCS	TGATE	TSYNC				
Timer	0	0	х				
Gated Timer	0	1	x				
Synchronous Counter	1	x	1				
Asynchronous Counter	1	x	0				

TABLE 11-1: TIMER MODE SETTINGS

REGISTER 15-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾ 1111 = 1:16 Postscaler generates a Special Event Trigger on every sixteenth compare match event . . 0001 = 1:2 Postscaler generates a Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates a Special Event Trigger on every compare match event

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 15-2: PTCON2: PWMx CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—	—	PCLKDIV<2:0> ⁽¹⁾		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits⁽¹⁾

111 = Reserved

- 110 = Divide-by-64, maximum PWM timing resolution
- 101 = Divide-by-32, maximum PWM timing resolution
- 100 = Divide-by-16, maximum PWM timing resolution
- 011 = Divide-by-8, maximum PWM timing resolution
- 010 = Divide-by-4, maximum PWM timing resolution
- 001 = Divide-by-2, maximum PWM timing resolution
- 000 = Divide-by-1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

20.0 HIGH-SPEED ANALOG COMPARATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "High-Speed Analog Comparator Module" (DS70005128) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The high-speed analog comparator module monitors current and/or voltage transients that may be too fast for the CPU and ADC to capture.

20.1 Features Overview

The SMPS comparator module offers the following major features:

- Four Rail-to-Rail Analog Comparators
- Dedicated 12-Bit DAC for each Analog Comparator
- Up to Six Selectable Input Sources per Comparator:
 - Four external inputs
 - Two internal inputs from the PGAx module
- Programmable Comparator Hysteresis
- Programmable Output Polarity
- Up to Two DAC Outputs to Device Pins
- Multiple Voltage References for the DAC:
 External References (EXTREF1 or
 - EXTREF2) - AVDD
- Interrupt Generation Capability
- Functional Support for PWMx:
 - PWMx duty cycle control
 - PWMx period control
 - PWMx Fault detected

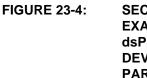
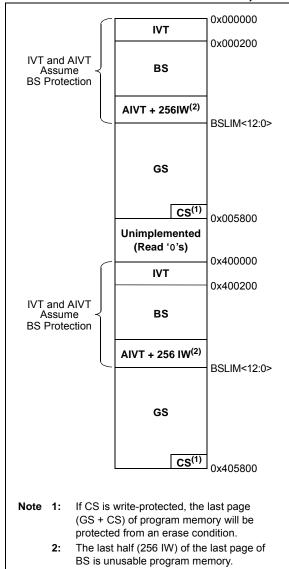

The different device security segments are shown in Figure 23-3. Here, all three segments are shown but are not required. If only basic code protection is required, then GS can be enabled independently or combined with CS, if desired.

FIGURE 23-3:	SECURITY SI EXAMPLE FC dsPIC33EP64 DEVICES	DR
		-0x000000
	IVT	0x000200
IVT and AIVT Assume BS Protection	BS	
	AIVT + 256 IW ⁽²⁾	
	GS	BSLIM<12:0>
	CS ⁽¹⁾	0x00B000
+ CS) of	write-protected, the program memory w erase condition.	
	half (256 IW) of the usable program me	1 0


dsPIC33EP64GS50X family devices can be operated in Dual Partition mode, where security is required for each partition. When operating in Dual Partition mode, the Active and Inactive Partitions both contain unique copies of the Reset vector, Interrupt Vector Tables (IVT and AIVT, if enabled) and the Flash Configuration Words. Both partitions have the three security segments described previously. Code may not be executed from the Inactive Partition, but it may be programmed by, and read from, the Active Partition, subject to defined code protection. Figure 23-4 shows the different security segments for a device operating in Dual Partition mode.

The device may also operate in a Protected Dual Partition mode or in Privileged Dual Partition mode. In Protected Dual Partition mode, Partition 1 is permanently erase/write-protected. This implementation allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1. For example, a fail-safe bootloader can be placed in Partition 1, along with a fail-safe backup code image, which can be used or rewritten into Partition 2 in the event of a failed Flash update to Partition 2.

Privileged Dual Partition mode performs the same function as Protected Dual Partition mode, except additional constraints are applied in an effort to prevent code in the Boot Segment and General Segment from being used against each other.

SECURITY SEGMENTS EXAMPLE FOR dsPIC33EP64GS50X DEVICES (DUAL PARTITION MODES)

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EPXXGS50X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXGS50X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(3)}$	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	
Maximum current sunk by all ports ⁽²⁾	200 mA

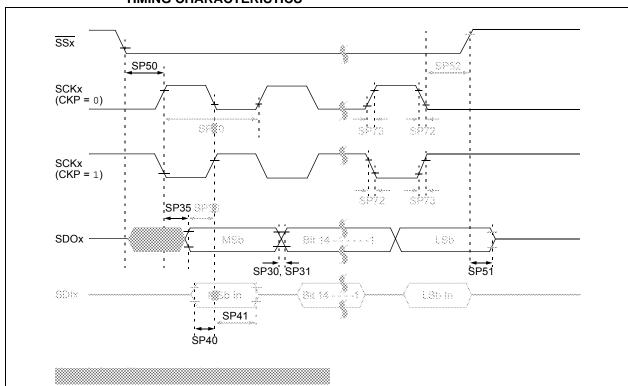

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

TABLE 26-23:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol Characteristic ⁽¹⁾ Min Tyn ⁽²⁾ Max Units		Conditions						
SY00	Tpu	Power-up Period	_	400	600	μS			
SY10	Тоѕт	Oscillator Start-up Time	—	1024 Tosc	_	—	Tosc = OSC1 period		
SY12	Twdt	Watchdog Timer Time-out Period	0.81	_	1.22	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 26-21) at +85°C		
			3.25	_	4.88	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 26-21) at +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μS			
SY20	TMCLR	MCLR Pulse Width (low)	2	_		μS			
SY30	TBOR	BOR Pulse Width (low)	1			μS			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μS	-40°C to +85°C		
SY36	Tvreg	Voltage Regulator Standby-to-Active mode Transition Time	—	_	30	μS			
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	48	_	μS			
SY38	TOSCDLPRC	LPRC Oscillator Start-up Delay	—	—	70	μS			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

FIGURE 26-18: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

AC/DC CHARACTERISTICS ⁽¹⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteris	tic	Min.	Тур.	Max.	Units	Comments
PA01	Vin	Input Voltage Rang	е	AVss - 0.3	_	AVDD + 0.3	V	
PA02	Vсм	Common-Mode Inp Voltage Range	ut	AVss	—	AVDD - 1.6	V	
PA03	Vos	Input Offset Voltage	;	-10	_	10	mV	
PA04	Vos	Input Offset Voltage Drift with Temperature		—	±15	—	µV/∘C	
PA05	Rin+	Input Impedance of Positive Input		—	>1M 7 pF	—	Ω pF	
PA06	Rin-	Input Impedance of Negative Input		—	10K 7 pF	—	Ω pF	
PA07		Gain Error		-2	_	2	%	Gain = 4x, 8x
			-3	—	3	%	Gain = 16x	
				-4		4	%	Gain = 32x, 64x
PA08	Lerr	Gain Nonlinearity Error		—	—	0.5	%	% of full scale, Gain = 16x
PA09	IDD	Current Consumption	on	_	2.0	—	mA	Module is enabled with a 2-volt P-P output voltage swing
PA10a	BW	Small Signal	G = 4x	_	10	—	MHz	
PA10b		Bandwidth (-3 dB)	G = 8x	_	5	—	MHz	
PA10c			G = 16x	—	2.5	—	MHz	
PA10d			G = 32x	_	1.25	—	MHz	
PA10e			G = 64x		0.625	_	MHz	
PA11	OST	Output Settling Time to 1% of Final Value		_	0.4	—	μs	Gain = 16x, 100 mV input step change
PA12	SR	Output Slew Rate		_	40	—	V/µs	Gain = 16x
PA13	TGSEL	Gain Selection Time	e	_	1	_	μs	
PA14	TON	Module Turn On/Set	ting Time	_	_	10	μs	

TABLE 26-48: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 26-49: CONSTANT-CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS ⁽¹⁾				$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$			
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
CC01	Idd	Current Consumption	_	30	—	μA	
CC02	IREG	Regulation of Current with Voltage On		±3	—	%	
CC03	Ιουτ	Current Output at Terminal	_	10	_	μA	

Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	332
Timer1-Timer5 External Clock Characteristics	321
UARTx I/O Characteristics	342

U

Unique Device Identifier (UDID) Universal Asynchronous Receiver	31				
Transmitter (UART)					
Control Registers					
Helpful Tips					
Resources	224				
Universal Asynchronous Receiver Transmitter. See UART.					
User OTP Memory					

۷

285
. 277, 286
286
384
10