

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs502-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	-	ADCIF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	-	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	-	-	-	-	INT1IF	CNIF	AC1IF	MI2C1IF	SI2C1IF	0000
IFS2	0804	-	_	_	_	-	_	_	_	_	IC4IF	IC3IF	_	_	-	SPI2IF	SPI2EIF	0000
IFS3	0806	-	_	_	_	-	_	PSEMIF	_	_	INT4IF	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	0808	-	-	-	-	-	-	PSESIF	-	-	-	-	-	-	U2EIF	U1EIF	-	0000
IFS5	080A	PWM2IF	PWM1IF	_	_	-	_	_	_		_	_	_	_	-	-	_	0000
IFS6	080C	ADCAN1IF	ADCAN0IF	-	_	-	_	AC4IF	AC3IF	AC2IF	_	_	_	-	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	-	-	-	-	-	_	-	-	-	-	ADCAN7IF	ADCAN6IF	ADCAN5IF	ADCAN4IF	ADCAN3IF	ADCAN2IF	0000
IFS8	0810	JTAGIF	ICDIF	-	-	-	-	-	-	-	_	-	-	-	-	-	-	0000
IFS9	0812	ADCAN16IF ⁽¹⁾	ADCAN15IF(1)	ADCAN14IF(2)	ADCAN13IF(1)	ADCAN12IF ⁽²⁾	ADCAN11IF ⁽²⁾	ADCAN10IF(2)	ADCAN9IF ⁽²⁾	ADCAN8IF ⁽²⁾	_	-	-	-	-	-	-	0000
IFS10	0814	-	I2C2BCIF	I2C1BCIF	_	-	_	-	_	_	_	-	ADCAN21IF	ADCAN20IF	ADCAN19IF	ADCAN18IF	ADCAN17IF ⁽²⁾	0000
IFS11	0816	-	-	-	-	-	-	-	-	-	_	-	ADFLTR1IF	ADFLTR0IF	ADCMP1IF	ADCMP0IF	-	0000
IEC0	0820	NVMIE	-	ADCIE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	-	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	-	-	-	-	INT1IE	CNIE	AC1IF	MI2C1IE	SI2C1IE	0000
IEC2	0824	-	-	-	-	-	-	-	-	-	IC4IE	IC3IE	-	-	-	SPI2IE	SPI2EIE	0000
IEC3	0826	-	_	_	_	-	_	PSEMIE	_	_	INT4IE	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	0828	-	-	-	-	-	-	PSESIE	-	-	-	-	-	-	U2EIE	U1EIE	-	0000
IEC5	082A	PWM2IE	PWM1IE	-	-	-	-	-	-	-	_	-	-	-	-	-	-	0000
IEC6	082C	ADCAN1IE	ADCAN0IE	_	_	-	_	AC4IE	AC3IE	AC2IE	_	_	_	_	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	-	-	-	-	-	-	-	-	-	-	ADCAN7IE	ADCAN6IE	ADCAN5IE	ADCAN4IE	ADCAN3IE	ADCAN2IE	0000
IEC8	0830	JTAGIE	ICDIE	-	_	-	_	_	_	_	_	_	_	-	-	_	_	0000
IEC9	0832	ADCAN16IE ⁽¹⁾	ADCAN15IE ⁽¹⁾	ADCAN14IE ⁽²⁾	ADCAN13IE ⁽¹⁾	ADCAN12IE ⁽²⁾	ADCAN11IE ⁽²⁾	ADCAN10IE ⁽²⁾	ADCAN9IE ⁽²⁾	ADCAN8IE ⁽²⁾	_	_	_	-	-	_	_	0000
IEC10	0834	-	I2C2BCIE	I2C1BCIE	_	-	_	_	_	_	_	_	ADCAN21IE	ADCAN20IE	ADCAN19IE	ADCAN18IE	ADCAN17IE ⁽²⁾	0000
IEC11	0836	-	_	_	_	-	_	_	_	_	_	_	ADFLTR1IE	ADFLTR0IE	ADCMP1IE	ADCMP0IE	_	0000
IPC0	0840	-	T1IP2	T1IP1	T1IP0	-	OC1IP2	OC1IP1	OC1IP0	-	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	0842	-	T2IP2	T2IP1	T2IP0	-	OC2IP2	OC2IP1	OC2IP0	-	IC2IP2	IC2IP1	IC2IP0	_	-	-	-	4440
IPC2	0844	-	U1RXIP2	U1RXIP1	U1RXIP0	-	SPI1IP2	SPI1IP1	SPI1IP0	-	SPI1EIP2	SPI1EIP1	SPI1EIP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	0846	-	NVMIP2	NVMIP1	NVMIP0	-	_	_	_	_	ADCIP2	ADCIP1	ADCIP0	_	U1TXIP2	U1TXIP1	U1TXIP0	4044
IPC4	0848	-	CNIP2	CNIP1	CNIP0	-	AC1IP2	AC1IP1	AC1IP0	-	MI2C1IP2	MI2C1IP1	MI2C1IP0	-	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	084A	-	-	-	-	-	-	-	-	-	_	-	-	-	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	084C	_	T4IP2	T4IP1	T4IP0	-	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	-	_	_	_	4440
IPC7	084E	-	U2TXIP2	U2TXIP1	U2TXIP0	-	U2RXIP2	U2RXIP1	U2RXIP0	-	INT2IP2	INT2IP1	INT2IP0	-	T5IP2	T5IP1	T5IP0	4444
IPC8	0850	_	_	_	_	_	_	_	_	-	SPI2IP2	SPI2IP1	SPI2IP0	-	SPI2EIP2	SPI2EIP1	SPI2EIP0	0044
IPC9	0852	_	-	-	_	-	IC4IP2	IC4IP1	IC4IP0	-	IC3IP2	IC3IP1	IC3IP0	-	_	_	-	0440

Legend:

Note 1:

 — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Only available on dsPIC33EPXXGS506 devices. Only available on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices.
 2:

TABLE 4-11: PWM GENERATOR 4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0C80	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	-	-	MTBS	CAM	XPRES	IUE	0000
IOCON4	0C82	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON4	0C84	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC4	0C86							PWM4 Ger	nerator Duty C	ycle Registe	er (PDC4<18	5:0>)						0000
PHASE4	0C88					F	PWM4 Primary	Phase-Shift c	r Independen	t Time Base	Period Reg	ister (PHASE	4<15:0>)					0000
DTR4	0C8A	_	_						PWM4 D	Dead-Time F	Register (DT	R4<13:0>)						0000
ALTDTR4	0C8C	_	- - PWM4 Alternate Dead-Time Register (ALTDTR4<13:0>) 0000															
SDC4	0C8E		PWM4 Secondary Duty Cycle Register (SDC4<15:0>) 0000											0000				
SPHASE4	0C90							PWM4 Secon	dary Phase-Sl	nift Register	(SPHASE4-	<15:0>)						0000
TRIG4	0C92					PWM4 Pr	imary Trigger (Compare Value	e Register (TF	GCMP<12:	0>)				_	_	_	0000
TRGCON4	0C94	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	_	_	_	_	DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG4	0C96					PWM4 Seco	ondary Trigger	Compare Valu	ie Register (S	TRGCMP<1	2:0>)				_	_	_	0000
PWMCAP4	0C98					PWM4 F	Primary Time E	Base Capture F	Register (PWN	/ICAP<12:0>	>)				_	—	_	0000
LEBCON4	0C9A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	-	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY4	0C9C	_	_	_	—		PWM4 Leading-Edge Blanking Delay Register (LEB<8:0>) — — — —									0000		
AUXCON4	0C9E	HRPDIS	HRDDIS	_	_	BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0	_	—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: PWM GENERATOR 5 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON5	0CA0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC1	DTC0	—	-	MTBS	CAM	XPRES	IUE	0000
IOCON5	0CA2	PENH	PENL	POLH	POLL	PMOD1	PMOD0	OVRENH	OVRENL	OVRDAT1	OVRDAT0	FLTDAT1	FLTDAT0	CLDAT1	CLDAT0	SWAP	OSYNC	C000
FCLCON5	0CA4	IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL	CLMOD	FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL	FLTMOD1	FLTMOD0	00F8
PDC5	0CA6							PWM5 Ger	nerator Duty C	ycle Registe	er (PDC5<1	5:0>)						0000
PHASE5	0CA8					F	PWM5 Primary	Phase-Shift o	or Independen	t Time Base	Period Reg	ister (PHASE	5<15:0>)					0000
DTR5	0CAA	—	—						PWM5 E	ead-Time F	Register (DT	R5<13:0>)						0000
ALTDTR5	0CAC	_	- - PWM5 Alternate Dead-Time Register (ALTDTR5<13:0>) 0000										0000					
SDC5	0CAE		PWM5 Secondary Duty Cycle Register (SDC5<15:0>) 0000										0000					
SPHASE5	0CB0							PWM5 Secon	dary Phase-S	hift Register	(SPHASE5	<15:0>)						0000
TRIG5	0CB2					PWM5 Pri	mary Trigger (Compare Value	e Register (TF	GCMP<12:	0>)				_	_	_	0000
TRGCON5	0CB4	TRGDIV3	TRGDIV2	TRGDIV1	TRGDIV0	—	—			DTM	—	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0	0000
STRIG5	0CB6					PWM5 Seco	ndary Trigger	Compare Valu	e Register (S	TRGCMP<1	2:0>)				_	_	—	0000
PWMCAP5	0CB8	PWM5 Primary Time Base Capture Register (PWMCAP<12:0>) — — — 0000										0000						
LEBCON5	0CBA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY5	0CBC	_	— — — PWM5 Leading-Edge Blanking Delay Register (LEB<8:0>) — — — 0000										0000					
AUXCON5	0CBE	HRPDIS	HRDDIS	_		BLANKSEL3	BLANKSEL2	BLANKSEL1	BLANKSEL0		—	CHOPSEL3	CHOPSEL2	CHOPSEL1	CHOPSEL0	CHOPHEN	CHOPLEN	0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	+ 15.					00110												
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670			RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0			RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR1	0672	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	—	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000
RPOR2	0674	—	—	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	_	-	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR3	0676	_	_	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	—	_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR4	0678	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	—	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR5	067A	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	—	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR6	067C	_	_	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	—	_	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0	0000
RPOR7	067E	_	_	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	—	_	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	0000
RPOR8	0680	_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	—	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR9	0682	_	_	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0	—	_	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0	0000
RPOR10	0684	_	_	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0	—	_	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0	0000
RPOR11	0686	—	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0			RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR12	0688	_	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	—	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR13	068A	—	_	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0	I		RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0	0000
RPOR14	068C	_	_	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	—	_	RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0	0000
RPOR15	068E	—	_	RP63R5	RP63R4	RP63R3	RP63R2	RP63R1	RP63R0	I		RP62R5	RP62R4	RP62R3	RP62R2	RP62R1	RP62R0	0000
RPOR16	0690	—	—	RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	_	-	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	0000
RPOR17	0692	_		RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	0000
RPOR18	0694	_		RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	0000

TABLE 4-19: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00		_	_	_		_	—		—	_	_		-	FRISA<4:0>	>		001F
PORTA	0E02		—	_	—		—	—		—	—	—	RA<4:0>				0000	
LATA	0E04	_	_	_	_	_	_	_	_	_	_	_	LATA<4:0>				0000	
ODCA	0E06	_	_	_	_	_	_	_	_	_	_	_	ODCA<4:0>				0000	
CNENA	0E08		_	—	—		—	—		_	_	—		(CNIEA<4:0>	>		0000
CNPUA	0E0A		_	—	—		—	—		_	_	—	CNPUA<4:0>				0000	
CNPDA	0E0C		_	—	—		—	—		_	_	—	CNPDA<4:0>					0000
ANSELA	0E0E	-	—	_	_	-	_	—	-	_	—	—	ANSA<2:0>				0007	

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10								TRISB<1	5:0>								FFFF
PORTB	0E12								RB<15:	0>								xxxx
LATB	0E14								LATB<1	5:0>								xxxx
ODCB	0E16								ODCB<1	5:0>								0000
CNENB	0E18								CNIEB<1	5:0>								0000
CNPUB	0E1A								CNPUB<	15:0>								0000
CNPDB	0E1C								CNPDB<	15:0>								0000
ANSELB	0E1E	_	_	_	_	_	ANSB	<10:9>	_		ANSB<7:5	>	_		ANSE	3<3:0>		06EF

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTC REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_							TRISC<	13:0>							3FFF
PORTC	0E22		—		RC<13:0> xx									xxxx				
LATC	0E24		—		LATC<13:0> xx								xxxx					
ODCC	0E26		—							ODCC<	13:0>							0000
CNENC	0E28		—							CNIEC<	13:0>							0000
CNPUC	0E2A		—							CNPUC	<13:0>							0000
CNPDC	0E2C		—		CNPDC<13:0> 000										0000			
ANSELC	0E2E	_	_	_		ANSC	<12:9>		_	_		ANSC<6:4	>	_		ANSC<2:0>	>	1E77

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.6 Instruction Addressing Modes

The addressing modes shown in Table 4-38 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.6.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.6.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-38: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

5.2 RTSP Operation

The dsPIC33EPXXGS50X family Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a single page (8 rows or 512 instructions) of memory at a time and to program one row at a time. It is possible to program two instructions at a time as well.

The page erase and single row write blocks are edgealigned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. Figure 26-14 in **Section 26.0 "Electrical Characteristics"** lists the typical erase and programming times.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. Refer to Figure 4-1 through Figure 4-4 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

All erase and program operations may optionally use the NVM interrupt to signal the successful completion of the operation. For example, when performing Flash write operations on the Inactive Partition in Dual Partition mode, where the CPU remains running, it is necessary to wait for the NVM interrupt before programming the next block of Flash program memory.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000000, 0x000004, 0x000008, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKI	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, read	l as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** NVM Key Register bits (write-only)

REGISTER 5-5: NVMSRCADR: NVM SOURCE DATA ADDRESS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSRO	CADR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			NVMSR	CADR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 NVMSRCADR<15:0>: NVM Source Data Address bits

The RAM address of the data to be programmed into Flash when the NVMOP<3:0> bits are set to row programming.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

- 1 = Variable exception processing is enabled
- 0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-3: INT	CON1: INTERRUPT	CONTROL	REGISTER	1
-------------------	-----------------	---------	----------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
1							
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0
Logondi							
R = Readable	hit	M = M/ritable	hit	II = I Inimplem	ented hit read	ae 'N'	
-n = Value at F	POR	'1' = Bit is set	bit	0' = Bit is clea	ired	x = Bit is unk	nown
		1 Bit io oot				X Dit io unit	
bit 15	NSTDIS: Inte	errupt Nesting	Disable bit				
	1 = Interrupt	nesting is disa	bled				
	0 = Interrupt	nesting is ena	bled				
bit 14	OVAERR: A	ccumulator A (Overflow Trap F	lag bit			
	1 = Trap was 0 = Trap was	s caused by ov s not caused by	erflow of Accur	mulator A			
bit 13	OVBERR: A	ccumulator B (Overflow Trap F	Flag bit			
2.1.10	1 = Trap was	s caused by ov	erflow of Accur	mulator B			
	0 = Trap was	s not caused by	y overflow of A	ccumulator B			
bit 12	COVAERR:	Accumulator A	Catastrophic (Overflow Trap F	lag bit		
	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator A		
bit 11	COVBERR	Accumulator F	y calastrophic (Catastrophic (Overflow Tran F	lan hit		
Sit II	1 = Trap was	s caused by ca	tastrophic over	flow of Accumu	lator B		
	0 = Trap was	s not caused b	y catastrophic of	overflow of Accu	umulator B		
bit 10	OVATE: Acc	cumulator A Ov	erflow Trap En	able bit			
	1 = Trap ove 0 = Trap is d	erflow of Accum lisabled	nulator A				
bit 9	OVBTE: Acc	cumulator B Ov	verflow Trap En	able bit			
	1 = Trap ove	erflow of Accun	nulator B				
bit 8	COVTE: Cat	lisableu tastrophic Over	flow Tran Enal	ole hit			
bit o	1 = Trap on	catastrophic over	verflow of Accu	mulator A or B i	s enabled		
	0 = Trap is d	lisabled					
bit 7	SFTACERR	: Shift Accumu	lator Error State	us bit			
	1 = Math err 0 = Math err	or trap was car or trap was no	used by an inva t caused by an	alid accumulator invalid accumul	r shift lator shift		
bit 6	DIVOERR: D	ivide-by-Zero	Error Status bit				
	1 = Math err 0 = Math err	or trap was cau or trap was no	used by a divide t caused by a d	e-by-zero livide-by-zero			
bit 5	Unimpleme	nted: Read as	'0'				
bit 4	MATHERR:	Math Error Sta	tus bit				
	1 = Math err	or trap has occ	occurred				
hit 3		Address Frror	Tran Status hit				
Situ	1 = Address	error trap has	occurred				
	0 = Address	error trap has	not occurred				

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP	—	_	—	—	AIVTEN
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
			INT4EP		INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	GIE: Global I	nterrupt Enable	e bit				
	1 = Interrupts	and associate	ed IE bits are e	nabled			
h:+ 1 4		s are disabled,	but traps are s	suii enabled			
DIL 14		truction is activ					
	0 = DISI insi	truction is not a	e active				
bit 13	SWTRAP: So	oftware Trap St	atus bit				
	1 = Software	trap is enabled					
	0 = Software	trap is disable	d				
bit 12-9	Unimplemen	nted: Read as '	0'				
bit 8	AIVTEN: Alte	ernate Interrupt	Vector Table I	Enable			
	1 = Uses Alte	ernate Interrupt	Vector Table				
	0 = Uses star	ndard Interrupt	Vector lable				
DIT 7-5	Unimplemen	ited: Read as					
DIT 4	INI4EP: EXte	ernal Interrupt 4	4 Edge Detect	Polarity Selec	T DIT		
	1 = Interrupt	on positive ed	ye 1e				
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	INT2EP: Exte	ernal Interrupt 2	2 Edge Detect	Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge				
	0 = Interrupt	on positive edg	je				
bit 1	INT1EP: Exte	ernal Interrupt ?	1 Edge Detect	Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge				
	0 = Interrupt	on positive edg	je				
bit 0	INTOEP: Exte	ernal Interrupt (DEdge Detect	Polarity Selec	t bit		
	1 = Interrupt	on negative ed	ge 1e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

DS70005127D-page 104

9.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into standby when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

9.2.2 IDLE MODE

The following occurs in Idle mode:

- The CPU stops executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral (for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

13.0 INPUT CAPTURE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Input Capture" (DS70000352) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurements. The dsPIC33EPXXGS50X family devices support four input capture channels.

Key features of the input capture module include:

 Hardware-Configurable for 32-Bit Operation in All modes by Cascading Two Adjacent Modules

- Synchronous and Trigger modes of Output Compare Operation, with up to 21 User-Selectable Trigger/Sync Sources Available
- A 4-Level FIFO Buffer for Capturing and Holding Timer Values for Several Events
- Configurable Interrupt Generation
- Up to Six Clock Sources Available for Each Module, Driving a Separate Internal 16-Bit Counter

13.1 Input Capture Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

13.1.1 KEY RESOURCES

- "Input Capture" (DS70000352) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

FIGURE 13-1: INPUT CAPTURE x MODULE BLOCK DIAGRAM

REGISTER 15-22: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 5)

	,						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
Dit 15	 bit 15 IFLTMOD: Independent Fault Mode Enable bit 1 = Independent Fault mode: Current-limit input maps FLTDAT1 to the PWMxH output and the Fault input maps FLTDAT0 to the PWMxL output; the CLDAT<1:0> bits are not used for override functions 0 = Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL outputs; the PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs 						
	 Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL outputs outputs; the PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs CLSRC<4:0>: Current-Limit Control Signal Source Select for PWMx Generator bits 1111 = Reserved 10001 = Reserved 10000 = Analog Comparator 4 01111 = Analog Comparator 3 01101 = Analog Comparator 2 0101 = Fault 12 0101 = Fault 11 0100 = Fault 10 0100 = Fault 10 0100 = Fault 10 0100 = Fault 10 0100 = Fault 8 0011 = Fault 5 00100 = Fault 3 0011 = Fault 3 0001 = Fault 1 						
bit 9	CLPOL: Current-Limit Polarity for PWMx Generator bit ⁽¹⁾ 1 = The selected current-limit source is active-low 0 = The selected current-limit source is active-high						
bit 8	CLMOD: Cur 1 = Current-L 0 = Current-L	rent-Limit Mode imit mode is en imit mode is dis	Enable for Pl abled abled	WMx Generato	r bit		

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect
	0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed; clearing a previously set OERR bit (1 → 0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: UARTx Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.

REGISTER 19-12: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 to 3)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
—	—	—	EISEL2	EISEL1	EISEL0	RES1	RES0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0
bit 7							bit 0
Legend:							
R = Read	able bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as 'd)'				
bit 12-10	EISEL<2:0>:	ADC Core x Ea	rly Interrupt Ti	me Selection bit	ts		
	111 = Early in	nterrupt is set an	d an interrupt i	s generated 8 T	ADCORE clocks	prior to when th	e data is ready
	110 = Early in	nterrupt is set an	d an interrupt i	s generated 7 T	ADCORE clocks	prior to when th	e data is ready
	101 = Early in	nterrupt is set an	d an interrupt i	s generated 6 T	ADCORE clocks	prior to when th	e data is ready
	100 = Early in	nterrupt is set an	d an interrupt i	s generated 5 T	ADCORE clocks	prior to when th	e data is ready
	011 = Early in	terrupt is set an	d an interrupt i	s generated 4 T	ADCORE clocks	prior to when th	e data is ready
	010 = Early in	iterrupt is set an	d an interrupt i	s generated 3 T	ADCORE clocks	prior to when th	e data is ready
	001 = Early in	iterrupt is set an	d an interrupt i id an interrupt	s generated 2 1.	ADCORE CIOCKS	prior to when th prior to when th	e data is ready
hit 9-8	BES-1:0>: A	DC Core x Res	olution Selecti	on hits	TADCORE CIOCK		c data is ready
	11 = 12-bit re			011 0113			
	10 = 10-bit re	solution					
	01 = 8-bit res	olution					
	00 = 6-bit res	olution					
bit 7	Unimplemen	ted: Read as 'd)'				
bit 6-0	ADCS<6:0>:	ADC Core x In	put Clock Divid	der bits			
	These bits de	etermine the nu	umber of Sou	rce Clock Perio	ods (TCORESRC) for one Core	Clock Period
	(TADCORE).						
	1111111 = 2	54 Source Cloc	k Periods				
	•						
	•						
	•	Source Clock	Pariode				
	0000011 = 0	Source Clock F	Periods				
	0000001 = 2	Source Clock	Periods				
	0000000 = 2	Source Clock I	Periods				
	_ ,, _						• • •
Note 1:	For the 6-bit ADC not valid and sho	; core resolutior uld not be used.	1 (RES<1:0> = . For the 8-bit /	00), the EISEI ADC core resolu	L<2:0> bits sett ution (RES<1:0	tings, from '100 > = 01), the El:)' to '111', are SEL<2:0> bits

settings, '110' and '111', are not valid and should not be used.

REGISTER 20-1: CMPxCON: COMPARATOR x CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	HC-0, HS	R/W-0	R/W-0	R/W-0
INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CMPON: Comparator Operating Mode bit 1 = Comparator module is enabled
	0 = Comparator module is disabled (reduces power consumption)
bit 14	Unimplemented: Read as '0'
bit 13	CMPSIDL: Comparator Stop in Idle Mode bit
	 1 = Discontinues module operation when device enters Idle mode. 0 = Continues module operation in Idle mode If a device has multiple comparators, any CMPSIDL bit set to '1' disables all comparators while in Idle mode.
bit 12-11	HYSSEL<1:0>: Comparator Hysteresis Select bits
	11 = 20 mV hysteresis 10 = 10 mV hysteresis 01 = 5 mV hysteresis 00 = No hysteresis is selected
bit 10	FLTREN: Digital Filter Enable bit
	1 = Digital filter is enabled 0 = Digital filter is disabled
bit 9	FCLKSEL: Digital Filter and Pulse Stretcher Clock Select bit
	 1 = Digital filter and pulse stretcher operate with the PWM clock 0 = Digital filter and pulse stretcher operate with the system clock
bit 8	DACOE: DACx Output Enable bit
	 1 = DACx analog voltage is connected to the DACOUTx pin⁽¹⁾ 0 = DACx analog voltage is not connected to the DACOUTx pin
bit 7-6	INSEL<1:0>: Input Source Select for Comparator bits
	If ALTINP = 0, Select from Comparator Inputs: 11 = Selects CMPxD input pin 10 = Selects CMPxC input pin 01 = Selects CMPxR input pin
	01 = Selects CMPxA input pin
	If ALTINP = 1. Select from Alternate Inputs:
	11 = Reserved
	10 = Reserved
	01 = Selects PGA2 output

Note 1: DACOUTx can be associated only with a single comparator at any given time. The software must ensure that multiple comparators do not enable the DACx output by setting their respective DACOE bit.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	332
Timer1-Timer5 External Clock Characteristics	321
UARTx I/O Characteristics	342

U

Unique Device Identifier (UDID)	
Universal Asynchronous Receiver	
Transmitter (UART)	
Control Registers	
Helpful Tips	
Resources	
Universal Asynchronous Receiver Transmitter.	See UART.
User OTP Memory	

۷

. 285
286
286
. 384
10

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support