

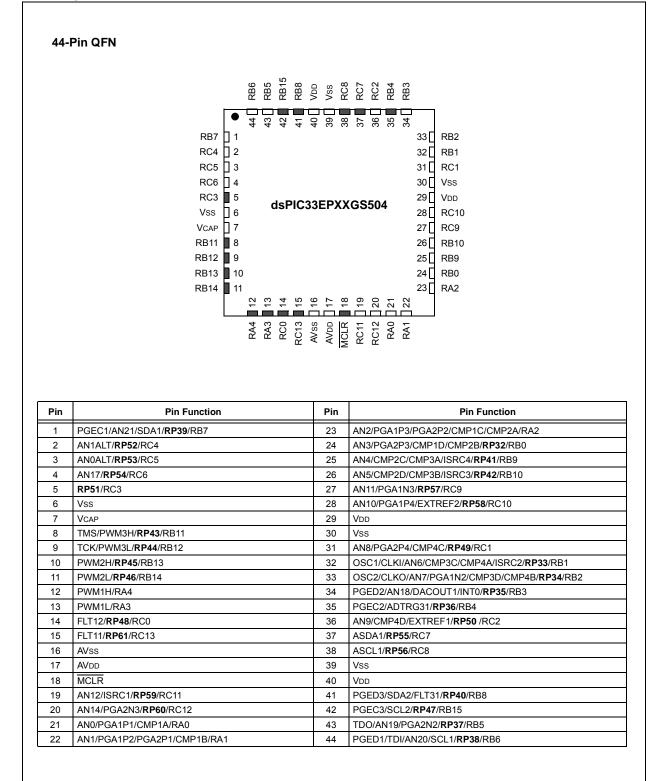
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


·XF

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs502t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXGS50X family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

3.6.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

TABLE 4-17: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXGS502 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_	_	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0		—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR1	0672	_	_	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	_	_	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000
RPOR2	0674	_		RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0		-	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR3	0676	_		RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0		-	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR4	0678	—		RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	I	—	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR5	067A	—		RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	I	—	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR6	067C	—		RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	I	—	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0	0000
RPOR7	067E	—		RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	I	—	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	0000
RPOR16	0690	—		RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0		—	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	0000
RPOR17	0692	_		RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	I	—	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	0000
RPOR18	0694	—	-	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	_	—	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	0000

dsPIC33EPXXGS50X FAMILY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0670	_		RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0	_	_	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0	0000
RPOR1	0672	-		RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0			RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	0000
RPOR2	0674	-	_	RP37R5	RP37R4	RP37R3	RP37R2	RP37R1	RP37R0	_	—	RP36R5	RP36R4	RP36R3	RP36R2	RP36R1	RP36R0	0000
RPOR3	0676	-	—	RP39R5	RP39R4	RP39R3	RP39R2	RP39R1	RP39R0	_	_	RP38R5	RP38R4	RP38R3	RP38R2	RP38R1	RP38R0	0000
RPOR4	0678	_	_	RP41R5	RP41R4	RP41R3	RP41R2	RP41R1	RP41R0	—	_	RP40R5	RP40R4	RP40R3	RP40R2	RP40R1	RP40R0	0000
RPOR5	067A	_	_	RP43R5	RP43R4	RP43R3	RP43R2	RP43R1	RP43R0	—	_	RP42R5	RP42R4	RP42R3	RP42R2	RP42R1	RP42R0	0000
RPOR6	067C	_	_	RP45R5	RP45R4	RP45R3	RP45R2	RP45R1	RP45R0	—	_	RP44R5	RP44R4	RP44R3	RP44R2	RP44R1	RP44R0	0000
RPOR7	067E	_	_	RP47R5	RP47R4	RP47R3	RP47R2	RP47R1	RP47R0	—	_	RP46R5	RP46R4	RP46R3	RP46R2	RP46R1	RP46R0	0000
RPOR8	0680	_	_	RP49R5	RP49R4	RP49R3	RP49R2	RP49R1	RP49R0	—	_	RP48R5	RP48R4	RP48R3	RP48R2	RP48R1	RP48R0	0000
RPOR9	0682	_	_	RP51R5	RP51R4	RP51R3	RP51R2	RP51R1	RP51R0	_	—	RP50R5	RP50R4	RP50R3	RP50R2	RP50R1	RP50R0	0000
RPOR10	0684	_	_	RP53R5	RP53R4	RP53R3	RP53R2	RP53R1	RP53R0	—	_	RP52R5	RP52R4	RP52R3	RP52R2	RP52R1	RP52R0	0000
RPOR11	0686	_	_	RP55R5	RP55R4	RP55R3	RP55R2	RP55R1	RP55R0	—	_	RP54R5	RP54R4	RP54R3	RP54R2	RP54R1	RP54R0	0000
RPOR12	0688	_	_	RP57R5	RP57R4	RP57R3	RP57R2	RP57R1	RP57R0	—	_	RP56R5	RP56R4	RP56R3	RP56R2	RP56R1	RP56R0	0000
RPOR13	068A	_	-	RP59R5	RP59R4	RP59R3	RP59R2	RP59R1	RP59R0	_		RP58R5	RP58R4	RP58R3	RP58R2	RP58R1	RP58R0	0000
RPOR14	068C	_	-	RP61R5	RP61R4	RP61R3	RP61R2	RP61R1	RP61R0	_		RP60R5	RP60R4	RP60R3	RP60R2	RP60R1	RP60R0	0000
RPOR16	0690	_		RP177R5	RP177R4	RP177R3	RP177R2	RP177R1	RP177R0	_	_	RP176R5	RP176R4	RP176R3	RP176R2	RP176R1	RP176R0	0000
RPOR17	0692	_	-	RP179R5	RP179R4	RP179R3	RP179R2	RP179R1	RP179R0	_	_	RP178R5	RP178R4	RP178R3	RP178R2	RP178R1	RP178R0	0000
RPOR18	0694	_	-	RP181R5	RP181R4	RP181R3	RP181R2	RP181R1	RP181R0	_	_	RP180R5	RP180R4	RP180R3	RP180R2	RP180R1	RP180R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.4 Dual Partition Flash Configuration

For dsPIC33EP64GS50X devices operating in Dual Partition Flash Program Memory modes, the Inactive Partition can be erased and programmed without stalling the processor. The same programming algorithms are used for programming and erasing the Flash in the Inactive Partition, as described in **Section 5.2 "RTSP Operation"**. On top of the page erase option, the entire Flash memory of the Inactive Partition can be erased by configuring the NVMOP<3:0> bits in the NVMCON register.

Note 1: The application software to be loaded into the Inactive Partition will have the address of the Active Partition. The bootloader firmware will need to offset the address by 0x400000 in order to write to the Inactive Partition.

5.4.1 FLASH PARTITION SWAPPING

The Boot Sequence Number is used for determining the Active Partition at start-up and is encoded within the FBTSEQ Configuration register bits. Unlike most Configuration registers, which only utilize the lower 16 bits of the program memory, FBTSEQ is a 24-bit Configuration Word. The Boot Sequence Number (BSEQ) is a 12-bit value and is stored in FBTSEQ twice. The true value is stored in bits, FBTSEQ<11:0>, and its complement is stored in bits, FBTSEQ<23:12>. At device Reset, the sequence numbers are read and the partition with the lowest sequence number becomes the Active Partition. If one of the Boot Sequence Numbers is invalid, the device will select the partition with the valid Boot Sequence Number, or default to Partition 1 if both sequence numbers are invalid. See Section 23.0 "Special Features" for more information.

The BOOTSWP instruction provides an alternative means of swapping the Active and Inactive Partitions (soft swap) without the need for a device Reset. The BOOTSWP must always be followed by a GOTO instruction. The BOOTSWP instruction swaps the Active and Inactive Partitions, and the PC vectors to the location specified by the GOTO instruction in the newly Active Partition.

It is important to note that interrupts should temporarily be disabled while performing the soft swap sequence and that after the partition swap, all peripherals and interrupts which were enabled remain enabled. Additionally, the RAM and stack will maintain state after the switch. As a result, it is recommended that applications using soft swaps jump to a routine that will reinitialize the device in order to ensure the firmware runs as expected. The Configuration registers will have no effect during a soft swap. For robustness of operation, in order to execute the BOOTSWP instruction, it is necessary to execute the NVM unlocking sequence as follows:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Execute the BOOTSWP instruction.

If the unlocking sequence is not performed, the BOOTSWP instruction will be executed as a forced NOP and a GOTO instruction, following the BOOTSWP instruction, will be executed, causing the PC to jump to that location in the current operating partition.

The SFTSWP and P2ACTIV bits in the NVMCON register are used to determine a successful swap of the Active and Inactive Partitions, as well as which partition is active. After the BOOTSWP and GOTO instructions, the SFTSWP bit should be polled to verify the partition swap has occurred and then cleared for the next panel swap event.

5.4.2 DUAL PARTITION MODES

While operating in Dual Partition mode, dsPIC33EP64GS50X family devices have the option for both partitions to have their own defined security segments, as shown in Figure 23-4. Alternatively, the device can operate in Protected Dual Partition mode, where Partition 1 becomes permanently erase/write-protected. Protected Dual Partition mode allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1.

dsPIC33EP64GS50X family devices can also operate in Privileged Dual Partition mode, where additional security protections are implemented to allow for protection of intellectual property when multiple parties have software within the device. In Privileged Dual Partition mode, both partitions place additional restrictions on the BSLIM register. These prevent changes to the size of the Boot Segment and General Segment, ensuring that neither segment will be altered.

5.5 Flash Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

5.5.1 KEY RESOURCES

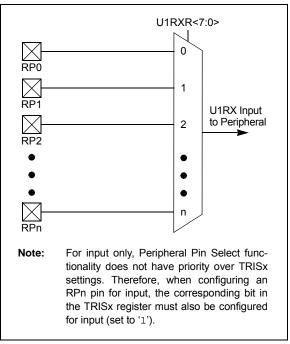
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

dsPIC33EPXXGS50X FAMILY

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR		—	VREGSF		CM	VREGS
bit 15			L				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at l		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
bit 15	TRAPR: Trap	Reset Flag bit					
	-	onflict Reset ha					
	0 = A Trap Co	onflict Reset ha	s not occurre	ed			
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized	W Register Ac	cess Reset Flag	bit	
	•	•		gal address m	ode or Uninitial	ized W registe	er used as ar
		Pointer caused		ogistor Posot k	nas not occurred	4	
bit 13-12	-	ited: Read as '		egister Reset i	las not occurred	1	
bit 11	•				n hit		
		ash Voltage Reg Itage regulator i	-		p bit		
		Itage regulator		•	ing Sleep		
bit 10		ted: Read as '	-	5	0		
bit 9	-	ation Mismatch					
		uration Mismato uration Mismato					
bit 8	VREGS: Volta	age Regulator S	Standby Durir	ng Sleep bit			
	1 = Voltage r	egulator is activ	ve during Sle	ep			
	0 = Voltage r	egulator goes i	nto Standby r	mode during SI	еер		
bit 7		nal Reset (MCL					
		Clear (pin) Res					
bit 6		Clear (pin) Res					
		instruction has	, .				
		instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of W	DT bit ⁽²⁾			
	1 = WDT is e						
	0 = WDT is d	isabled					
bit 4		hdog Timer Tim	-	it			
		e-out has occur e-out has not oc					
			set or cleare	d in software. S	Setting one of th	ese bits in soft	ware does not
	use a device Re		hite are '11'	(upprogramm)		alwaye anabla	d rogardiaca
	the SWDTEN<1:0			unprogramme	ed), the WDT is	aiways enable	u, regardiess

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

© 2013-2017 Microchip Technology Inc.


of the SWDTEN bit setting.

10.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-19). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 10-2 illustrates remappable pin selection for the U1RX input.

FIGURE 10-2: REMAPPABLE INPUT FOR U1RX

10.4.4.1 Virtual Connections

The dsPIC33EPXXGS50X devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADC to convert the digital output logic level, or to toggle a digital output on a comparator or ADC input, provided there is no external analog input, such as for a built-in self-test.
 - f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
 - g) The TRISx registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRISx setting. The TRISx register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRISx settings, which means that the TRISx bit must be set to input for pins with only remappable input function(s) assigned.
 - h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin has been disabled. Only the Analog Pin Select x (ANSELx) registers control the digital input buffer, *not* the TRISx register. The user must disable the analog function on a pin using the Analog Pin Select x registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

10.6 I/O Ports Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

10.6.1 KEY RESOURCES

- "I/O Ports" (DS70000598) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related *"dsPIC33/PIC24 Family Reference Manual"* Sections
- Development Tools

dsPIC33EPXXGS50X FAMILY

R/W-0	R/W-0	R/W-0	R/W-0		D 444 A		
			10,00-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0
bit 15		·		·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7-0	10110100 = • • • • • • • • • • • • • • • • • • •	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs Assign PWM Input tied to RI	⊃180 ⊃1 SS Fault 5 (FLT5)) to the Corresp	oonding RPn Pi	n bits	
	• •	Input tied to RI					

REGISTER 10-18: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

dsPIC33EPXXGS50X FAMILY

REGISTER 13-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	IC32
bit 15							bit 8

R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾		SYNCSEL4(4)	SYNCSEL3(4)	SYNCSEL2(4)	SYNCSEL1(4)	SYNCSEL0(4)
bit 7							bit 0

Legend:	HS = Hardware Settable b	it	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 8 **IC32:** Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)

- 1 = Odd ICx and even ICx form a single 32-bit input capture module⁽¹⁾
- 0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture x Trigger Operation Select bit⁽²⁾

- 1 = Input source is used to trigger the input capture timer (Trigger mode)
- 0 = Input source is used to synchronize the input capture timer to a timer of another module (Synchronization mode)

bit 6 **TRIGSTAT:** Timer Trigger Status bit⁽³⁾

- 1 = ICxTMR has been triggered and is running
- 0 = ICxTMR has not been triggered and is being held clear
- bit 5 Unimplemented: Read as '0'
- **Note 1:** The IC32 bit in both the odd and even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.

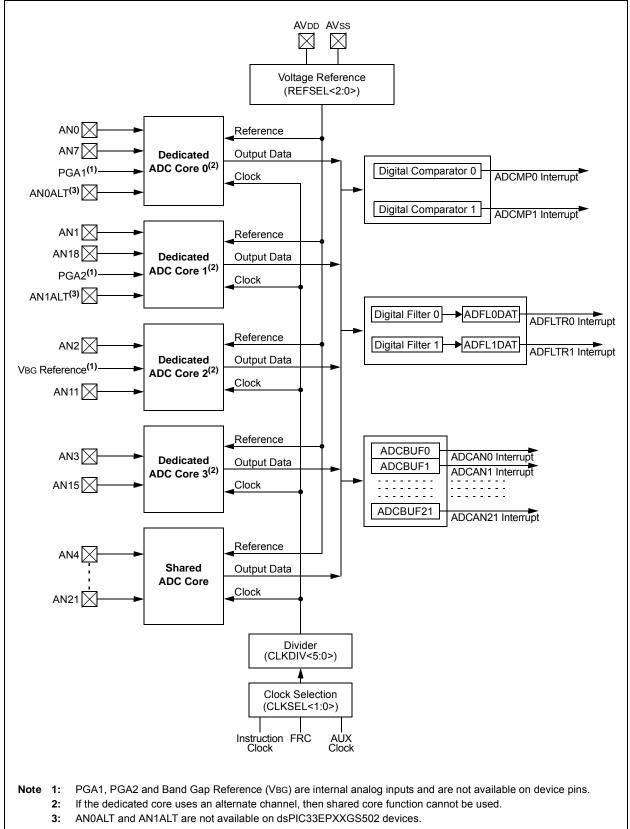
REGISTER 15-12: PWMCONx: PWMx CONTROL REGISTER (x = 1 to 5) (CONTINUED)

- bit 7-6 DTC<1:0>: Dead-Time Control bits 11 = Reserved 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes bit 5-4 Unimplemented: Read as '0' bit 3 MTBS: Master Time Base Select bit 1 = PWMx generator uses the secondary master time base for synchronization and the clock source for the PWMx generation logic (if secondary time base is available) 0 = PWMx generator uses the primary master time base for synchronization and the clock source for the PWMx generation logic CAM: Center-Aligned Mode Enable bit^(2,3,4) bit 2 1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled XPRES: External PWMx Reset Control bit⁽⁵⁾ bit 1 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode 0 = External pins do not affect the PWMx time base bit 0 **IUE:** Immediate Update Enable bit 1 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are immediate 0 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are synchronized to the local PWMx time base Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller. 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored. 3: These bits should not be changed after the PWMx is enabled by setting PTEN = 1 (PTCON<15>). 4: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to
 - 5: Configure CLMOD = 0 (FCLCONx<8>) and ITB = 1 (PWMCONx<9>) to operate in External Period Reset mode.

the fastest clock.

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

	(X = 1	10 5)					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7							bit 0
Legend:							
R = Readat	ole bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15		H Rising Edge T	riggor Epoble	- bit			
bit 15	1 = Rising edg	ge of PWMxH v	vill trigger the	Leading-Edge E ling edge of PW	•	PL	
bit 14	-	I Falling Edge 1	-				
				e Leading-Edge	Blanking counte	er	
	-		-	lling edge of PW	/MxH		
bit 13		Rising Edge T					
				Leading-Edge E sing edge of PW		r	
bit 12	-	Falling Edge T	-				
	1 = Falling ed	ge of PWMxL v	vill trigger the	Leading-Edge E lling edge of PW	•	er	
bit 11	-		-	anking Enable bi			
				ne selected Faul to the selected F			
bit 10	CLLEBEN: C	urrent-Limit Lea	ading-Edge B	lanking Enable I	bit		
				ne selected curre to the selected o		ut	
bit 9-6	Unimplemen	ted: Read as '0	2				
bit 5	BCH: Blankin	g in Selected B	lanking Signa	al High Enable b	it ⁽¹⁾		
				Fault input signa ng signal is high		lected blanking	g signal is high
bit 4	BCL: Blankin	g in Selected B	lanking Signa	I Low Enable bit	t(1)		
		nking (of currenting when the se		Fault input signa ng signal is low	als) when the se	elected blankin	g signal is low
bit 3	BPHH: Blank	ing in PWMxH I	High Enable b	oit			
		nking (of currenting when the PV		Fault input signa is high	als) when the P	WMxH output i	s high
bit 2	BPHL: Blanki	ing in PWMxH L	ow Enable b	it			
		nking (of currenting when the PV		Fault input signa is low	als) when the P\	WMxH output i	s low


Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1	SPITBF: SPIx Transmit Buffer Full Status bit
	1 = Transmit has not yet started, SPIxTXB is full
	0 = Transmit has started, SPIxTXB is empty
	Standard Buffer Mode:
	Automatically set in hardware when the core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.
	Enhanced Buffer Mode:
	Automatically set in hardware when the CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write
	operation.
bit 0	SPIRBF: SPIx Receive Buffer Full Status bit
	1 = Receive is complete, SPIxRXB is full
	0 = Receive is incomplete, SPIxRXB is empty
	Standard Buffer Mode:
	Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.
	Enhanced Buffer Mode:
	Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread
	buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

dsPIC33EPXXGS50X FAMILY

REGISTER 19-21: ADMOD1L: ADC INPUT MODE CONTROL REGISTER 1 LOW

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	—	DIFF21	SIGN21	DIFF20	SIGN20
bit 15		•	•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIFF19	SIGN19	DIFF18	SIGN18	DIFF17	SIGN17	DIFF16	SIGN16
bit 7			•				bit 0
Legend:							
<u> </u>	,						

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-12 Unimplemented: Read as '0'

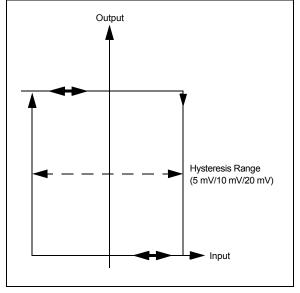
bit 11-1(odd) DIFF<21:16>: Differential-Mode for Corresponding Analog Inputs bits

1 = Channel is differential

0 = Channel is single-ended

bit 10-0 (even) SIGN<21:16>: Output Data Sign for Corresponding Analog Inputs bits

1 = Channel output data is signed


0 = Channel output data is unsigned

20.6 Hysteresis

An additional feature of the module is hysteresis control. Hysteresis can be enabled or disabled and its amplitude can be controlled by the HYSSEL<1:0> bits in the CMPxCON register. Three different values are available: 5 mV, 10 mV and 20 mV. It is also possible to select the edge (rising or falling) to which hysteresis is to be applied.

Hysteresis control prevents the comparator output from continuously changing state because of small perturbations (noise) at the input (see Figure 20-2).

20.7 Analog Comparator Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

20.7.1 KEY RESOURCES

- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- · Development Tools

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
DO10 Vol		Output Low Voltage 4x Sink Driver Pins ⁽²⁾			0.4	V		
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	—	_	0.4	V	V_{DD} = 3.3V, IOL \leq 12 mA, -40°C \leq TA \leq +85°C, IOL \leq 8 mA, +85°C $<$ TA \leq +125°C	
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	_	_	V	IOH ≥ -10 mA, VDD = 3.3V	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4			V	IOH \ge -15 mA, VDD = 3.3V	
DO20A	Voh1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5 ⁽¹⁾	_	_	V	$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
			2.0 ⁽¹⁾	-	_		$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			3.0(1)	_	-		$IOH \ge -7 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5 (1)	_	—	V	$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{V}$	
			2.0 ⁽¹⁾		_		IOH \geq -18 mA, VDD = 3.3V	
			3.0(1)	_	_		IOH \geq -10 mA, VDD = 3.3V	

TABLE 26-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Includes RA0-RA2, RB0-RB1, RB9-RB10, RC1-RC2, RC9-RC10, RC12 and RD7 pins.

3: Includes all I/O pins that are not 4x driver pins (see Note 2).

TABLE 26-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(1)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance.

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

TABLE 26-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Min. Typ. ⁽¹⁾ Max. Units Conditions			Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

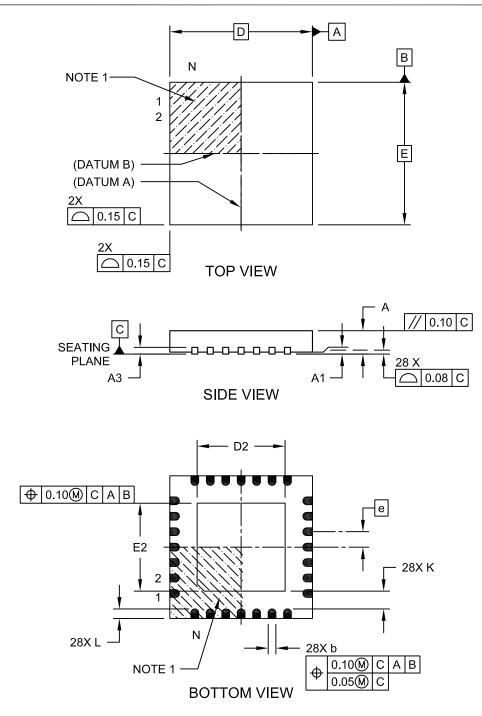
Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$


TABLE 26-19: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS56	Fhpout	On-Chip 16x PLL CCO Frequency		112	118	120	MHz		
OS57	Fhpin	On-Chip 16x PLL Phase Detector Input Frequency		7.0	7.37	7.5	MHz		
OS58	Tsu	Frequency Generator Lock Time		_	_	10	μs		

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

28-Lead Plastic Quad Flat, No Lead Package (MM) - 6x6x0.9mm Body [QFN-S] With 0.40 mm Terminal Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-124C Sheet 1 of 2