

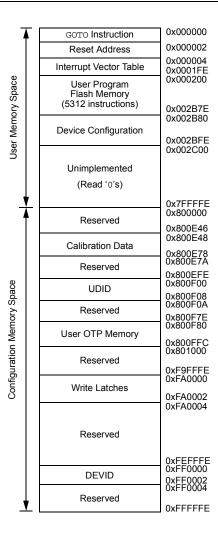
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XE

Betans	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	35
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs504t-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP16GS50X DEVICES

Note: Memory areas are not shown to scale.

TABLE 4-30: PORTA REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	_	_	_	_			—		_		—		-	TRISA<4:0>			001F
PORTA	0E02	_	_	—	_			—		_	_	—			RA<4:0>			0000
LATA	0E04		_	_	_	_	_	_	_	_	_	_			LATA<4:0>			0000
ODCA	0E06		_	_	_	_	_	_	_	_	_	_		(ODCA<4:0>			0000
CNENA	0E08		_	_	_	_	_	_	_	_	_	_		(CNIEA<4:0>			0000
CNPUA	0E0A		_	_	_	_	_	_	_	_	_	_		C	NPUA<4:0	>		0000
CNPDA	0E0C	_	_	_	_	_	_	_	_	—	_	_		C	NPDA<4:0	>		0000
ANSELA	0E0E	_	—	_	—	-	-	—		—		—	—	—	/	ANSA<2:0>		0007

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PORTB REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10		TRISB<15:0> FFF							FFFF								
PORTB	0E12		RB<15:0> xxx							xxxx								
LATB	0E14		LATB<15:0> xxx						xxxx									
ODCB	0E16								ODCB<1	5:0>								0000
CNENB	0E18								CNIEB<1	5:0>								0000
CNPUB	0E1A		CNPUB<15:0> 00						0000									
CNPDB	0E1C		CNPDB<15:0> 00						0000									
ANSELB	0E1E	—	_	_	_	_	ANSB<	<10:9>	—		ANSB<7:5>		-		ANSE	<3:0>		06EF

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTC REGISTER MAP FOR dsPIC33EPXXGS504/505 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_		TRISC<13:0>							3FFF						
PORTC	0E22	_	_		RC<13:0>					xxxx								
LATC	0E24	_	_		LATC<13:0>					xxxx								
ODCC	0E26		_							ODCC<	13:0>							0000
CNENC	0E28		_							CNIEC<	13:0>							0000
CNPUC	0E2A		_							CNPUC<	:13:0>							0000
CNPDC	0E2C		_		CNPDC<13:0>					0000								
ANSELC	0E2E	_	_	-	- ANSC<12:9> ANSC<6:4> - ANSC<2:0> 1							1E77						

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

When a PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses the PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing; however, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSRPAG register is incremented and the EA<15> bit is set to keep the base address within the PSV window. When an underflow is detected, the DSRPAG register is decremented and the EA<15> bit is set to keep the base

address within the PSV window. This creates a linear PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0 and PSV spaces. Table 4-37 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSRPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- Register Indirect with Register Offset Addressing
- Modulo Addressing
- Bit-Reversed Addressing

TABLE 4-37:	OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0 AND
	PSV SPACE BOUNDARIES ^(2,3,4)

O/U,			Before			After	
0/0, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read		DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The Register Indirect Addressing now addresses a location in the base Data Space (0x0000-0x7FFF).

2: An EDS access, with DSRPAG = 0x000, will generate an address error trap.

3: Only reads from PS are supported using DSRPAG.

4: Pseudolinear Addressing is not supported for large offsets.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
10.00-0	10.00-0	10.00-0	10.00-0	100-0	100-0	11-0	10.00-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
(3)	(2)	(2)					
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
Logond:		C = Clearable	hit				

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)

- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2
 STKERR: Stack Error Trap Status bit

 1 = Stack error trap has occurred
 0 = Stack error trap has not occurred

 bit 1
 OSCFAIL: Oscillator Failure Trap Status bit

 1 = Oscillator failure trap has occurred
 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler) 11111 = Input divided by 33

•

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- **Note 1:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **2:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **3:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	_	—	—	—	_	PLLDIV8
bit 15							bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLDI	V<7:0>			
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-9	Unimplemen	ted: Read as ')'				
bit 8-0	PLLDIV<8:0>	-: PLL Feedbac	k Divisor bits (also denoted a	is 'M', PLL mul	tiplier)	
	111111111	= 513					
	•						
	•						
	•						
	000110000=	= 50 (default)					
	•						
	•						
	• 000000010 =	= 4					
	00000010-	– –					

REGISTER 8-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

000000001 = 3 000000000 = 2

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0		
_	—	—	—	—	CMPMD	—	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
_	_	_	—	_	—	I2C2MD	—		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-11	Unimplement	ted: Read as '	כ'						
bit 10	CMPMD: Con	nparator Modul	le Disable bit						
	1 = Comparat	or module is di	sabled						
	0 = Comparat	or module is ei	nabled						
bit 9-2	Unimplement	ted: Read as '	כי						
bit 1	12C2MD: 12C2	2 Module Disat	ole bit						
		ule is disabled							
	0 = I2C2 mod	ule is enabled							

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 0	Unimplemented: Read as '0'

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
11.0		11.0	11.0		11.0	11.0	11.0

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
—	—	—	—	REFOMD	—	—	—
bit 7							bit 0

Legend:							
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-4	Unimplemented: Read as '0'
bit 3	REFOMD: Reference Clock Module Disable bit
	1 = Reference clock module is disabled
	0 = Reference clock module is enabled
bit 2-0	Unimplemented: Read as '0'

10.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 10-20 through Register 10-38). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 10-3: MULTIPLEXING REMAPPABLE OUTPUTS FOR RPn

10.4.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings, across any or all of the RPn pins, is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs, and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

REGISTER 10-14: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
	10110100 = • • 00000001 =	Input tied to Rf Input tied to Rf Input tied to Rf Input tied to Vs	2180 21				
bit 7-0	10110101 =	Input tied to RF Input tied to RF	2181 2180	12) to the Corre	esponding RPn	Pin bits	

REGISTER 10-20: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	RP33R5	RP33R4	RP33R3	RP33R2	RP33R1	RP33R0			
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	RP32R5	RP32R4	RP32R3	RP32R2	RP32R1	RP32R0			
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-14	Unimplemen	ted: Read as '	0'							
bit 13-8	RP33R<5:0>: Peripheral Output Function is Assigned to RP33 Output Pin bits (see Table 10-2 for peripheral function numbers)									
bit 7-6	Unimplemen	Unimplemented: Read as '0'								

bit 5-0 **RP32R<5:0>:** Peripheral Output Function is Assigned to RP32 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-21: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	RP35R5	RP35R4	RP35R3	RP35R2	RP35R1	RP35R0	
bit 15		•				•	bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	RP34R5	RP34R4	RP34R3	RP34R2	RP34R1	RP34R0	
bit 7		•				•	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at P	-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							
bit 15-14	Unimplemen	ted: Read as '	כ'					
bit 13-8	RP35R<5:0>:	Peripheral Ou	tput Function	is Assigned to	RP35 Output F	rin bits		

(see Table 10-2 for peripheral function numbers)

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP34R<5:0>:** Peripheral Output Function is Assigned to RP34 Output Pin bits (see Table 10-2 for peripheral function numbers)

NOTES:

REGISTER 15-12: PWMCONx: PWMx CONTROL REGISTER (x = 1 to 5) (CONTINUED)

- bit 7-6 DTC<1:0>: Dead-Time Control bits 11 = Reserved 10 = Dead-time function is disabled 01 = Negative dead time is actively applied for Complementary Output mode 00 = Positive dead time is actively applied for all Output modes bit 5-4 Unimplemented: Read as '0' bit 3 MTBS: Master Time Base Select bit 1 = PWMx generator uses the secondary master time base for synchronization and the clock source for the PWMx generation logic (if secondary time base is available) 0 = PWMx generator uses the primary master time base for synchronization and the clock source for the PWMx generation logic CAM: Center-Aligned Mode Enable bit^(2,3,4) bit 2 1 = Center-Aligned mode is enabled 0 = Edge-Aligned mode is enabled XPRES: External PWMx Reset Control bit⁽⁵⁾ bit 1 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode 0 = External pins do not affect the PWMx time base bit 0 **IUE:** Immediate Update Enable bit 1 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are immediate 0 = Updates to the active Duty Cycle, Phase Offset, Dead-Time and local Time Base Period registers are synchronized to the local PWMx time base Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller. 2: The Independent Time Base mode (ITB = 1) must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored. 3: These bits should not be changed after the PWMx is enabled by setting PTEN = 1 (PTCON<15>). 4: Center-Aligned mode ignores the Least Significant 3 bits of the Duty Cycle, Phase and Dead-Time registers. The highest Center-Aligned mode resolution available is 8.32 ns with the clock prescaler set to
 - 5: Configure CLMOD = 0 (FCLCONx<8>) and ITB = 1 (PWMCONx<9>) to operate in External Period Reset mode.

the fastest clock.

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

	(X = 1	10 5)								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—				
bit 15							bit 8			
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL			
bit 7							bit 0			
Legend:										
R = Readat	ole bit	W = Writable b	oit	U = Unimpler	nented bit, read	as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15		H Rising Edge T	riggor Enable	- bit						
bit 15	1 = Rising edg	ge of PWMxH v	vill trigger the	Leading-Edge E ling edge of PW	•	PL				
bit 14	-	I Falling Edge 1	-							
		1 = Falling edge of PWMxH will trigger the Leading-Edge Blanking counter								
	-	0 = Leading-Edge Blanking ignores the falling edge of PWMxH								
bit 13		PLR: PWMxL Rising Edge Trigger Enable bit								
	1 = Rising edge of PWMxL will trigger the Leading-Edge Blanking counter									
bit 12	-	 0 = Leading-Edge Blanking ignores the rising edge of PWMxL PLF: PWMxL Falling Edge Trigger Enable bit 								
	1 = Falling ed	ge of PWMxL v	vill trigger the	Leading-Edge E lling edge of PW	•	er				
bit 11	-		-	anking Enable bi						
				ne selected Faul to the selected F						
bit 10	CLLEBEN: C	urrent-Limit Lea	ading-Edge B	lanking Enable I	bit					
				ne selected curre to the selected o		ut				
bit 9-6	Unimplemen	ted: Read as '0	2							
bit 5	BCH: Blankin	g in Selected B	lanking Signa	al High Enable b	it ⁽¹⁾					
				Fault input signa ng signal is high		lected blanking	g signal is high			
bit 4	BCL: Blankin	g in Selected B	lanking Signa	I Low Enable bit	t(1)					
		 1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is low 0 = No blanking when the selected blanking signal is low 								
bit 3	BPHH: Blank	ing in PWMxH I	High Enable b	oit						
		nking (of currenting when the PV		Fault input signa is high	als) when the P	WMxH output i	is high			
bit 2	BPHL: Blanki	ing in PWMxH L	ow Enable b	it						
		nking (of currenting when the PV		Fault input signa is low	als) when the P\	WMxH output i	s low			

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

22.3 Current Source Control Register

REGISTER 22-1: ISRCCON: CONSTANT-CURRENT SOURCE CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
ISRCEN			—	—	OUTSEL2	OUTSEL1	OUTSEL0
bit 15		•	•	•			bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0
 bit 7		ISRCCALS	ISRUUAL4	ISRUUALS	ISRCCALZ	ISRCCALT	bit (
							DILC
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	•	>: Output Con		Select bits			
bit 14-11 bit 10-8	0 = Current s Unimplemen OUTSEL<2:0 111 = Reserv 110 = Reserv 101 = Reserv	ved ved	o' stant-Current	Select bits			
	011 = Input p 010 = Input p 001 = Input p	in, ISRC3 (AN in, ISRC2 (AN in, ISRC1 (AN put is selected	5) 6)				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-0	The calibratio module is ena		e copied from the calibration	Flash address	s, 0x800E78, in	to these bits be -3) in Section 2	

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] X IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB X SIM Software Simulator
- · Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- Third-party development tools

25.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac $OS^{®}$ X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window
- Project-Based Workspaces:
- · Multiple projects
- Multiple tools
- Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- Built-in support for Bugzilla issue tracker

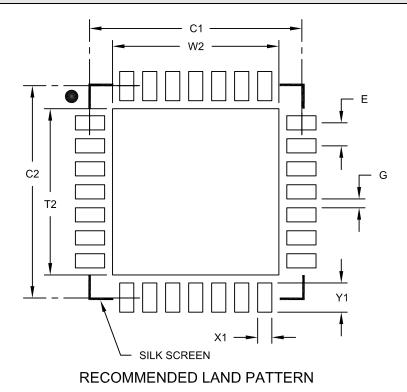
TABLE 26-44: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CH	ARACTE	RISTICS ⁽²⁾	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$								
Param No.SymbolCharacteristicsMin.Typ.(1)Max.UnitsConditions											
				Clo	ck Para	meters					
AD50	TAD	ADC Clock Period	14.28		—	ns					
				Thr	oughpu	ut Rate					
AD51	Fтр	SH0-SH3	—		3.25		70 MHz ADC clock, 12 bits, no pending				
		SH4	_		3.25	Msps	conversion at time of trigger				

Note 1: These parameters are characterized but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

TABLE 26-45: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS


AC/DC (CHARACT	reristics ⁽²⁾	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. Max. Units				Comments	
CM10	VIOFF	Input Offset Voltage	-35	±5	+35	mV		
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVdd	V		
CM13	CMRR	Common-Mode Rejection Ratio	60	—		dB		
CM14	TRESP	Large Signal Response	_	15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2. Delay measured from analog input pin to PWMx output pin.	
CM15	VHYST	Input Hysteresis	5	10	20	mV	Depends on HYSSEL<1:0>	
CM16	TON	Comparator Enabled to Valid Output	_	—	1	μs		

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		MILLIM	SC 4.70 4.70			
Dimensio	n Limits	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC	4.70		
Optional Center Pad Width	W2			4.70		
Optional Center Pad Length	T2			4.70		
Contact Pad Spacing	C1		6.00			
Contact Pad Spacing	C2		6.00			
Contact Pad Width (X28)	X1			0.40		
Contact Pad Length (X28)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

SPIx Slave Mode (Full-Duplex, CKE = 1,	
CKP = 1, SMP = 0)	332
Timer1-Timer5 External Clock Characteristics	321
UARTx I/O Characteristics	342

U

Unique Device Identifier (UDID) Universal Asynchronous Receiver	31
Transmitter (UART)	
Control Registers	
Helpful Tips	
Resources	224
Universal Asynchronous Receiver Transmitter. See UART.	
User OTP Memory	

۷

285
. 277, 286
286
384
10

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820