

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs504-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin I	Name ⁽¹⁾	Pin Type	Buffer Type	PPS	Description				
MCLR		I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.				
AVDD		Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.				
AVss		Р	Р	No	Ground reference for analog modules. This pin must be connected at all times.				
Vdd		Р	_	No	Positive supply for peripheral logic and I/O pins.				
VCAP		Р	_	No	CPU logic filter capacitor connection.				
Vss		Р		No	Ground reference for logic and I/O pins.				
Legend:	CMOS = CM ST = Schmit								

PPS = Peripheral Pin Select

TTL = TTL input buffer

1: Not all pins are available in all packages variants. See the "Pin Diagrams" section for pin availability.

2: These pins are dedicated on 64-pin devices.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXGS50X family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

CORCON: CORE CONTROL REGISTER

REGISTER 3-2:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0			
VAR		US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0			
bit 15							bit			
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0			
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF			
bit 7	OAID	OAIDW	ACCOAL	11 2011		THE	bit			
Legend:		C = Clearable	- hit							
R = Readable	bit	W = Writable		U = Unimpler	mented bit, rea	d as '0'				
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown			
		1 - Dit 13 301	•		arcu		lowin			
bit 15		•	ocessing Later							
		• •	essing is enab sing is enabled							
bit 14	Unimplemen	ted: Read as '	0'							
bit 13-12	-		igned/Signed	Control bits						
	11 = Reserve		0 0							
	10 = DSP engine multiplies are mixed-sign									
		gine multiplies gine multiplies								
bit 11	EDT: Early DO	Loop Termina	ation Control b	it(1)						
	 1 = Terminates executing DO loop at the end of current loop iteration 0 = No effect 									
bit 10-8	DL<2:0>: DO Loop Nesting Level Status bits									
	111 = 7 do lo	ops are active								
	•									
	•									
	001 = 1 DO lo	op is active ops are active								
bit 7		•								
	SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled									
		itor A saturatio								
bit 6	SATB: ACCB	Saturation En	able bit							
		itor B saturatio								
bit 5	SATDW: Data	a Space Write	from DSP Eng	ine Saturation	Enable bit					
	1 = Data Spac	ce write satura	tion is enabled	l						
bit 4	-		ration Mode S							
		ration (super s ration (normal								
L:1 0		•	Level Status b	_{oit 3} (2)						
bit 3		contraped monity								

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

4.3.5 X AND Y DATA SPACES

The dsPIC33EPXXGS50X core has two Data Spaces, X and Y. These Data Spaces can be considered either separate (for some DSP instructions) or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY. N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.4 Memory Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

4.4.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

5.6 Control Registers

Five SFRs are used to write and erase the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU and NVMSRCADR/H.

The NVMCON register (Register 5-1) selects the operation to be performed (page erase, word/row program, Inactive Partition erase), initiates the program or erase cycle and is used to determine the Active Partition in Dual Partition modes.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word/row for programming operations, or the selected page for erase operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

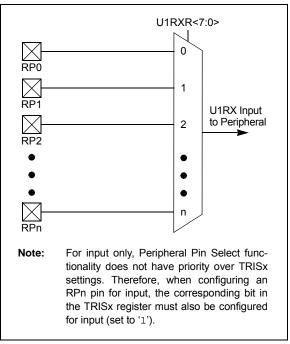
For row programming operation, data to be written to program Flash memory is written into data memory space (RAM) at an address defined by the NVMSRCADR register (location of first element in row programming data).

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools


NOTES:

10.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-19). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 10-2 illustrates remappable pin selection for the U1RX input.

FIGURE 10-2: REMAPPABLE INPUT FOR U1RX

10.4.4.1 Virtual Connections

The dsPIC33EPXXGS50X devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

REGISTER 10-7: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OCFAR7 | OCFAR6 | OCFAR5 | OCFAR4 | OCFAR3 | OCFAR2 | OCFAR1 | OCFAR0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 OCFAR<7:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180

00000001 = Input tied to RP1 00000000 = Input tied to Vss

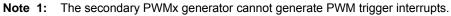
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	
bit 15				·			bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	
bit 7						·	bit (
Legend:								
R = Readable	> hit	W = Writable	hit	U = Unimpler	mented hit rea	d as 'O'		
-n = Value at		'1' = Bit is set		U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown				
bit 15-8	10110101 = 10110100 = • • • 000000001 = 00000000 =	: Assign PWM Input tied to RI Input tied to RI Input tied to RI Input tied to VS	P181 P180 P1 SS		Ţ			
bit 7-0	10110101 = 10110100 = 00000001 =	: Assign PWM Input tied to RI Input tied to RI Input tied to RI Input tied to VS	P181 P180 P1) to the Corresp	oonding KPn Pi	n dits		

REGISTER 10-9: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

14.2 Output Compare Control Registers

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		_			
bit 15			•				bit			
R/W-0	U-0	U-0	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0 OCM0			
ENFLTA	—	_	- OCFLTA TRIGMODE OCM2 OCM1 O							
bit 7							bit			
Legend:		HSC = Hardw	are Settable/Cl	earable bit						
R = Reada	ble bit	W = Writable I	oit	U = Unimplem	ented bit, read a	as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkne	own			
bit 15-14	-	nted: Read as '								
bit 13		tput Compare x	•							
	1 = Output Compare x halts in CPU Idle mode									
	0 = Output Compare x continues to operate in CPU Idle mode									
bit 12-10		0>: Output Com	ipare x Clock S	elect bits						
	111 = Periph 110 = Reser	neral clock (FP)								
	101 = Reser									
	100 = T1CL	K is the clock so	ource of the OC	x (only the sync	hronous clock i	s supported)				
		K is the clock source of the OCx								
		K is the clock source of the OCx K is the clock source of the OCx								
		K is the clock so								
bit 9-8	Unimplemer	nted: Read as '	0'							
bit 7	-	ult A Input Enat								
		Compare Fault A		is enabled						
	0 = Output C	Compare Fault A	A input (OCFA)	is disabled						
bit 6-5	Unimplemer	nted: Read as '	0'							
bit 4	OCFLTA: PV	VM Fault A Con	dition Status bi	t						
				in has occurred A pin has occur						
bit 3		Trigger Status		-						
					OCxTMR or in	software				
		AT is cleared or	,							
Note 1.	OCxR and OC	xRS are double	-buffered in P\	MM mode only						


Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output is set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output is set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 15-19: TRGCONX: PWMx TRIGGER CONTROL REGISTER (x = 1 to 5)

TRGDIV3 bit 15	TRGDIV2	TRGDIV1	TRGDIV0	_			_				
bit 15											
			L			I	bit 8				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
DTM ⁽¹⁾	<u> </u>	TRGSTRT5	TRGSTRT4	TRGSTRT3	TRGSTRT2	TRGSTRT1	TRGSTRT0				
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-12	TRGDIV<3:0	Trigger # Out	tput Divider bit	S							
	1111 = Trigg e	er output for eve	ery 16th trigge	revent							
		er output for eve									
	1101 = Trigger output for every 14th trigger event										
	1100 = Trigger output for every 13th trigger event 1011 = Trigger output for every 12th trigger event										
		er output for even									
		er output for eve									
		er output for ev									
	0111 = Trigger output for every 8th trigger event										
	0110 = Trigger output for every 7th trigger event 0101 = Trigger output for every 6th trigger event										
		er output for events output fo									
		er output for events									
		er output for eve									
		er output for eve									
bit 11-8	Unimplemen	ted: Read as '0)'								
bit 7	DTM: Dual Tr	igger Mode bit ⁽	1)								
	1 = Secondary trigger event is combined with the primary trigger event to create a PWM trigger										
	0 = Secondary trigger event is not combined with the primary trigger event to create a PWM trigger two separate PWM triggers are generated										
bit 6		ted: Read as '(•								
bit 5-0	-			Enable Select b	its						
	TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits 111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled										
	•		5	J	00111						
	•										
	•										
	000010 = W a	ait 2 PWM cycle	s before dene	rating the first t	rigger event aft	er the module i	s enabled				
	2000TO MO						0.000				
	000001 = Wa	it 1 PWM cvcle	e before genera	ating the first tri	gger event afte	er the module is	enabled				

REGISTER 15-27: PWMCAPx: PWMx PRIMARY TIME BASE CAPTURE REGISTER (x = 1 to 5)

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCAF	^D <12:5> ^(1,2,3,4)			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	U-0	U-0	U-0
	PW	MCAP<4:0>(1,2,3	3,4)		—	—	_
bit 7						•	bit C
Legend:							
R = Readable bit		W = Writable bi	t	II = I Inimplem	onted hit read	1 26 '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 **PWMCAP<12:0>:** PWMx Primary Time Base Capture Value bits^(1,2,3,4) The value in this register represents the captured PWMx time base value when a leading edge is detected on the current-limit input.

bit 2-0 Unimplemented: Read as '0'

- **Note 1:** The capture feature is only available on a primary output (PWMxH).
 - 2: This feature is active only after LEB processing on the current-limit input signal is complete.
 - **3:** The minimum capture resolution is 8.32 ns.
 - 4: This feature can be used when the XPRES bit (PWMCONx<1>) is set to '0'.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend: C = Clearable bit		HC = Hardware Clearab	HC = Hardware Clearable bit		
R = Readable bit W = Writable bit		U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx Transmit Polarity Inversion bit
 - $\frac{\text{If IREN} = 0}{1} = \text{UxTX Idle state is } 0$
 - 0 = UxTX Idle state is '1'
 - If IREN = 1:
 - $1 = \text{IrDA}^{\mathbb{R}}$ encoded, UxTX Idle state is '1'
 - 0 = IrDA encoded, UxTX Idle state is '0'
- bit 12 Unimplemented: Read as '0'
- bit 11 UTXBRK: UARTx Transmit Break bit
 - 1 = Sends Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 - 0 = Sync Break transmission is disabled or completed
- bit 10 UTXEN: UARTx Transmit Enable bit⁽¹⁾
 - 1 = Transmit is enabled, UxTX pin is controlled by UARTx
 0 = Transmit is disabled, any pending transmission is aborted and buffer is reset; UxTX pin is controlled
- bit 9 UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 TRMT: Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- **Note 1:** Refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/ PIC24 Family Reference Manual" for information on enabling the UARTx module for transmit operation.

22.3 Current Source Control Register

REGISTER 22-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
ISRCEN	_		—	_	OUTSEL2	OUTSEL1	OUTSEL0	
bit 15				•			bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
0-0	0-0	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0	
 bit 7		ISRUCALS	ISRUUAL4	ISRUUALS	ISRUCALZ	ISRCCALT	bit (
							DILL	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
	Unimplemented: Read as '0' OUTSEL<2:0>: Output Constant-Current Select bits							
bit 14-11 bit 10-8	0 = Current s Unimplemen OUTSEL<2:0 111 = Reserv 110 = Reserv 101 = Reserv)>: Output Con ved ved	o' stant-Current	Select bits				
	011 = Input pin, ISRC3 (AN5) 010 = Input pin, ISRC2 (AN6) 001 = Input pin, ISRC1 (AN12) 000 = No output is selected							
bit 7-6	Unimplemented: Read as '0'							
bit 5-0	ISRCCAL<5:0>: Constant-Current Source Calibration bits The calibration value must be copied from Flash address, 0x800E78, into these bits before the module is enabled. Refer to the calibration data address table (Table 23-3) in Section 23.0 "Special Features" for more information.							

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the dsPIC33EPXXGS50X family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXGS50X family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\ge 3.0V^{(3)}$	-0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	-0.3V to +3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sunk/sourced by any 4x I/O pin	15 mA
Maximum current sunk/sourced by any 8x I/O pin	
Maximum current sunk by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those, or any other conditions above those indicated in the operation listings of this specification, is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.

28.0 PACKAGING INFORMATION

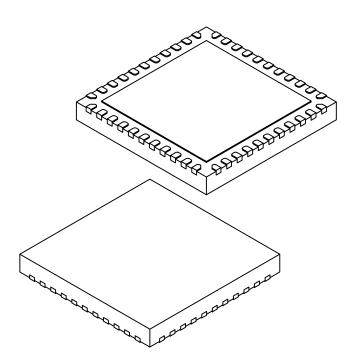
28.1 Package Marking Information

28-Lead SOIC (.300")

Example

28-Lead UQFN	(6x6x0.55 mm)
--------------	---------------

28-Lead QFN-S (6x6x0.9 mm)


Example

Legend	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code		
Note:	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.		

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	Ν	ILLIMETER:	S		
Dimension	MIN	NOM	MAX			
Number of Pins	N		44			
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D		8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2