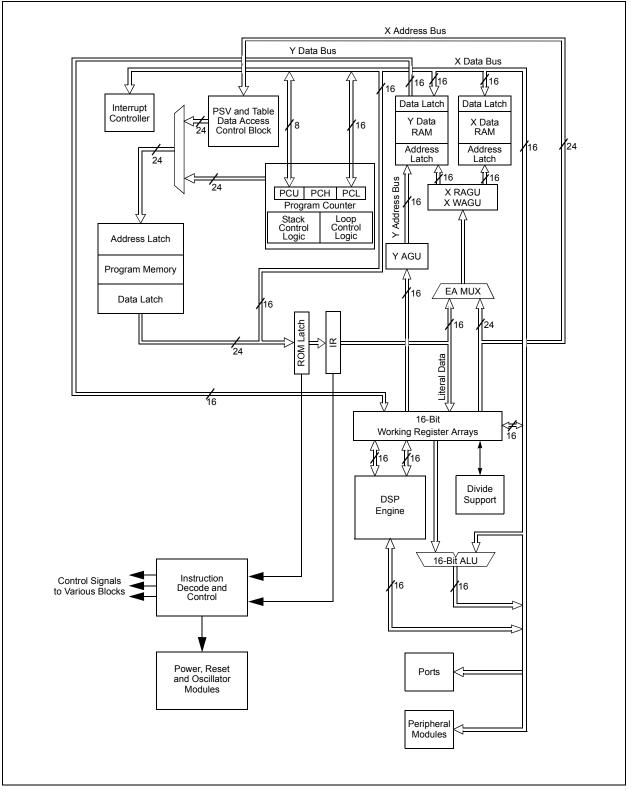


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs502t-e-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: dsPIC33EPXXGS50X FAMILY CPU BLOCK DIAGRAM

FIGURE 4-4: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES (DUAL PARTITION) 0x000000 GOTO Instruction 0x000002 Reset Address 0x000004 Interrupt Vector Table 0x0001FE 0x000200 Active Program Flash Memory (10,944 instructions) **Active Partition** 0x00577E 0x005780 **Device Configuration** 0x0057FE 0x005800 User Memory Space Unimplemented (Read '0's) 0x3FFFFE 0x400000 GOTO Instruction 0x400002 Reset Address 0x400004 Interrupt Vector Table 0x4001FE 0x400200 **Inactive Partition** Inactive Program Flash Memory (10,944 instructions) 0x40577E 0x405780 **Device Configuration** 0x4057FE 0x405800 Unimplemented (Read '0's) 0x7FFFFE 0x800000 Reserved 0x800E46 0x800E48 Calibration Data 0x800E78 0x800E7A Reserved 0x800EFE Configuration Memory Space 0x800F00 UDID 0x800F08 0x800F0A Reserved 0x800F7E 0x800F80 User OTP Memory 0x800FFC 0x801000 Reserved 0xF9FFFE 0xFA0000 Write Latches 0xFA0002 0xFA0004 Reserved **0xFEFFFE** 0xFF0000 DEVID 0xFF0002 0xFF0004 Reserved 0xFFFFFE Note: Memory areas are not shown to scale.

TABLE 4-16: ADC REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADLVLTRGL	03D0	LVLEN15 ⁽¹⁾	LVLEN14	LVLEN13 ⁽¹⁾	LVLEN12 ⁽²⁾	LVLEN11 ⁽²⁾	LVLEN10 ⁽²⁾	LVLEN9 ⁽²⁾	LVLEN8 ⁽²⁾	LVLEN7	LVLEN6	LVLEN5	LVLEN4	LVLEN3	LVLEN2	LVLEN1	LVLEN0	0000
ADLVLTRGH	03D2	_		-	_	_		_	_	-		LVLEN21	LVLEN20	LVLEN19	LVLEN18	LVLEN17 ⁽²⁾	LVLEN16 ⁽¹⁾	0000
ADCORE0L	03D4	—		_	_	_						SAMO	C<9:0>					0000
ADCORE0H	03D6	-	-	-	EISEL2	EISEL1	EISEL0	RES1	RES0	-	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADCORE1L	03D8	_		-	_	_						SAMO	C<9:0>					0000
ADCORE1H	03DA	—		_	EISEL2	EISEL1	EISEL0	RES1	RES0	_	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADCORE2L	03DC	-	-	-	_	-	_				_	SAMO	C<9:0>					0000
ADCORE2H	03DE	_		-	EISEL2	EISEL1	EISEL0	RES1	RES0	-	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADCORE3L	03E0	—		_	_	_						SAMO	C<9:0>					0000
ADCORE3H	03E2	-	-	-	EISEL2	EISEL1	EISEL0	RES1	RES0	-	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
ADEIEL	03F0	EIEN15 ⁽¹⁾	EIEN14 ⁽²⁾	EIEN13 ⁽¹⁾	EIEN12 ⁽²⁾	EIEN11 ⁽²⁾	EIEN10 ⁽²⁾	EIEN9 ⁽²⁾	EIEN8 ⁽²⁾	EIEN7	EIEN6	EIEN5	EIEN4	EIEN3	EIEN2	EIEN1	EIEN0	0000
ADEIEH	03F2	_	_	_	_	_	_	_	_	_	_	EIEN21	EIEN20	EIEN19	EIEN18	EIEN17 ⁽²⁾	EIEN16 ⁽¹⁾	0000
ADEISTATL	03F8	EISTAT15(1)	EISTAT14(2)	EISTAT13(1)	EISTAT12(2)	EISTAT11 ⁽²⁾	EISTAT10(2)	EISTAT9 ⁽²⁾	EISTAT8 ⁽²⁾	EISTAT7	EISTAT6	EISTAT5	EISTAT4	EISTAT3	EISTAT2	EISTAT1	EISTAT0	0000
ADEISTATH	03FA	_	_	_	_	_	_	_	_	_	_	EISTAT21	EISTAT20	EISTAT19	EISTAT18	EISTAT17(2)	EISTAT16 ⁽¹⁾	0000
ADCON5L	0400	SHRRDY	_	-	_	C3RDY	C2RDY	C1RDY	CORDY	SHRPWR	_	-	-	C3PWR	C2PWR	C1PWR	C0PWR	0000
ADCON5H	0402	_	_	_	_	WARMTIME3	WARMTIME2	WARMTIME1	WARMTIME0	SHRCIE	_	_	_	C3CIE	C2CIE	C1CIE	C0CIE	0000
ADCALOL	0404	CAL1RDY	_	_	_	_	CAL1DIFF	CAL1EN	CAL1RUN	CALORDY	_	_	_	_	CAL0DIFF	CAL0EN	CALORUN	0000
ADCAL0H	0406	CAL3RDY	_	_	_	_	CAL3DIFF	CAL3EN	CAL3RUN	CAL2RDY	_	_	_	_	CAL2DIFF	CAL2EN	CAL2RUN	0000
ADCAL1H	040A	CSHRRDY	-	_	_	_	CSHRDIFF	CSHREN	CSHRRUN	—	-	_	—	_	_	_	—	0000
ADCBUF0	040C								ADC Da	ta Buffer 0								0000
ADCBUF1	040E								ADC Da	ta Buffer 1								0000
ADCBUF2	0410								ADC Da	ta Buffer 2								0000
ADCBUF3	0412								ADC Da	ta Buffer 3								0000
ADCBUF4	0414								ADC Da	ta Buffer 4								0000
ADCBUF5	0416								ADC Da	ta Buffer 5								0000
ADCBUF6	041B								ADC Da	ta Buffer 6								0000
ADCBUF7	041A								ADC Da	ta Buffer 7								0000
ADCBUF8	041C								ADC Da	ta Buffer 8								0000
ADCBUF9	041E								ADC Da	ta Buffer 9								0000
ADCBUF10	0420								ADC Dat	a Buffer 10								0000
ADCBUF11	0422								ADC Dat	a Buffer 11								0000
ADCBUF12	0424								ADC Dat	a Buffer 12								0000
ADCBUF13	0426									a Buffer 13								0000
ADCBUF14	0428								ADC Dat	a Buffer 14								0000
ADCBUF15	042A								ADC Dat	a Buffer 15								0000
ADCBUF16	042C									a Buffer 16								0000
ADCBUF17	042E									a Buffer 17								0000
ADCBUF18	0430								ADC Dat	a Buffer 18								0000
ADCBUF19	0432									a Buffer 19								0000
ADCBUF20	0434								ADC Dat	a Buffer 20								0000
ADCBUF21	0436									a Buffer 21								0000

dsPIC33EPXXGS50X FAMILY

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

Note 1:

Implemented on dsPIC33EPXXGS506 devices only.
 Implemented on dsPIC33EPXXGS504/505 and dsPIC33EPXXGS506 devices only.

TABLE 4-26: ANALOG COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMP1CON	0540	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP1DAC	0542	_	—	—							CMREF	<11:0>						0000
CMP2CON	0544	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP2DAC	0546	-	—	_	-						CMREF	<11:0>						0000
CMP3CON	0548	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP3DAC	054A	-	_	_	_						CMREF	<11:0>						0000
CMP4CON	054C	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP4DAC	054E	—	—	_	_						CMREF	<11:0>						0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: JTAG INTERFACE REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	—						JDATA	H<11:0>						xxxx
JDATAL	0FF2								JDATA	L<15:0>								0000

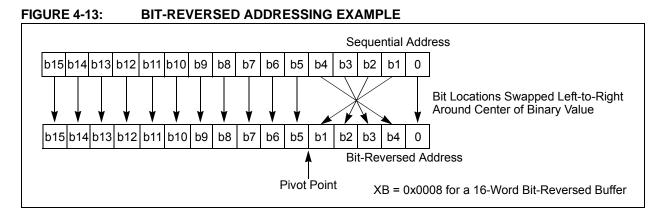
Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-33: PORTA REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_		_		_				_	_	_			TRISA<4:0>	•		001F
PORTA	0E02	_		—		—					—	—			RA<4:0>			0000
LATA	0E04	_		—		—					—	—			LATA<4:0>			0000
ODCA	0E06	_		—		—					—	—			ODCA<4:0>	•		0000
CNENA	0E08	_		—		—					—	—		(CNIEA<4:0	>		0000
CNPUA	0E0A	_		—		—					—	—		C	CNPUA<4:0	>		0000
CNPDA	0E0C	_		—		—					—	—	CNPDA<4:0>				0000	
ANSELA	0E0E	_	_	_	-	_	-	-	-	_	—	_	_	—		ANSA<2:0>		0007

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-34: PORTB REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES


SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10								TRISB<1	5:0>								FFFF
PORTB	0E12								RB<15	:0>								xxxx
LATB	0E14								LATB<1	5:0>								xxxx
ODCB	0E16								ODCB<1	5:0>								0000
CNENB	0E18								CNIEB<1	5:0>								0000
CNPUB	0E1A								CNPUB<	15:0>								0000
CNPDB	0E1C								CNPDB<	15:0>								0000
ANSELB	0E1E		_	—	—	—	ANSB<	:10:9>	—		ANSB<7:5>	•	_		ANSE	3<3:0>		06EF

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PORTC REGISTER MAP FOR dsPIC33EPXXGS506 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20								TRISC<1	5:0>								FFFF
PORTC	0E22								RC<15	:0>								xxxx
LATC	0E24								LATC<1	5:0>								xxxx
ODCC	0E26								ODCC<1	5:0>								0000
CNENC	0E28								CNIEC<1	5:0>								0000
CNPUC	0E2A								CNPUC<	15:0>								0000
CNPDC	0E2C								CNPDC<	15:0>								0000
ANSELC	0E2E	_	_	—		ANSC<	:12:9>		_	—		ANSC<6:4>		—	/	ANSC<2:0>		1E77

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-39: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

Reserved Reserved cillator Fail Trap Vector dress Error Trap Vector eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54	$\begin{array}{c} \text{BSLIM}{(12:0)}^{(1)} + 0x000000\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000002\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000004\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000006\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000A\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000C\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000C\\ \text{BSLIM}{(12:0)}^{(1)} + 0x00000C\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000010\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000012\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000014\\ \text{BSLIM}{(12:0)}^{(1)} + 0x000016\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	See Table 7-1 for
cillator Fail Trap Vector dress Error Trap Vector eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000004 BSLIM<12:0>(1) + 0x000006 BSLIM<12:0>(1) + 0x000008 BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
dress Error Trap Vector eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000006 BSLIM<12:0>(1) + 0x000008 BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
eneric Hard Trap Vector tack Error Trap Vector Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000008 BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C	See Table 7-1 for
tack Error Trap Vector Nath Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x00000A BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C	See Table 7-1 for
Math Error Trap Vector Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x00000C BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
Reserved eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x00000E BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
eneric Soft Trap Vector Reserved Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000010 BSLIM<12:0>(1) + 0x000012 BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007E	See Table 7-1 for
Reserved Interrupt Vector 0 Interrupt Vector 1 	BSLIM<12:0> ⁽¹⁾ + 0x000012 BSLIM<12:0> ⁽¹⁾ + 0x000014 BSLIM<12:0> ⁽¹⁾ + 0x000016 : : BSLIM<12:0> ⁽¹⁾ + 0x00007C BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 0 Interrupt Vector 1 : : Interrupt Vector 52 Interrupt Vector 53	BSLIM<12:0>(1) + 0x000014 BSLIM<12:0>(1) + 0x000016 : : BSLIM<12:0>(1) + 0x00007C BSLIM<12:0>(1) + 0x00007C	See Table 7-1 for
Interrupt Vector 1	BSLIM<12:0> ⁽¹⁾ + 0x000016 : : BSLIM<12:0> ⁽¹⁾ + 0x00007C BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 52 Interrupt Vector 53	: BSLIM<12:0> ⁽¹⁾ + 0x00007C BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
Interrupt Vector 53	BSLIM<12:0> ⁽¹⁾ + 0x00007E	See Table 7-1 for
		See Table 7-1 for
Interrupt Vector 54	BSLIM<12:0> ⁽¹⁾ + 0x000080	See Table 7-1 for
-		
:		Interrupt Vector Details
:	:	
:	:	
Interrupt Vector 116	BSLIM<12:0> ⁽¹⁾ + 0x0000FC	
Interrupt Vector 117	BSLIM<12:0> ⁽¹⁾ + 0x0000FE	
Interrupt Vector 118	BSLIM<12:0> ⁽¹⁾ + 0x000100	
Interrupt Vector 119	BSLIM<12:0> ⁽¹⁾ + 0x000102	
Interrupt Vector 120	BSLIM<12:0> ⁽¹⁾ + 0x000104	
:	:	
:	:	
:	:	
Interrupt Vector 244	BSLIM<12:0> ⁽¹⁾ + 0x0001FC	
Interrupt Vector 245	BSLIM<12:0> ⁽¹⁾ + 0x0001FE	
		y BSLIM<12:0>.

TABLE 8-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-n (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	0.0	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

8.2 Auxiliary Clock Generation

The auxiliary clock generation is used for peripherals that need to operate at a frequency unrelated to the system clock, such as PWM or ADC.

The primary oscillator and internal FRC oscillator sources can be used with an Auxiliary PLL (APLL) to obtain the auxiliary clock. The Auxiliary PLL has a fixed 16x multiplication factor.

The auxiliary clock has the following configuration restrictions:

- For proper PWM operation, auxiliary clock generation must be configured for 120 MHz (see Parameter OS56 in Section 26.0 "Electrical Characteristics"). If a slower frequency is desired, the PWM Input Clock Prescaler (Divider) Select bits (PCLKDIV<2:0>) should be used.
- To achieve 1.04 ns PWM resolution, the auxiliary clock must use the 16x Auxiliary PLL (APLL). All other clock sources will have a minimum PWM resolution of 8 ns.
- If the primary PLL is used as a source for the auxiliary clock, the primary PLL should be configured up to a maximum operation of 30 MIPS or less.

8.3 Reference Clock Generation

The reference clock output logic provides the user with the ability to output a clock signal based on the system clock or the crystal oscillator on a device pin. The user application can specify a wide range of clock scaling prior to outputting the reference clock.

8.4 Oscillator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

8.4.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 8-5: ACLKCON: AUXILIARY CLOCK DIVISOR CONTROL REGISTER

R/W-0	R-0	R/W-1	U-0	U-0	R/W-1	R/W-1	R/W-1
ENAPLL	APLLCK	SELACLK	_	_	APSTSCLR2	APSTSCLR1	APSTSCLR0
bit 15	•						bit 8
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
ASRCSEL	FRCSEL	—	—	—	_	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable bit	ŀ	U = Unimplen	nented bit, read	l as '0'	
-n = Value at		'1' = Bit is set	•	'0' = Bit is clea		x = Bit is unkr	lown
				0 21110 0101			
bit 15	FNAPLI: AU	xiliary PLL Enable	e bit				
	1 = APLL is e	-					
	0 = APLL is d	lisabled					
bit 14	APLLCK: AP	LL Locked Status	s bit (read-or	ıly)			
		that Auxiliary PLI					
		that Auxiliary PLI					
bit 13		elect Auxiliary Cl		-			
		oscillators provide PLL (Fvco) provid					
bit 12-11	Unimplemen	ted: Read as '0'					
bit 10-8	APSTSCLR<	2:0>: Auxiliary C	lock Output	Divider bits			
	111 = Divideo	d by 1					
	110 = Divideo						
	101 = Divideo 100 = Divideo						
	011 = Divideo						
	010 = Divideo						
	001 = Divideo						
	000 = Divideo	•					
bit 7		elect Reference		e for Auxiliary C	Clock bit		
		scillator is the clo input is selected	ock source				
bit 6	FRCSEL: Se	lect Reference Cl	ock Source	for Auxiliary PL	L bit		
		he FRC clock for a					
	0 = Input cloc	k source is deter	mined by the	e ASRCSEL bit	setting		
	•	ted: Read as '0'	5		0		

REGISTER 9-7: PMD8: PERIPHERAL MODULE DISABLE CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
_	_	—	_	_	PGA2MD	ABGMD	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—	_	—	CCSMD	—
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable b	pit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15-11	Unimplemer	nted: Read as '0	,				
bit 10	PGA2MD: P	GA2 Module Dis	able bit				
		odule is disabled	-				
	0 = PGA2 m	odule is enabled					
bit 9	ABGMD: Ba	nd Gap Referen	ce Voltage Dis	able bit			
		p reference volta					
		p reference volta	-				
bit 8-2	Unimplemen	nted: Read as '0	,				
bit 1	CCSMD: Co	nstant-Current S	ource Module	Disable bit			
		t-current source					
bit 0							
DILU	Unimpiemer	nted: Read as '0					

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	
bit 15	·						bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	
bit 7							bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'		
-n = Value a	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 7-0	10110100 = • • 00000001 = 00000000 = FLT3R<7:0>	Input tied to Ri Input tied to Ri Input tied to Ri Input tied to V : Assign PWM	P180 P1 SS Fault 3 (FLT3)) to the Corresp	oonding RPn P	in bits		
	10110100 = • • • 00000001 =	Input tied to Ri Input tied to Ri Input tied to Ri Input tied to Ri	P180 P1					

REGISTER 10-9: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0		
bit 15				1			bit		
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL		
oit 7							bit		
Legend:		HC = Hardwar	e Clearable b	it					
R = Readabl	e bit	W = Writable b			ented bit, read	l as '0'			
n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own		
bit 15	1 = UARTx is		ARTx pins are			ed by UEN<1:0> UARTx power co			
oit 14		ted: Read as '0	,						
bit 13	•	Tx Stop in Idle N							
	1 = Discontin	•	eration when o	device enters Id	le mode				
pit 12		Encoder and De							
		oder and decod oder and decod							
pit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t					
		in is in Simplex in is in Flow Co							
oit 10	Unimplemen	ted: Read as '0	,						
oit 9-8	UEN<1:0>: U	ARTx Pin Enab	le bits						
	10 = UxTX, U 01 = UxTX, U	JxRX, <u>UxCTS</u> ai JxRX and UxRT nd UxRX pins a	nd UxRTS pin S pins are ena	s are enabled a abled and used;	nd used UxCTS pin is	controlled by PC controlled by PC BCLKx pins are	ORT latches		
bit 7	WAKE: Wake	-up on Start Bit	Detect During	g Sleep Mode E	nable bit				
	 1 = UARTx continues to sample the UxRX pin, interrupt is generated on the falling edge; bit is cleared in hardware on the following rising edge 0 = No wake-up is enabled 								
oit 6		RTx Loopback	Mode Select I	bit					
	1 = Enables	Loopback mode k mode is disab	:						
"a		Family Referen		r Transmitter (r information on		0000582) in the JARTx module fo	or receive or		
			the 16y BPC	modo (BBCH -	0)				

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.0 HIGH-SPEED, 12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "12-Bit High-Speed, Multiple SARs A/D Converter (ADC)" (DS70005213) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

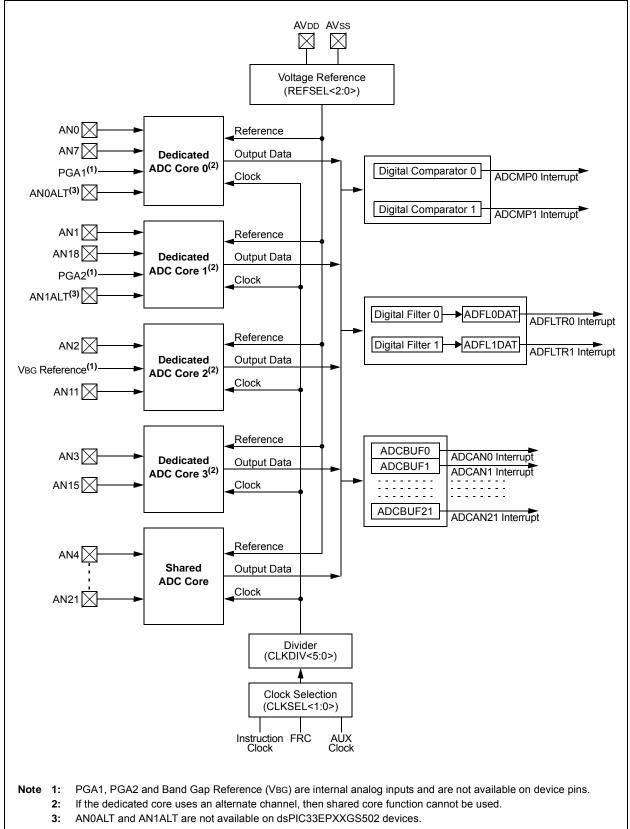
dsPIC33EPXXGS50X devices have a high-speed, 12-bit Analog-to-Digital Converter (ADC) that features a low conversion latency, high resolution and oversampling capabilities to improve performance in AC/DC, DC/DC power converters.

19.1 Features Overview

The High Speed, 12-Bit Multiple SARs Analog-to-Digital Converter (ADC) includes the following features:

- Five ADC Cores: Four Dedicated Cores and One Shared (Common) Core
- User-Configurable Resolution of up to 12 Bits for each Core
- Up to 3.25 Msps Conversion Rate per Channel at 12-Bit Resolution
- Low-Latency Conversion
- Up to 22 Analog Input Channels, with a Separate 16-Bit Conversion Result Register for each Input
- Conversion Result can be Formatted as Unsigned or Signed Data, on a per Channel Basis, for All Channels
- Single-Ended and Pseudodifferential Conversions are available on All ADC Cores

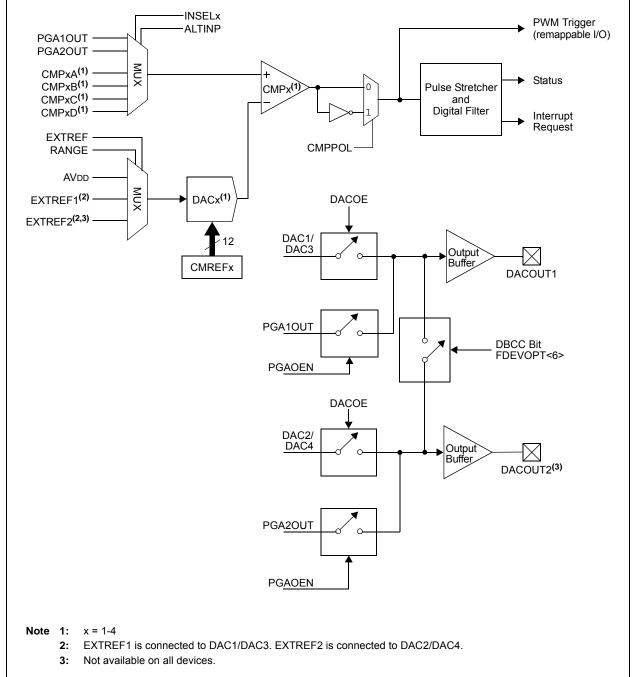
- Simultaneous Sampling of up to 5 Analog Inputs
- Channel Scan Capability
- Multiple Conversion Trigger Options for each Core, including:
 - PWM1 through PWM5 (primary and secondary triggers, and current-limit event trigger)
 - PWM Special Event Trigger
 - Timer1/Timer2 period match
 - Output Compare 1 and event trigger
 - External pin trigger event (ADTRG31)
 - Software trigger
- Two Integrated Digital Comparators with Dedicated Interrupts:
 - Multiple comparison options
 - Assignable to specific analog inputs
- Two Oversampling Filters with Dedicated Interrupts:
 - Provide increased resolution
 - Assignable to a specific analog input


The module consists of five independent SAR ADC cores. Simplified block diagrams of the Multiple SARs 12-Bit ADC are shown in Figure 19-1, Figure 19-2 and Figure 19-3.

The analog inputs (channels) are connected through multiplexers and switches to the Sample-and-Hold (S&H) circuit of each ADC core. The core uses the channel information (the output format, the measurement mode and the input number) to process the analog sample. When conversion is complete, the result is stored in the result buffer for the specific analog input, and passed to the digital filter and digital comparator if they were configured to use data from this particular channel.

The ADC module can sample up to five inputs at a time (four inputs from the dedicated SAR cores and one from the shared SAR core). If multiple ADC inputs request conversion on the shared core, the module will convert them in a sequential manner, starting with the lowest order input.

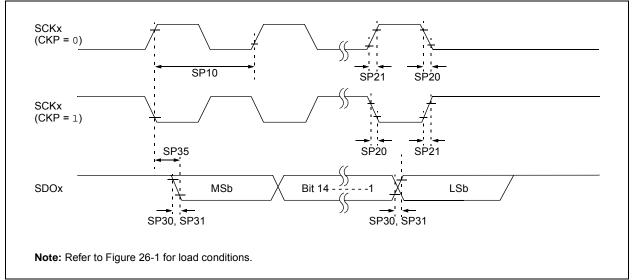
The ADC provides each analog input the ability to specify its own trigger source. This capability allows the ADC to sample and convert analog inputs that are associated with PWM generators operating on independent time bases.



20.2 Module Description

Figure 20-1 shows a functional block diagram of one analog comparator from the high-speed analog comparator module. The analog comparator provides high-speed operation with a typical delay of 15 ns. The negative input of the comparator is always connected to the DACx circuit. The positive input of the comparator is connected to an analog multiplexer that selects the desired source pin. The analog comparator input pins are typically shared with pins used by the Analog-to-Digital Converter (ADC) module. Both the comparator and the ADC can use the same pins at the same time. This capability enables a user to measure an input voltage with the ADC and detect voltage transients with the comparator.

22.3 Current Source Control Register


REGISTER 22-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
ISRCEN	_		—	_	OUTSEL2	OUTSEL1	OUTSEL0			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
0-0	0-0	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0			
 bit 7		ISRUCALS	ISRUUAL4	ISRUUALS	ISRUCALZ	ISRCCALT	bit (
							DILL			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown			
	•)>: Output Con		Select bits						
bit 14-11 bit 10-8	0 = Current s Unimplemen OUTSEL<2:0 111 = Reserv 110 = Reserv 101 = Reserv	ved ved	o' stant-Current	Select bits						
	011 = Input p 010 = Input p 001 = Input p	in, ISRC3 (AN in, ISRC2 (AN in, ISRC1 (AN put is selected	5) 6)							
bit 7-6	Unimplemen	ted: Read as '	0'							
bit 5-0	The calibratio module is ena	ISRCCAL<5:0>: Constant-Current Source Calibration bits The calibration value must be copied from Flash address, 0x800E78, into these bits before the module is enabled. Refer to the calibration data address table (Table 23-3) in Section 23.0 "Special Features" for more information.								

TABLE 26-31: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 26-31	_	—	0,1	0,1	0,1		
9 MHz	—	Table 26-32	—	1	0,1	1		
9 MHz	—	Table 26-33	—	0	0,1	1		
15 MHz	—	—	Table 26-34	1	0	0		
11 MHz	—	—	Table 26-35	1	1	0		
15 MHz	_	_	Table 26-36	0	1	0		
11 MHz	_	_	Table 26-37	0	0	0		

FIGURE 26-11: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 26-37:SPix SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS

AC CHA		rics	Standard Op (unless othe Operating ter	erwise st	t ated) e -40°	C ≤ Ta ≤	IV to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCKx Input Frequency	_	_	15	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time	—	—		ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	—	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SSx ↑ After SCKx Edge	1.5 Tcy + 40	—	_	ns	(Note 4)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC/DC CHARACTERISTICS ⁽¹⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic		Min.	Тур.	Max.	Units	Comments	
PA01	Vin	Input Voltage Rang	е	AVss - 0.3	_	AVDD + 0.3	V		
PA02	Vсм	Common-Mode Inp Voltage Range	ut	AVss	—	AVDD - 1.6	V		
PA03	Vos	Input Offset Voltage	;	-10	_	10	mV		
PA04	Vos	Input Offset Voltage Drift with Temperature		_	±15	—	µV/∘C		
PA05	Rin+	Input Impedance of Positive Input		_	>1M 7 pF	—	Ω pF		
PA06	Rin-	Input Impedance of Negative Input		—	10K 7 pF	—	Ω pF		
PA07 GERR	Gerr	Gain Error		-2	_	2	%	Gain = 4x, 8x	
				-3	—	3	%	Gain = 16x	
				-4		4	%	Gain = 32x, 64x	
PA08	Lerr	Gain Nonlinearity Error		—	—	0.5	%	% of full scale, Gain = 16x	
PA09	IDD	Current Consumption		_	2.0	—	mA	Module is enabled with a 2-volt P-P output voltage swing	
PA10a	BW	Small Signal	G = 4x	_	10	—	MHz		
PA10b		Bandwidth (-3 dB)	G = 8x	_	5	—	MHz		
PA10c			G = 16x	—	2.5	—	MHz		
PA10d			G = 32x	_	1.25	—	MHz		
PA10e			G = 64x		0.625	_	MHz		
PA11	OST	Output Settling Time to 1% of Final Value		_	0.4	—	μs	Gain = 16x, 100 mV input step change	
PA12	SR	Output Slew Rate		_	40	—	V/µs	Gain = 16x	
PA13	TGSEL	Gain Selection Time	e	_	1	_	μs		
PA14	TON	Module Turn On/Set	ting Time	_	_	10	μs		

TABLE 26-48: PGAx MODULE SPECIFICATIONS

Note 1: The PGAx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

TABLE 26-49: CONSTANT-CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS ⁽¹⁾				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended			
Param No.	Symbol	Characteristic	Min.	Typ. Max. Units Conditions			Conditions
CC01	Idd	Current Consumption	—	30	—	μA	
CC02	IREG	Regulation of Current with Voltage On	—	±3	—	%	
CC03	Ιουτ	Current Output at Terminal	—	10	—	μA	

Note 1: The constant-current source module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.