

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Active
dsPIC
16-Bit
70 MIPs
I ² C, IrDA, LINbus, SPI, UART/USART
Brown-out Detect/Reset, POR, PWM, WDT
35
16KB (16K x 8)
FLASH
-
2K x 8
3V ~ 3.6V
A/D 19x12b; D/A 1x12b
Internal
-40°C ~ 85°C (TA)
Surface Mount
44-TQFP
44-TQFP (10x10)
https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs504-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 2, MPLAB ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "Using MPLAB[®] ICD 3" (poster) DS51765
- "Multi-Tool Design Advisory" DS51764
- "MPLAB[®] REAL ICE[™] In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 8.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

FIGURE 3-1: dsPIC33EPXXGS50X FAMILY CPU BLOCK DIAGRAM

CORCON: CORE CONTROL REGISTER

REGISTER 3-2:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR		US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0
Legend:		C = Clearable	e bit				
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	VAR: Variable 1 = Variable e 0 = Fixed exc	e Exception Pro exception proce	ocessing Later essing is enab sing is enabled	ncy Control bit led l			
bit 14	Unimplemen	ted: Read as '	0'				
bit 13-12	US<1:0>: DS	P Multiply Uns	igned/Signed	Control bits			
	11 = Reserve 10 = DSP eng 01 = DSP eng 00 = DSP eng	d gine multiplies gine multiplies gine multiplies	are mixed-sig are unsigned are signed	n			
bit 11	EDT: Early DO	Loop Termina	ation Control b	it(1)			
	1 = Terminate 0 = No effect	es executing DO	loop at the e	nd of current lo	pop iteration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	Level Status b	its			
	111 = 7 do lo	ops are active					
	•						
	•						
	001 = 1 DO lo 000 = 0 DO lo	op is active ops are active					
bit 7	SATA: ACCA	Saturation En	able bit				
	1 = Accumula 0 = Accumula	itor A saturatio itor A saturatio	n is enabled n is disabled				
bit 6	SATB: ACCB	Saturation En	able bit				
	1 = Accumula 0 = Accumula	itor B saturatio itor B saturatio	n is enabled n is disabled				
bit 5	SATDW: Data	a Space Write f	from DSP Eng	ine Saturation	Enable bit		
	1 = Data Spac 0 = Data Spac	ce write satura ce write satura	tion is enabled	t d			
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	Select bit			
	1 = 9.31 satur 0 = 1.31 satur	ration (super sa ration (normal	aturation) saturation)				
bit 3	IPL3: CPU Int	terrupt Priority	Level Status b	oit 3 (2)			
	1 = CPU Inter 0 = CPU Inter	rupt Priority Le rupt Priority Le	evel is greater evel is 7 or les	than 7 s			
Note 1: Th	nis bit is always r	ead as '0'.					

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

TABLE	4-4:	TIME	R1 THR	OUGH	TIMER5	REGIS	TER MA	Ρ										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								xxxx
PR1	0102								Period R	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	_	_			TGATE	TCKPS1	TCKPS0		TSYNC	TCS	—	0000
TMR2	0106								Timer2	Register								xxxx
TMR3HLD	0108						Time	r3 Holding F	Register (for	32-bit time	r operations	s only)						xxxx
TMR3	010A		Timer3 Register xxx						xxxx									
PR2	010C	Period Register 2 FF						FFFF										
PR3	010E								Period R	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	—	_	_	_			TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T3CON	0112	TON	_	TSIDL	—	_	_	_			TGATE	TCKPS1	TCKPS0		—	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116						Tir	mer5 Holdin	g Register ((for 32-bit o	perations or	nly)						xxxx
TMR5	0118								Timer5	Register								xxxx
PR4	011A	Period Register 4						FFFF										
PR5	011C								Period R	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	—	_	—	—	—	—	TGATE	TCKPS1	TCKPS0	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXGS50X FAMILY

TABLE	4-6:	OU	TPUT	COMPA	RE 1 TH	ROUGH	ΙΟυτρι	JT CON	IPARE	4 REGI	STER M	AP						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	—	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904 Output Compare 1 Secondary Register											xxxx						
OC1R	0906	0906 Output Compare 1 Register xxx											xxxx					
OC1TMR	0908								Time	er Value 1 Re	egister							xxxx
OC2CON1	090A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E	Output Compare 2 Secondary Register										xxxx						
OC2R	0910								Output	Compare 2	Register							xxxx
OC2TMR	0912								Time	er Value 2 Re	egister							xxxx
OC3CON1	0914	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	-	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							0	utput Comp	oare 3 Seco	ndary Regist	er						xxxx
OC3R	091A								Output	Compare 3	Register							xxxx
OC3TMR	091C								Time	er Value 3 Re	egister							xxxx
OC4CON1	091E	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	_	_	ENFLTA	_	_	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							0	utput Comp	oare 4 Seco	ndary Regist	er						xxxx
OC4R	0924								Output	Compare 4	Register							xxxx
OC4TMR	0926		Timer Value 4 Register xxxx							egister								

-

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.7 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either Data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a Bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.7.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-2).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.7.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags, as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W (XWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-2). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W (YWM) register, to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit (MODCON<14>) is set.

FIGURE 4-12: MODULO ADDRESSING OPERATION EXAMPLE

8.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Oscillator Module" (DS70005131) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family oscillator system provides:

- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Configuration bits for clock source selection
- Auxiliary PLL for ADC and PWM

A simplified diagram of the oscillator system is shown in Figure 8-1.

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0
_	—	—	—	—	CMPMD	—	—
bit 15						·	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
_	—	—	—	_		I2C2MD	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as ')'				
bit 10	CMPMD: Con	nparator Modul	e Disable bit				
	1 = Comparat	or module is di	sabled				
	0 = Comparat	or module is e	nabled				
bit 9-2	Unimplemen	ted: Read as 'd	כי				
bit 1	12C2MD: 12C2	2 Module Disab	ole bit				
	1 = I2C2 mod	ule is disabled					
	0 = I2C2 mod	ule is enabled					

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 0	Unimplemented: Read as '0'	

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0 U-0 U-0 U-0 U-0 U-0 - <					544/ 0			
U-0 U-0 U-0 U-0 U-0 U-0 U-0 - -	bit 15							bit 8
U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0	—	—	—	—	—	—		—
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2-0	Unimplemented: Read as '0'

REGISTER 9-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTE	STER 9-5:	9-5: PMD6: PERIPHERAL MODULE DISA	BLE CONTROL REGISTER
---	-----------	-----------------------------------	----------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—	—	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—		_	_	—	_	_			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	U = Unimplem	nented bit, read	d as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	R/W-0 R/W-0 PWM3MD PWM2MD U-0 U-0 — — ted bit, read as '0' x = Bit is unkn				
bit 15-13	Unimplemented: Read as '0'									
bit 12	PWM5MD: P	WM5 Module D	isable bit							
	1 = PWM5 mo	odule is disable	d							
	0 = PWM5 m	odule is enable	d							
bit 11	PWM4MD: P	WM4 Module D	isable bit							
	1 = PWM4 mc 0 = PWM4 mc	odule is disable odule is enable	d d							
bit 10		WM3 Module D	u isahle hit							
bit 10	1 = PWM3 mc	odule is disable	d							
	0 = PWM3 mo	odule is enable	d							
bit 9	PWM2MD: P	WM2 Module D	isable bit							
	1 = PWM2 module is disabled									
	0 = PWM2 module is enabled									
bit 8	PWM1MD: P	WM1 Module D	isable bit							
	1 = PWM1 mc	odule is disable	ed d							
			u ,							
DIL 7-0	Unimplement	teu: Read as (J							

REGISTER 15-8: SSEVTCMP: PWMx SECONDARY SPECIAL EVENT COMPARE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTC	MP<12:5>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
	SS	SEVTCMP<4:0>			—		—
bit 7					•		bit 0
Legend:							
P - Poodoblo bit		M - Mritable bit		II – I Inimpler	nontod hit roa	d as 'O'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 SSEVTCMP<12:0>: Special Event Compare Count Value bits

bit 2-0 Unimplemented: Read as '0'

Note 1: One LSB = 1.04 ns (at fastest auxiliary clock rate); therefore, the minimum SEVTCMP resolution is 8.32 ns.

REGISTER 15-9: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER⁽¹⁾

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	—	—	—	—	—	CHOPCLK6	CHOPCLK5
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHOPCLK4	CHOPCLK3	CHOPCLK2	CHOPCLK1	CHOPCLK0	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15CHPCLKEN: Enable Chop Clock Generator bit
1 = Chop clock generator is enabled
0 = Chop clock generator is disabledbit 14-10Unimplemented: Read as '0'bit 9-3CHOPCLK<6:0>: Chop Clock Divider bits
Value is in 8.32 ns increments. The frequency of the chop clock signal is given by:
Chop Frequency = 1/(16.64 * (CHOP<7:3> + 1) * Primary Master PWM Input Clock Period)bit 2-0Unimplemented: Read as '0'

Note 1: The chop clock generator operates with the primary PWMx clock prescaler (PCLKDIV<2:0>) in the PTCON2 register (Register 15-2).

REGISTER 15-16: SPHASEx: PWMx SECONDARY PHASE-SHIFT REGISTER (x = 1 to 5)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHA	SEx<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHA	SEx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit	:	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **SPHASEx<15:0>:** Secondary Phase Offset for PWMxL Output Pin bits (used in Independent PWM mode only)

- **Note 1:** If PWMCONx<9> = 0, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11), PHASEx<15:0> = Phase-shift value for PWMxL only
 - **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); SPHASEx<15:0> = Not used
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxL only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range of values is 0x0010-0xFFF8

REGISTER 15-20: IOCONX: PWMx I/O CONTROL REGISTER (x = 1 to 5) (CONTINUED)

bit 3-2	CLDAT<1:0>: State for PWMxH and PWMxL Pins if CLMOD is Enabled bits ⁽²⁾
	IFLTMOD (FCLCONx<15>) = 0: Normal Fault Mode:
	If current limit is active, then CLDAT1 provides the state for the PWMxH pin.
	If current limit is active, then CLDAT0 provides the state for the PWMxL pin.
	IFLTMOD (FCLCONx<15>) = 1: Independent Fault Mode:
	CLDAT<1:0> bits are ignored.
bit 1	SWAP: SWAP PWMxH and PWMxL Pins bit
	 1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWMx time base 0 = Output overrides via the OVRDAT<1:0> bits occur on the next CPU clock boundary

- Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: State represents the active/inactive state of the PWMx depending on the POLH and POLL bits settings.

REGISTER 15-21: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 5)

r							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<12:5>			
bit 15 bi							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
		TRGCMP<4:0>	•		—	_	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplen	0 R/W-0 R/W-0 bit 8 0 U-0 U-0		
-n = Value at POR '1' = Bit is set '0' = Bit is			'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-3 **TRGCMP<12:0>:** Trigger Compare Value bits When the primary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.

bit 2-0 Unimplemented: Read as '0'

REGISTER 15-22: FCLCONX: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 5)

	,							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IFLTMOD	CLSRC4	CLSRC3	CLSRC2	CLSRC1	CLSRC0	CLPOL ⁽¹⁾	CLMOD	
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	
FLTSRC4	FLTSRC3	FLTSRC2	FLTSRC1	FLTSRC0	FLTPOL ⁽¹⁾	FLTMOD1	FLTMOD0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown	
 bit 15 IFLTMOD: Independent Fault Mode Enable bit 1 = Independent Fault mode: Current-limit input maps FLTDAT1 to the PWMxH output and the Fault input maps FLTDAT0 to the PWMxL output; the CLDAT<1:0> bits are not used for override functions 0 = Normal Fault mode: Current-Limit mode maps CLDAT<1:0> bits to the PWMxH and PWMxL outputs; the PWM Fault mode maps FLTDAT<1:0> to the PWMxH and PWMxL outputs 								
	11111 = Res 10001 = Res 10000 = Ana 01111 = Ana 01101 = Ana 01101 = Ana 01100 = Fau 01011 = Fau 01010 = Fau 01001 = Fau 00101 = Fau 00101 = Fau 00101 = Fau 00011 = Fau 00011 = Fau 00001 = Fau	erved erved log Comparator log Log Log Log Log Log Log Log Log Log L	- 4 - 3 - 2 - 1					
bit 9	CLPOL: Curr 1 = The selec 0 = The selec	ent-Limit Polari ted current-limi ted current-limi	ty for PWMx 0 t source is act t source is act	Generator bit ⁽¹⁾ ive-low ive-high				
bit 8	CLMOD: Cur 1 = Current-L 0 = Current-L	rent-Limit Mode imit mode is en imit mode is dis	Enable for Pl abled abled	WMx Generato	r bit			

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

22.3 Current Source Control Register

REGISTER 22-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
ISRCEN	—	—	_	_	OUTSEL2	OUTSEL1	OUTSEL0	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0	
bit 7	bit 7 bit 0							
Legend:								
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is clea				ared	x = Bit is unkr	nown		
bit 15 bit 14-11 bit 10-8	ISRCEN: Cor 1 = Current so 0 = Current so Unimplement OUTSEL<2:0 111 = Reserv 110 = Reserv 101 = Reserv 100 = Input p 011 = Input p 010 = Input p 001 = Input p	Instant-Current S burce is enable burce is disable ted: Read as '(>: Output Cons ed ed ed in, ISRC4 (AN4 in, ISRC3 (AN5 in, ISRC1 (AN6 put is selected	Source Enable ed o' stant-Current : 4) 5) 5) 3)	e bit Select bits				
bit 7-6	Unimplemen	ted: Read as '	כי					
bit 5-0	ISRCCAL<5: The calibratio module is ena Features" for	ISRCCAL<5:0>: Constant-Current Source Calibration bits The calibration value must be copied from Flash address, 0x800E78, into these bits before the module is enabled. Refer to the calibration data address table (Table 23-3) in Section 23.0 "Special Features" for more information.						

TABLE 26-20: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating	d Operatir g tempera	n g Condit ture -40° -40°	ions: 3.0V °C ≤ TA ≤ - °C ≤ TA ≤ -	/ to 3.6V (unless other ⊦85°C for Industrial ⊦125°C for Extended	wise stated)	
Param No. Characteristic		Min.	Тур.	Max.	Units	Conditions		
Internal	FRC Accuracy @ FRC Fre	equency =	7.37 MHz	(1)				
F20a	FRC	-2	0.5	+2	%	$-40^{\circ}C \leq TA \leq -10^{\circ}C$	VDD = 3.0-3.6V	
		-0.9	0.5	+0.9	%	$-10^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	
F20b	FRC	-2	1	+2	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

Note 1: Frequency is calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 26-21: INTERNAL LPRC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions			
LPRC @ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-30	—	+30	%	$-40^{\circ}C \le TA \le -10^{\circ}C$	VDD = 3.0-3.6V		
		-20	—	+20	%	$-10^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V		
F21b	LPRC	-30	—	+30	%	$+85^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V		

Note 1: This is the change of the LPRC frequency as VDD changes.

TABLE 26-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHA	ARACTERIS	TICS							
			Operating temperature $-40^{\circ}C \le IA \le +85^{\circ}C$ for Industrial $-40^{\circ}C < TA < +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions		
SP70	FscP	Maximum SCKx Input Frequency	_	—	Lesser of: FP or 15	MHz	(Note 3)		
SP72	TscF	SCKx Input Fall Time	—	_	—	ns	See Parameter DO32 (Note 4)		
SP73	TscR	SCKx Input Rise Time	—	—	—	ns	See Parameter DO31 (Note 4)		
SP30	TdoF	SDOx Data Output Fall Time	—	—	—	ns	See Parameter DO32 (Note 4)		
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See Parameter DO31 (Note 4)		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid After SCKx Edge	—	6	20	ns			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	—	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	—	ns			
SP50	TssL2scH, TssL2scL	$\frac{SSx}{Input} \downarrow \text{ to SCKx} \uparrow \text{ or SCKx} \downarrow$	120	—	—	ns			
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)		
SP52	TscH2ssH, TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)		
SP60	TssL2doV	SDOx Data Output Valid After SSx Edge	—	—	50	ns			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-23: UARTX MODULE I/O TIMING CHARACTERISTICS

TABLE 26-41: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	m Symbol Characteristic ⁽¹⁾		Min.	Тур. ⁽²⁾	Max.	Units	Conditions
UA10	TUABAUD	UARTx Baud Time	66.67			ns	
UA11	FBAUD	UARTx Baud Frequency	—	—	15	Mbps	
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	—		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-42: ANALOG CURRENT SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions
AVD01	IDD	Analog Modules Current Consumption	_	9	_	mA	Characterized data with the following modules enabled: APLL, 5 ADC Cores, 2 PGAs and 4 Analog Comparators

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 26-43: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)}^{(5)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
	-	-	Device	Supply	-				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0		Lesser of: VDD + 0.3 or 3.6	V	The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including during device power-up		
AD02	AVss	Module Vss Supply	Vss	—	Vss + 0.3	V			
		-	Referenc	e Inputs	1				
AD06	VREFL	Reference Voltage Low	_	AVss	—	V	(Note 1)		
AD07	VREF	Absolute Reference Voltage (VREFH – VREFL)	2.7		AVDD	V	(Note 3)		
AD08	IREF	Reference Input Current	—	5	10	μA	ADC operating or in standby		
	1		Analog	g Input	1				
AD12	VINH-VINL	Full-Scale Input Span	AVss		AVdd	V			
AD14	VIN	Absolute Input Voltage	AVss – 0.3		AVDD + 0.3	V			
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	100	—	Ω	For minimum sampling time (Note 1)		
AD66	Vbg	Internal Voltage Reference Source	—	1.2	_	V			
		ADC Ac	curacy: Pseu	do-Differe	ential Input				
AD20a	Nr	Resolution		12		bits			
AD21a	INL	Integral Nonlinearity	> -3		< 3	LSb	AVss = 0V, AVDD = 3.3V		
AD22a	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	AVss = 0V, AVDD = 3.3V (Note 2)		
AD23a	Gerr	Gain Error (Dedicated Core)	> 5	13	< 20	LSb	AVss = 0V, AVdd = 3.3V		
		Gain Error (Shared Core)	> -1	5	< 10	LSb			
AD24a	EOFF	Offset Error (Dedicated Core)	> 2	7	< 12	LSb	AVss = 0V, AVdd = 3.3V		
		Offset Error (Shared Core)	> -2	3	< 8	LSb			
AD25a		Monotonicity					Guaranteed		

Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.

3: These parameters are characterized but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Dimension Limits			MAX		
Number of Pins	N	44				
Pitch	е		0.65 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00 0.02 0.0				
Terminal Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.25 6.45 6.60				
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.25 6.45 6.60				
Terminal Width	nal Width b 0.20			0.35		
Terminal Length	L	0.30 0.40 0.50				
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2

48-Lead Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SECTION A-A

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Number of Leads	Ν		48		
Lead Pitch	е		0.50 BSC		
Overall Height	А	-	-	1.20	
Standoff	A1	0.05	-	0.15	
Molded Package Thickness	A2	0.95	1.05		
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	¢	0° 3.5° 7°			
Overall Width	E		9.00 BSC		
Overall Length	D	9.00 BSC			
Molded Package Width	E1	7.00 BSC			
Molded Package Length	D1	7.00 BSC			
Lead Thickness	С	0.09 - 0.1			
Lead Width	b	0.17 0.22 0.27			
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A-B and D to be determined at center line between leads where leads exit plastic body at datum plane H

Microchip Technology Drawing C04-300-Y8 Rev A Sheet 2 of 2