

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs504-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Legend: Shaded pins are up to 5 VDC tolerant.

RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

1.0 DEVICE OVERVIEW

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXGS50X Digital Signal Controller (DSC) devices.

dsPIC33EPXXGS50X devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXGS50X FAMILY BLOCK DIAGRAM

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "Multi-Tool Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 8.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

4.3 Data Address Space

The dsPIC33EPXXGS50X family CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-6 through Figure 4-8.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a base Data Space address range of 64 Kbytes or 32K words.

The lower half of the data memory space (i.e., when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV).

dsPIC33EPXXGS50X family devices implement up to 12 Kbytes of data memory. If an EA points to a location outside of this area, an all-zero word or byte is returned.

4.3.1 DATA SPACE WIDTH

The data memory space is organized in byteaddressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.3.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXGS50X family instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through wordaligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.3.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXGS50X family core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.3.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a Working register as an Address Pointer.

4.6 Instruction Addressing Modes

The addressing modes shown in Table 4-38 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.6.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.6.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-38: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 CF: Clock Fail Detect bit⁽³⁾
 - 1 = FSCM has detected a clock failure
 - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

REGISTER 8-7: LFSR: LINEAR FEEDBACK SHIFT REGISTER

	D 444 A		D 44/ 0	DAMA	D 444 0		D 444 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				LFSR<14:8>	>		
bit 15	·						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LFS	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	table bit U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknow			own

bit 15 Unimplemented: Read as '0'

bit 14-0 LFSR<14:0>: Pseudorandom Data bits

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have any effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

9.5 Power-Saving Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

9.5.1 KEY RESOURCES

- "Watchdog Timer and Power-Saving Modes" (DS70615) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

12.2 Timer Control Registers

R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 TON TSIDL bit 15 bit 8 R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 U-0 R/W-0 TCS⁽¹⁾ TGATE TCKPS1 TCKPS0 T32 ____ ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set '0' = Bit is cleared -n = Value at POR x = Bit is unknown bit 15 TON: Timerx On bit When T32 = 1: 1 = Starts 32-bit Timerx/y 0 = Stops 32-bit Timerx/y When T32 = 0: 1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx bit 14 Unimplemented: Read as '0' bit 13 TSIDL: Timerx Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode bit 12-7 Unimplemented: Read as '0' bit 6 TGATE: Timerx Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1 bit 3 T32: 32-Bit Timer Mode Select bit 1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers bit 2 Unimplemented: Read as '0' bit 1 TCS: Timerx Clock Source Select bit⁽¹⁾ 1 = External clock is from pin, TxCK (on the rising edge) 0 = Internal clock (FP) bit 0 Unimplemented: Read as '0' Note 1: The TxCK pin is not available on all devices. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 12-1: TxCON: (TIMER2 AND TIMER4) CONTROL REGISTER

REGISTER 19-7: ADCON4L: ADC CONTROL REGISTER 4 LOW U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 ___ SYNCTRG3 SYNCTRG2 SYNCTRG1 SYNCTRG0 ____ _ bit 15 bit 8 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 SAMC3EN SAMC2EN SAMC1EN SAMC0EN ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11 SYNCTRG3: Dedicated ADC Core 3 Trigger Synchronization bit 1 = All triggers are synchronized with the core source clock (TCORESRC) 0 = The ADC core triggers are not synchronized bit 10 SYNCTRG2: Dedicated ADC Core 2 Trigger Synchronization bit 1 = All triggers are synchronized with the core source clock (TCORESRC) 0 = The ADC core triggers are not synchronized bit 9 SYNCTRG1: Dedicated ADC Core 1 Trigger Synchronization bit 1 = All triggers are synchronized with the core source clock (TCORESRC) 0 = The ADC core triggers are not synchronized bit 8 SYNCTRG0: Dedicated ADC Core 0 Trigger Synchronization bit 1 = All triggers are synchronized with the core source clock (TCORESRC) 0 = The ADC core triggers are not synchronized bit 7-4 Unimplemented: Read as '0' bit 3 SAMC3EN: Dedicated ADC Core 3 Conversion Delay Enable bit 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE3L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle bit 2 SAMC2EN: Dedicated ADC Core 2 Conversion Delay Enable bit 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE2L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle bit 1 SAMC1EN: Dedicated ADC Core 1 Conversion Delay Enable bit 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE1L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle bit 0 SAMCOEN: Dedicated ADC Core 0 Conversion Delay Enable bit 1 = After trigger, the conversion will be delayed and the ADC core will continue sampling during the time specified by the SAMC<9:0> bits in the ADCORE0L register 0 = After trigger, the sampling will be stopped immediately and the conversion will be started on the next core clock cycle

REGISTER 19-29: ADCAL0H: ADC CALIBRATION REGISTER 0 HIGH

R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	
CAL3RDY	_	_	—		CAL3DIFF	CAL3EN	CAL3RUN	
bit 15					•	•	bit 8	
R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0	
CAL2RDY	_	_	—		CAL2DIFF	CAL2EN	CAL2RUN	
bit 7					•	•	bit 0	
Legend:		r = Reserved I	oit	U = Unimplem	nented bit, read	1 as '0'		
R = Readable	e bit	W = Writable I	oit	HSC = Hardw	are Settable/C	learable bit		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15	CAL3RDY: D	edicated ADC (Core 3 Calibrat	tion Status Flag	g bit			
	1 = Dedicated	ADC Core 3 c	alibration is fin	ished				
	0 = Dedicated	ADC Core 3 c	alibration is in	progress				
bit 14-12	Unimplement	ted: Read as '0)'					
bit 11	Reserved: M	ust be written a	s '0'					
bit 10	CAL3DIFF: D	edicated ADC	Core 3 Differer	ntial-Mode Cali	bration bit			
	1 = Dedicated	ADC Core 3 w	/ill be calibrate	d in Differential	I Input mode			
	0 = Dedicated	ADC Core 3 w	ill be calibrate	d in Single-End	led Input mode	•		
bit 9	CAL3EN: Dec	dicated ADC Co	ore 3 Calibratio	on Enable bit				
	1 = Dedicated	d ADC Core 3 c	alibration bits	(CALXRDY, CA	LxDIFF and CA	ALXRUN) can b	e accessed by	
	0 = Dedicate	d ADC Core 3 o	calibration bits	are disabled				
bit 8	CAL3RUN: D	edicated ADC	Core 3 Calibra	tion Start bit				
	1 = If this bit	is set by soft	ware, the dedi	cated ADC Co	ore 3 calibratio	n cycle is star	ted; this bit is	
	automatio	ally cleared by	hardware			-		
	0 = Software	can start the ne	ext calibration	cycle				
bit 7	CAL2RDY: D	edicated ADC (Core 2 Calibrat	tion Status Flag	g bit			
	1 = Dedicated	ADC Core 2 c	alibration is fin	ished				
hit C 1			,,	progress				
DIL 0-4	Drimpiemen Becerved: M	led: Read as (
bit 3		adiacted ADC	SU Cara 2 Differen	atial Mada Cali	bratian hit			
DIL Z	Lacourted		ull be celibrate	d in Differential				
	0 = Dedicated	ADC Core 2 w	/ill be calibrate	d in Single-End	led Input mode	;		
bit 1	CAL2EN: Dec	dicated ADC Co	ore 2 Calibratio	on Enable bit				
	1 = Dedicated ADC Core 2 calibration bits (CALxRDY, CALxDIFF and CALxRUN) can be accessed b							
	software							
1:10		ADC Core 2 (calibration bits	are disabled				
bit 0	CAL2RUN: D	edicated ADC	Core 2 Calibra	tion Start bit	0	a avala to st	4	
	⊥ = IT this bit	is set by soft	ware, the dedi	cated ADC Co	ore 2 calibratio	n cycle is star	ted; this bit is	
	0 = Software	can start the ne	ext calibration	cycle				

TABLE 26-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Parameter No.	Тур.	Max.	Units	ditions			
Power-Down	Current (IPD) ⁽¹⁾						
DC60d	12	100	μA	-40°C			
DC60a	18	100	μA	+25°C	2.21/		
DC60b	130	400	μA	+85°C	3.3V		
DC60c	500	1100	μA	+125°C			

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

TABLE 26-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (△IwDT)⁽¹⁾

DC CHARACTE	RISTICS		$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$				
Parameter No.	Тур.	Max.	Units	Conditions			
DC61d	13	50	μΑ	-40°C			
DC61a	19	80	μA	+25°C	2.21/		
DC61b	12	—	μΑ	+85°C	3.3V		
DC61c	13	—	μA	+125°C			

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

TABLE 26-20: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating	d Operatir g tempera	n g Condit ture -40° -40°	ions: 3.0V °C ≤ TA ≤ - °C ≤ TA ≤ -	/ to 3.6V (unless other ⊦85°C for Industrial ⊦125°C for Extended	wise stated)	
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	(1)				
F20a	FRC	-2	0.5	+2	%	$-40^{\circ}C \leq TA \leq -10^{\circ}C$	VDD = 3.0-3.6V	
		-0.9	0.5	+0.9	%	$-10^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 26-21: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
LPRC (@ 32.768 kHz ⁽¹⁾							
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V	
		-20	—	+20	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V	
F21b	LPRC	-30	—	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: This is the change of the LPRC frequency as VDD changes.

- (1)

TABLE 26-24:	TIMER1 EXTERNAL CLOCK	

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Charao	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions
TA10	T⊤xH	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet Parameter TA15, N = Prescale Value (1, 8, 64, 256)
			Asynchronous	35	—	—	ns	
TA11	ΤτxL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = Prescale Value (1, 8, 64, 256)
			Asynchronous	10	_	—	ns	
TA15	ΤτχΡ	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = Prescale Value (1, 8, 64, 256)
OS60	Ft1	T1CK Oscillator Input Frequency Range (oscillator enabled by setting bit, TCS (T1CON<1>))		DC	_	50	kHz	
TA20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal T1CK o Timer	0.75 Tcy + 40		1.75 Tcy + 40	ns	

Note 1: Timer1 is a Type A timer.

2: These parameters are characterized but not tested in manufacturing.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

FIGURE 26-18: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

28.1 Package Marking Information (Continued)

44-Lead TQFP (10x10x1 mm)

44-Lead QFN (8x8 mm)

48-Lead TQFP (7x7x1.0 mm)

64-Lead TQFP (10x10x1 mm)

Example

Example

Example

CPU

Addressing Modes	21
Clocking System Options	
Fast RC (FRC) Oscillator	105
FRC Oscillator with PLL (FRCPLL)	
FRC Oscillator with Postscaler	105
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	
Primary Oscillator with PLL	
Control Registers	
Data Space Addressing	21
Instruction Set	21
Registers	21
Resources	25
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	37
Memory Map for dsPIC33EP16GS50X Devices	38
Memory Map for dsPIC33EP32GS50X Devices	39
Memory Map for dsPIC33EP64GS50X Devices	40
Near Data Space	37
Organization, Alignment	37
SFR Space	37
Width	37
Data Space	
Extended X	69
Paged Data Memory Space (figure)	67
Paged Memory Scheme	66
DC Characteristics	
Brown-out Reset (BOR)	313
Constant-Current Source Specifications	347
DACx Output (DACOUTx Pin) Specifications	346
Doze Current (IDOZE)	309
I/O Pin Input Specifications	310
I/O Pin Output Specifications	313
Idle Current (IIDLE)	307
Operating Current (IDD)	306
Operating MIPS vs. Voltage	304
Power-Down Current (IPD)	308
Program Memory	314
Temperature and Voltage Specifications	305
Watchdog Timer Delta Current (∆IwDT)	308
DC/AC Characteristics	
Graphs and Tables	349
Demo/Development Boards, Evaluation and	
Starter Kits	302
Development Support	299
Device Calibration	283
Addresses	283
and Identification	283
Device Programmer	
MPLAB PM3	301
Doze Mode	117
DSP Engine	30
F	

E

Electrical Characteristics	
AC	
Equations	
Device Operating Frequency	
FPLLO Calculation	
Fvco Calculation	
Errata	10

F

Filter Capacitor (CEFC) Specifications	305
Flash Program Memory	77
and Table Instructions	
Control Registers	80
Dual Partition Flash Configuration	79
Operations	
Resources	79
RTSP Operation	
Flexible Configuration	

G

Getting Started Guidelines	15
Connection Requirements	15
CPU Logic Filter Capacitor Connection (VCAP)	16
Decoupling Capacitors	15
External Oscillator Pins	17
ICSP Pins	17
Master Clear (MCLR) Pin	16
Oscillator Value Conditions on Start-up	18
Targeted Applications	18
Unused I/Os	18

Н

High-Speed Analog Comparator	
Applications	265
Description	264
Digital-to-Analog Comparator (DAC)	265
Features Overview	263
Hysteresis	266
Pulse Stretcher and Digital Logic	265
Resources	266
High-Speed PWM	
Description	181
Features	181
Resources	182
Write-Protected Registers	182
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	229
Control Registers	232
Features Overview	229
Resources	232

I

I/O Ports	25
Configuring Analog/Digital Port Pins12	26
Helpful Tips13	32
Open-Drain Configuration12	26
Parallel I/O (PIO) 12	25
Resources13	33
Write/Read Timing 12	26
In-Circuit Debugger	37
MPLAB ICD 3 30)1
PICkit 3 Programmer 30)1
In-Circuit Emulation 27	77
In-Circuit Serial Programming (ICSP) 277, 28	37
Input Capture 17	71
Control Registers 17	72
Resources17	71
Input Change Notification (ICN) 12	26

	440
REFUCION (Reference Oscillator Control)	113
RPINR0 (Peripheral Pin Select Input 0)	134
RPINR1 (Peripheral Pin Select Input 1)	134
RPINR11 (Perinheral Pin Select Input 11)	139
DDIND12 (Derinherel Din Select Input 12)	140
RPINRTZ (Peripheral Pin Select input TZ)	140
RPINR13 (Peripheral Pin Select Input 13)	141
RPINR18 (Peripheral Pin Select Input 18)	142
RPINR19 (Peripheral Pin Select Input 19)	143
PDINP2 (Perinheral Pin Select Input 2)	135
DDIND20 (Derinhered Din Select Input 20)	1 4 4
	144
RPINR21 (Peripheral Pin Select Input 21)	145
RPINR22 (Peripheral Pin Select Input 22)	146
RPINR23 (Peripheral Pin Select Input 23)	147
RPINR3 (Peripheral Pin Select Input 3)	136
RPINR37 (Perinheral Pin Select Input 37)	148
PDIND29 (Deripheral Din Select Input 39)	140
	149
RPINR42 (Peripheral Pin Select Input 42)	150
RPINR43 (Peripheral Pin Select Input 43)	151
RPINR7 (Peripheral Pin Select Input 7)	137
RPINR8 (Perinheral Pin Select Input 8)	138
PROPO (Deripheral Din Select Output 0)	150
RFORD (Felipheral Pin Select Output 0)	152
RPOR1 (Peripheral Pin Select Output 1)	152
RPOR10 (Peripheral Pin Select Output 10)	157
RPOR11 (Peripheral Pin Select Output 11)	157
RPOR12 (Peripheral Pin Select Output 12)	158
RPOR13 (Perinheral Pin Select Output 13)	158
PROP14 (Peripheral Pin Select Output 14)	150
RPOR 14 (Peripheral Pin Select Output 14)	159
RPOR15 (Peripheral Pin Select Output 15)	159
RPOR16 (Peripheral Pin Select Output 16)	160
RPOR17 (Peripheral Pin Select Output 17)	160
RPOR18 (Peripheral Pin Select Output 18)	161
RPOR2 (Perinheral Pin Select Output 2)	153
DDDD2 (Peripheral Din Celect Output 2)	100
RPOR3 (Peripheral Pin Select Output 3)	153
RPOR4 (Peripheral Pin Select Output 4)	154
RPOR5 (Peripheral Pin Select Output 5)	154
RPOR6 (Peripheral Pin Select Output 6)	155
RPOR7 (Peripheral Pin Select Output 7)	155
PPOP8 (Peripheral Pin Select Output 8)	156
RFORO (Felipheral Pin Select Output 0)	150
RPOR9 (Peripheral Pin Select Output 9)	156
SDCx (PWMx Secondary Duty Cycle)	194
SEVTCMP (PWMx Special Event Compare)	187
SPHASEx (PWMx Secondary Phase-Shift)	196
SPIxCON1 (SPIx Control 1)	211
SPIxCON2 (SPIx Control 2)	212
OPHICTAT (OPHIC Otation and Constral)	213
SPIXSTAT (SPIX Status and Control)	209
SR (CPU STATUS)26	5, 95
SSEVTCMP (PWMx Secondary	
Special Event Compare)	190
STCON (PWMx Secondary Master	
Time Base Control)	188
CTCOND (DW/My Cocordery Cleak Divider	100
STCON2 (PVVIVIX Secondary Clock Divider	
Select 2)	189
STPER (PWMx Secondary Master	
Time Base Period)	189
STRIGx (PWMx Secondary Trigger	
Compare Value)	202
T1CON (Timor1 Control)	165
	105
IRGCONX (PWMX Trigger Control)	198
I RIGx (PWMx Primary Trigger	
Compare Value)	200
TxCON (Timer2/4 Control)	169
TyCON (Timer3/5 Control)	100
	170
	170
UxMODE (UARTX Statue and Control)	170

Resets	85
Brown-out Reset (BOR)	85
Configuration Mismatch Reset (CM)	85
Illegal Condition Reset (IOPUWR)	85
Illegal Opcode	85
Security	85
Uninitialized W Register	85
Master Clear (MCLR) Pin Reset	85
Power-on Reset (POR)	85
RESET Instruction (SWR)	85
Resources	86
Trap Conflict Reset (TRAPR)	85
Watchdog Timer Time-out Reset (WDTO)	85
Revision History	377
2	
5	
Serial Peripheral Interface (SPI) 2	207
Serial Peripheral Interface. See SPI.	
Software Simulator	
MPLAB X SIM 3	301
Special Features of the CPU 2	277
SPI	
Control Registers 2	209
Helpful Tips2	208
Resources	208

Т

Thermal Operating Conditions	304
Thermal Packaging Characteristics	304
Third-Party Development Tools	302
Timer1	163
Control Register	165
Mode Settings	163
Resources	164
Timer2/3 and Timer4/5	167
Control Registers	169
Resources	167
Timing Diagrams	
BOR and Master Clear Reset Characteristics	319
External Clock	316
High-Speed PWMx Fault Characteristics	325
High-Speed PWMx Module Characteristics	325
I/O Characteristics	319
I2Cx Bus Data (Master Mode)	338
I2Cx Bus Data (Slave Mode)	340
I2Cx Bus Start/Stop Bits (Master Mode)	338
I2Cx Bus Start/Stop Bits (Slave Mode)	340
Input Capture x (ICx) Characteristics	323
OCx/PWMx Characteristics	324
Output Compare x (OCx) Characteristics	324
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1)	329
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1)	328
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	326
SPIx Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	327
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	336
SPIx Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	334
SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	330