

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Detuns                     |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Active                                                                          |
| Core Processor             | dsPIC                                                                           |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 60 MIPs                                                                         |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                           |
| Number of I/O              | 35                                                                              |
| Program Memory Size        | 16KB (16K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | -                                                                               |
| RAM Size                   | 2K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                       |
| Data Converters            | A/D 19x12b; D/A 1x12b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 48-TQFP Exposed Pad                                                             |
| Supplier Device Package    | 48-TQFP-EP (7x7)                                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs505-e-pt |
|                            |                                                                                 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### 3.6 CPU Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

#### 3.6.1 KEY RESOURCES

- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

#### 4.5 Special Function Register Maps

#### TABLE 4-2: CPU CORE REGISTER MAP

| SFR<br>Name           | Addr. | Bit 15 | Bit 14 | Bit 13 | Bit 12      | Bit 11     | Bit 10       | Bit 9      | Bit 8        | Bit 7      | Bit 6       | Bit 5     | Bit 4       | Bit 3        | Bit 2     | Bit 1               | Bit 0 | All<br>Resets |
|-----------------------|-------|--------|--------|--------|-------------|------------|--------------|------------|--------------|------------|-------------|-----------|-------------|--------------|-----------|---------------------|-------|---------------|
| W0                    | 0000  |        |        |        |             |            |              |            | W0 (WRE      | G)         |             |           |             |              |           |                     |       | xxxx          |
| W1                    | 0002  |        |        |        |             |            |              |            | W1           |            |             |           |             |              |           |                     |       | xxxx          |
| W2                    | 0004  |        |        |        |             |            |              |            | W2           |            |             |           |             |              |           |                     |       | xxxx          |
| W3                    | 0006  |        |        |        |             |            |              |            | W3           |            |             |           |             |              |           |                     |       | xxxx          |
| W4                    | 8000  |        |        |        |             |            |              |            | W4           |            |             |           |             |              |           |                     |       | xxxx          |
| W5                    | 000A  |        |        |        |             |            |              |            | W5           |            |             |           |             |              |           |                     |       | xxxx          |
| W6                    | 000C  |        |        |        |             |            |              |            | W6           |            |             |           |             |              |           |                     |       | xxxx          |
| W7                    | 000E  |        |        |        |             |            |              |            | W7           |            |             |           |             |              |           |                     |       | xxxx          |
| W8                    | 0010  |        |        |        |             |            |              |            | W8           |            |             |           |             |              |           |                     |       | xxxx          |
| W9                    | 0012  |        |        |        |             |            |              |            | W9           |            |             |           |             |              |           |                     |       | xxxx          |
| W10                   | 0014  |        |        |        |             |            |              |            | W10          |            |             |           |             |              |           |                     |       | xxxx          |
| W11                   | 0016  |        |        |        |             |            |              |            | W11          |            |             |           |             |              |           |                     |       | xxxx          |
| W12                   | 0018  |        |        |        |             |            |              |            | W12          |            |             |           |             |              |           |                     |       | xxxx          |
| W13                   | 001A  |        |        |        |             |            |              |            | W13          |            |             |           |             |              |           |                     |       | xxxx          |
| W14                   | 001C  |        |        |        |             |            |              |            | W14          |            |             |           |             |              |           |                     |       | xxxx          |
| W15                   | 001E  |        |        |        |             |            |              |            | W15          |            |             |           |             |              |           |                     |       | xxxx          |
| SPLIM                 | 0020  |        |        |        |             |            |              |            | SPLIM        |            |             |           |             |              |           |                     |       | 0000          |
| ACCAL                 | 0022  |        |        |        |             |            |              |            | ACCAL        |            |             |           |             |              |           |                     |       | 0000          |
| ACCAH                 | 0024  |        |        |        |             |            |              |            | ACCAH        |            |             |           |             |              |           |                     |       | 0000          |
| ACCAU                 | 0026  |        |        | Sig    | n Extension | of ACCA<39 | }>           |            |              |            |             |           | ACC         | CAU          |           |                     |       | 0000          |
| ACCBL                 | 0028  |        |        |        |             |            |              |            | ACCBL        |            |             |           |             |              |           |                     |       | 0000          |
| ACCBH                 | 002A  |        |        |        |             |            |              |            | ACCBH        |            |             |           |             |              |           |                     |       | 0000          |
| ACCBU                 | 002C  |        |        | Sig    | n Extension | of ACCB<39 | }>           |            |              |            |             |           | ACC         | BU           |           |                     |       | 0000          |
| PCL                   | 002E  |        |        |        |             |            |              | PC         | L<15:1>      |            |             |           |             |              |           |                     | _     | 0000          |
| PCH                   | 0030  | _      | —      | —      | _           | _          | _            | _          | —            | _          |             |           |             | PCH<6:0>     |           |                     |       | 0000          |
| DSRPAG                | 0032  | _      | _      | _      | _           | _          | _            |            | E            | Extended D | ata Space   | EDS) Read | d Page Reg  | jister (DSR  | PAG<9:0>) |                     |       | 0001          |
| DSWPAG <sup>(1)</sup> | 0034  |        | _      | _      | _           | _          | _            | _          |              | Extend     | led Data Sp | ace (EDS) | Write Page  | e Register ( | DSWPAG8   | :0>) <sup>(1)</sup> |       | 0001          |
| RCOUNT                | 0036  |        |        |        |             |            |              | F          | RCOUNT<1     | 5:0>       |             |           |             |              |           |                     |       | 0000          |
| DCOUNT                | 0038  |        |        |        |             |            | DO           | Loop Coun  | t Register ( | DCOUNT<    | 15:0>)      |           |             |              |           |                     |       | 0000          |
| DOSTARTL              | 003A  |        |        |        |             |            | DO Start Add | ress Regis | ter Low (DC  | STARTL<1   | 5:1>)       |           |             |              |           |                     | _     | 0000          |
| DOSTARTH              | 003C  | _      |        | _      | _           | _          | _            | —          | _            | _          | _           | DO        | Start Addre | ss Register  | High (DOS | STARTH<5            | :0>)  | 0000          |

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The contents of this register should never be modified. The DSWPAG must always point to the first page.

#### 4.6 Instruction Addressing Modes

The addressing modes shown in Table 4-38 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

#### 4.6.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a Working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

#### 4.6.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a Working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register fetched from data memory or a 5-bit literal. The result location can either be a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

#### TABLE 4-38: FUNDAMENTAL ADDRESSING MODES SUPPORTED

| Addressing Mode                                           | Description                                                                                           |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| File Register Direct                                      | The address of the file register is specified explicitly.                                             |
| Register Direct                                           | The contents of a register are accessed directly.                                                     |
| Register Indirect                                         | The contents of Wn form the Effective Address (EA).                                                   |
| Register Indirect Post-Modified                           | The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value. |
| Register Indirect Pre-Modified                            | Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.            |
| Register Indirect with Register Offset (Register Indexed) | The sum of Wn and Wb forms the EA.                                                                    |
| Register Indirect with Literal Offset                     | The sum of Wn and a literal forms the EA.                                                             |

### 5.0 FLASH PROGRAM MEMORY

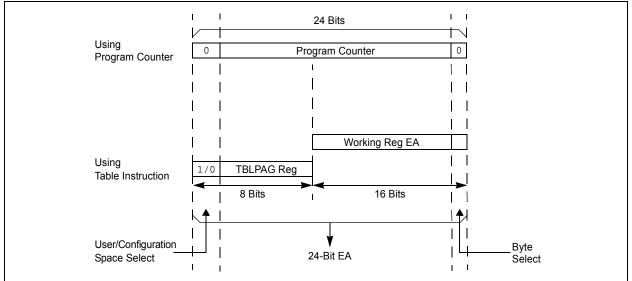
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Flash Programming" (DS70005156) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

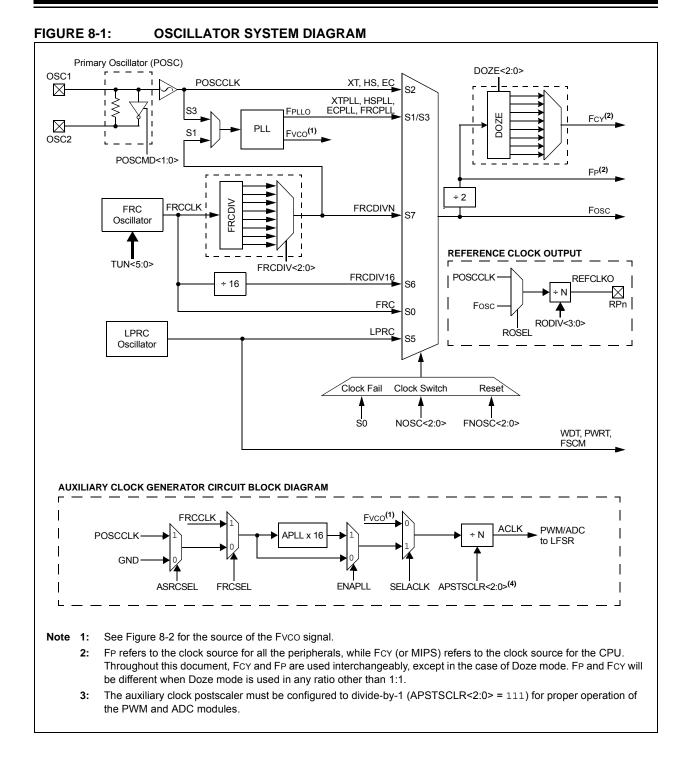
The dsPIC33EPXXGS50X family devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming™ (ICSP™) programming capability
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXGS50X family device to be serially programmed while in the end application circuit. This is done with a programming clock and programming data (PGECx/PGEDx) line, and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


Enhanced In-Circuit Serial Programming uses an on-board bootloader, known as the Program Executive, to manage the programming process. Using an SPI data frame format, the Program Executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.


RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data with a single program memory word and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

#### 5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the Table Read and Table Write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1. The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes. The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.







### DS70005127D-page 104

### **REGISTER 8-1:** OSCCON: OSCILLATOR CONTROL REGISTER<sup>(1)</sup> (CONTINUED)

- bit 4 Unimplemented: Read as '0'
- bit 3 CF: Clock Fail Detect bit<sup>(3)</sup>
  - 1 = FSCM has detected a clock failure
    - 0 = FSCM has not detected a clock failure
- bit 2-1 Unimplemented: Read as '0'
- bit 0 OSWEN: Oscillator Switch Enable bit
  - 1 = Requests oscillator switch to the selection specified by the NOSC<2:0> bits
  - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence.
  - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
  - **3:** This bit should only be cleared in software. Setting the bit in software (= 1) will have the same effect as an actual oscillator failure and will trigger an oscillator failure trap.

|                 | U-0                                                                                                                                                                     | U-0                                                                                                                                                               | R/W-0                                                                | R/W-0             | R/W-0            | R/W-0              | R/W-0  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------|------------------|--------------------|--------|--|
| _               | —                                                                                                                                                                       | —                                                                                                                                                                 | PWM5MD                                                               | PWM4MD            | PWM3MD           | PWM2MD             | PWM1MD |  |
| bit 15          |                                                                                                                                                                         |                                                                                                                                                                   |                                                                      |                   |                  |                    | bit 8  |  |
|                 |                                                                                                                                                                         |                                                                                                                                                                   |                                                                      |                   |                  |                    |        |  |
| U-0             | U-0                                                                                                                                                                     | U-0                                                                                                                                                               | U-0                                                                  | U-0               | U-0              | U-0                | U-0    |  |
|                 |                                                                                                                                                                         | _                                                                                                                                                                 | _                                                                    | —                 |                  |                    |        |  |
| bit 7           |                                                                                                                                                                         |                                                                                                                                                                   |                                                                      |                   |                  |                    | bit C  |  |
|                 |                                                                                                                                                                         |                                                                                                                                                                   |                                                                      |                   |                  |                    |        |  |
| Legend:         |                                                                                                                                                                         |                                                                                                                                                                   |                                                                      |                   |                  |                    |        |  |
| R = Readabl     | le bit                                                                                                                                                                  | W = Writable I                                                                                                                                                    | oit                                                                  | U = Unimplem      | nented bit, read | l as '0'           |        |  |
| -n = Value at   | t POR                                                                                                                                                                   | '1' = Bit is set                                                                                                                                                  |                                                                      | '0' = Bit is clea | ared             | x = Bit is unknown |        |  |
|                 |                                                                                                                                                                         |                                                                                                                                                                   |                                                                      |                   |                  |                    |        |  |
| bit 15-13       | Unimplement                                                                                                                                                             | ted: Read as '0                                                                                                                                                   | )'                                                                   |                   |                  |                    |        |  |
| bit 12          | PWM5MD: P\                                                                                                                                                              | WM5 Module D                                                                                                                                                      | isable bit                                                           |                   |                  |                    |        |  |
|                 |                                                                                                                                                                         | odule is disable                                                                                                                                                  |                                                                      |                   |                  |                    |        |  |
|                 |                                                                                                                                                                         | odule is enable                                                                                                                                                   | -                                                                    |                   |                  |                    |        |  |
| bit 11          | PWM4MD: P\                                                                                                                                                              | VM4 Module D                                                                                                                                                      | isable bit                                                           |                   |                  |                    |        |  |
|                 |                                                                                                                                                                         |                                                                                                                                                                   |                                                                      |                   |                  |                    |        |  |
|                 |                                                                                                                                                                         | odule is disable                                                                                                                                                  |                                                                      |                   |                  |                    |        |  |
|                 | 0 = PWM4 mo                                                                                                                                                             | odule is enable                                                                                                                                                   | d                                                                    |                   |                  |                    |        |  |
|                 | 0 = PWM4 mo<br><b>PWM3MD:</b> P\                                                                                                                                        | odule is enable<br>VM3 Module D                                                                                                                                   | d<br>isable bit                                                      |                   |                  |                    |        |  |
|                 | 0 = PWM4 mo<br>PWM3MD: P\<br>1 = PWM3 mo                                                                                                                                | odule is enable                                                                                                                                                   | d<br>isable bit<br>d                                                 |                   |                  |                    |        |  |
| bit 10<br>bit 9 | 0 = PWM4 mc<br>PWM3MD: P\<br>1 = PWM3 mc<br>0 = PWM3 mc                                                                                                                 | odule is enable<br>WM3 Module D<br>odule is disable                                                                                                               | d<br>isable bit<br>d                                                 |                   |                  |                    |        |  |
| bit 10          | 0 = PWM4 mc<br>PWM3MD: P\<br>1 = PWM3 mc<br>0 = PWM3 mc<br>PWM2MD: P\                                                                                                   | odule is enable<br>WM3 Module D<br>odule is disable<br>odule is enable                                                                                            | d<br>isable bit<br>d<br>d<br>isable bit                              |                   |                  |                    |        |  |
| bit 10          | 0 = PWM4 mo<br><b>PWM3MD</b> : PV<br>1 = PWM3 mo<br>0 = PWM3 mo<br><b>PWM2MD</b> : PV<br>1 = PWM2 mo                                                                    | odule is enable<br>WM3 Module D<br>odule is disable<br>odule is enable<br>WM2 Module D                                                                            | d<br>isable bit<br>d<br>d<br>isable bit<br>d                         |                   |                  |                    |        |  |
| bit 10          | 0 = PWM4 mc<br><b>PWM3MD</b> : PV<br>1 = PWM3 mc<br>0 = PWM3 mc<br><b>PWM2MD</b> : PV<br>1 = PWM2 mc<br>0 = PWM2 mc                                                     | odule is enable<br>WM3 Module D<br>odule is disable<br>odule is enable<br>WM2 Module D<br>odule is disable                                                        | d<br>isable bit<br>d<br>d<br>isable bit<br>d<br>d                    |                   |                  |                    |        |  |
| bit 10<br>bit 9 | 0 = PWM4 mo<br>PWM3MD: PV<br>1 = PWM3 mo<br>0 = PWM3 mo<br>PWM2MD: PV<br>1 = PWM2 mo<br>0 = PWM2 mo<br>0 = PWM2 mo<br>PWM1MD: PV<br>1 = PWM1 mo                         | odule is enable<br>WM3 Module D<br>odule is disable<br>odule is enable<br>WM2 Module D<br>odule is disable<br>odule is enable<br>WM1 Module D<br>odule is disable | d<br>isable bit<br>d<br>isable bit<br>d<br>d<br>isable bit<br>d      |                   |                  |                    |        |  |
| bit 10<br>bit 9 | 0 = PWM4 mo<br><b>PWM3MD</b> : PV<br>1 = PWM3 mo<br>0 = PWM3 mo<br><b>PWM2MD</b> : PV<br>1 = PWM2 mo<br>0 = PWM2 mo<br><b>PWM1MD</b> : PV<br>1 = PWM1 mo<br>0 = PWM1 mo | odule is enable<br>WM3 Module D<br>odule is disable<br>odule is enable<br>WM2 Module D<br>odule is disable<br>odule is enable<br>WM1 Module D                     | d<br>isable bit<br>d<br>isable bit<br>d<br>d<br>isable bit<br>d<br>d |                   |                  |                    |        |  |

| R/W-0           | R/W-0                                                               | R/W-0                                                                                                             | R/W-0                                      | R/W-0            | R/W-0            | R/W-0    | R/W-0    |
|-----------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|------------------|----------|----------|
| SCK1INR7        | SCK1INR6                                                            | SCK1INR5                                                                                                          | SCK1INR4                                   | SCK1INR3         | SCK1INR2         | SCK1INR1 | SCK1INR0 |
| bit 15          |                                                                     |                                                                                                                   |                                            |                  |                  |          | bit 8    |
|                 |                                                                     |                                                                                                                   |                                            |                  |                  |          |          |
| R/W-0           | R/W-0                                                               | R/W-0                                                                                                             | R/W-0                                      | R/W-0            | R/W-0            | R/W-0    | R/W-0    |
| SDI1R7          | SDI1R6                                                              | SDI1R5                                                                                                            | SDI1R4                                     | SDI1R3           | SDI1R2           | SDI1R1   | SDI1R0   |
| bit 7           |                                                                     |                                                                                                                   |                                            |                  |                  |          | bit 0    |
| Legend:         |                                                                     |                                                                                                                   |                                            |                  |                  |          |          |
| R = Readable    | bit                                                                 | W = Writable                                                                                                      | bit                                        | U = Unimpler     | nented bit, read | as '0'   |          |
| -n = Value at F | POR                                                                 | '1' = Bit is set                                                                                                  |                                            | '0' = Bit is cle | nown             |          |          |
| bit 7-0         | 10110100 =<br>00000001 =<br>00000000 =<br>SDI1R<7:0>:<br>10110101 = | Input tied to RF<br>Input tied to RF<br>Input tied to Vs<br>Assign SPI1 D<br>Input tied to RF<br>Input tied to RF | 2180<br>21<br>35<br>2ata Input (SD<br>2181 | 11) to the Corre | esponding RPn    | Pin bits |          |
|                 |                                                                     | Input tied to RF<br>Input tied to Vs                                                                              |                                            |                  |                  |          |          |

#### REGISTER 10-12: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

### 11.2 Timer1 Control Register

| REGISTER           | 11-1: T1CO                             | N: TIMER1 C                              | ONTROL RE                 | GISTER           |                          |                    |                    |
|--------------------|----------------------------------------|------------------------------------------|---------------------------|------------------|--------------------------|--------------------|--------------------|
| R/W-0              | U-0                                    | R/W-0                                    | U-0                       | U-0              | U-0                      | U-0                | U-0                |
| TON <sup>(1)</sup> | —                                      | TSIDL                                    |                           | _                | —                        | —                  | _                  |
| bit 15             |                                        |                                          |                           |                  |                          |                    | bit 8              |
|                    |                                        |                                          |                           |                  |                          |                    |                    |
| U-0                | R/W-0                                  | R/W-0                                    | R/W-0                     | U-0              | R/W-0                    | R/W-0              | U-0                |
|                    | TGATE                                  | TCKPS1                                   | TCKPS0                    |                  | TSYNC <sup>(1)</sup>     | TCS <sup>(1)</sup> | —                  |
| bit 7              |                                        |                                          |                           |                  |                          |                    | bit 0              |
| Legend:            |                                        |                                          |                           |                  |                          |                    |                    |
| R = Readab         | le bit                                 | W = Writable                             | bit                       | U = Unimplei     | mented bit, read         | l as '0'           |                    |
| -n = Value a       | t POR                                  | '1' = Bit is set                         |                           | '0' = Bit is cle |                          | x = Bit is unkno   | own                |
|                    |                                        |                                          |                           |                  |                          |                    |                    |
| bit 15             | TON: Timer1                            | On bit <sup>(1)</sup>                    |                           |                  |                          |                    |                    |
|                    | 1 = Starts 16-<br>0 = Stops 16-        |                                          |                           |                  |                          |                    |                    |
| bit 14             | Unimplemen                             | ted: Read as '                           | 0'                        |                  |                          |                    |                    |
| bit 13             | TSIDL: Timer                           | 1 Stop in Idle N                         | Node bit                  |                  |                          |                    |                    |
|                    |                                        | ues module op<br>s module opera          |                           |                  | dle mode                 |                    |                    |
| bit 12-7           | Unimplemen                             | ted: Read as '                           | 0'                        |                  |                          |                    |                    |
| bit 6              | TGATE: Time                            | er1 Gated Time                           | Accumulation              | n Enable bit     |                          |                    |                    |
|                    | When TCS =<br>This bit is ign          |                                          |                           |                  |                          |                    |                    |
|                    |                                        | 0:<br>ne accumulation<br>ne accumulation |                           |                  |                          |                    |                    |
| bit 5-4            | TCKPS<1:0>                             | : Timer1 Input                           | Clock Prescal             | le Select bits   |                          |                    |                    |
|                    | 11 = 1:256<br>10 = 1:64                | ·                                        |                           |                  |                          |                    |                    |
|                    | 01 = 1:8<br>00 = 1:1                   |                                          |                           |                  |                          |                    |                    |
| bit 3              | Unimplemen                             | ted: Read as '                           | 0'                        |                  |                          |                    |                    |
| bit 2              | TSYNC: Time                            | er1 External Cl                          | ock Input Synd            | chronization Se  | elect bit <sup>(1)</sup> |                    |                    |
|                    | When TCS =                             |                                          |                           |                  |                          |                    |                    |
|                    |                                        | izes external c<br>synchronize ex        |                           | tuar             |                          |                    |                    |
|                    | When TCS =                             | -                                        |                           | iput             |                          |                    |                    |
|                    | This bit is ign                        |                                          |                           |                  |                          |                    |                    |
| bit 1              | TCS: Timer1                            | Clock Source                             | Select bit <sup>(1)</sup> |                  |                          |                    |                    |
|                    | 1 = External o<br>0 = Internal c       | clock is from pi<br>lock (FP)            | n, T1CK (on th            | ne rising edge)  |                          |                    |                    |
| bit 0              | Unimplemen                             | ted: Read as '                           | 0'                        |                  |                          |                    |                    |
|                    | Vhen Timer1 is er<br>ttempts by user s |                                          |                           |                  |                          | SYNC = 1, TON      | <b>l =</b> 1), any |

### REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

NOTES:

#### **REGISTER 15-5:** STCON: PWMx SECONDARY MASTER TIME BASE CONTROL REGISTER

| U-0                 | U-0                          | U-0                                 | R-0, HSC                             | R/W-0             | R/W-0               | R/W-0           | R/W-0   |
|---------------------|------------------------------|-------------------------------------|--------------------------------------|-------------------|---------------------|-----------------|---------|
| _                   | —                            | —                                   | SESTAT                               | SEIEN             | EIPU <sup>(1)</sup> | SYNCPOL         | SYNCOEN |
| bit 15              |                              |                                     |                                      |                   |                     |                 | bit 8   |
|                     |                              |                                     |                                      |                   |                     |                 |         |
| R/W-0               | R/W-0                        | R/W-0                               | R/W-0                                | R/W-0             | R/W-0               | R/W-0           | R/W-0   |
| SYNCEN              | SYNCSRC2                     | SYNCSRC1                            | SYNCSRC0                             | SEVTPS3           | SEVTPS2             | SEVTPS1         | SEVTPS0 |
| bit 7               |                              |                                     |                                      |                   |                     |                 | bit (   |
| Legend:             |                              | HSC = Hardw                         | are Settable/Cl                      | earable bit       |                     |                 |         |
| R = Readabl         | e bit                        | W = Writable                        | oit                                  | U = Unimplem      | nented bit, read    | d as '0'        |         |
| -n = Value at       | POR                          | '1' = Bit is set                    |                                      | '0' = Bit is clea | ared                | x = Bit is unkr | nown    |
|                     |                              |                                     |                                      |                   |                     |                 |         |
| bit 15-13<br>bit 12 | -                            | ted: Read as 'd<br>cial Event Inter |                                      |                   |                     |                 |         |
|                     | -                            |                                     | interrupt is per                     | ndina             |                     |                 |         |
|                     |                              |                                     | interrupt is not                     |                   |                     |                 |         |
| bit 11              | SEIEN: Speci                 | al Event Interru                    | ipt Enable bit                       |                   |                     |                 |         |
|                     |                              |                                     | interrupt is ena<br>interrupt is dis |                   |                     |                 |         |
| bit 10              | EIPU: Enable                 | Immediate Pe                        | riod Updates bi                      | t(1)              |                     |                 |         |
|                     |                              |                                     | register is upd<br>register update   |                   |                     | ndaries         |         |
| bit 9               | SYNCPOL: S                   | ynchronize Inp                      | ut and Output F                      | Polarity bit      |                     |                 |         |
|                     |                              |                                     | y is inverted (a<br>y is active-high |                   |                     |                 |         |
| bit 8               | SYNCOEN: S                   | econdary Mas                        | ter Time Base S                      | Synchronizatio    | n Enable bit        |                 |         |
|                     |                              | output is enabl<br>output is disab  |                                      |                   |                     |                 |         |
| bit 7               | SYNCEN: Ext                  | ternal Seconda                      | ry Master Time                       | Base Synchro      | nization Enabl      | e bit           |         |
|                     |                              | •                                   | of secondary t<br>of secondary t     |                   |                     |                 |         |
| bit 6-4             | SYNCSRC<2                    | :0>: Secondary                      | / Time Base Sy                       | nc Source Sel     | ection bits         |                 |         |
|                     | 111 = Reserv                 |                                     |                                      |                   |                     |                 |         |
|                     | 101 = Reserv<br>100 = Reserv |                                     |                                      |                   |                     |                 |         |
|                     | 011 = Reserv                 |                                     |                                      |                   |                     |                 |         |
|                     | 010 = Reserv                 | ed                                  |                                      |                   |                     |                 |         |
|                     | 001 = SYNCI<br>000 = SYNCI   |                                     |                                      |                   |                     |                 |         |
| bit 3-0             |                              |                                     | ndary Special I                      | -<br>             | )utnut Postsca      | ler Select hits |         |
|                     | 1111 = 1:16 F                |                                     |                                      |                   |                     |                 |         |
|                     | 0001 = 1:2 Po                |                                     |                                      |                   |                     |                 |         |
|                     | •                            |                                     |                                      |                   |                     |                 |         |
|                     | •                            |                                     |                                      |                   |                     |                 |         |
|                     | 0000 = 1:1 Po                | - ata a a la                        |                                      |                   |                     |                 |         |

Note 1: This bit only applies to the secondary master time base period.

#### REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

|              | (X = 1         | 10 5)                            |                    |                                        |                   |                 |                  |
|--------------|----------------|----------------------------------|--------------------|----------------------------------------|-------------------|-----------------|------------------|
| R/W-0        | R/W-0          | R/W-0                            | R/W-0              | R/W-0                                  | R/W-0             | U-0             | U-0              |
| PHR          | PHF            | PLR                              | PLF                | FLTLEBEN                               | CLLEBEN           | —               |                  |
| bit 15       |                |                                  |                    |                                        |                   |                 | bit 8            |
|              |                |                                  |                    |                                        |                   |                 |                  |
| U-0          | U-0            | R/W-0                            | R/W-0              | R/W-0                                  | R/W-0             | R/W-0           | R/W-0            |
|              |                | BCH <sup>(1)</sup>               | BCL <sup>(1)</sup> | BPHH                                   | BPHL              | BPLH            | BPLL             |
| bit 7        |                |                                  |                    |                                        |                   |                 | bit 0            |
| Legend:      |                |                                  |                    |                                        |                   |                 |                  |
| R = Readat   | ole bit        | W = Writable b                   | oit                | U = Unimpler                           | nented bit, read  | as '0'          |                  |
| -n = Value a | at POR         | '1' = Bit is set                 |                    | '0' = Bit is clea                      |                   | x = Bit is unkr | nown             |
| bit 15       |                | H Rising Edge T                  | riggor Epoble      | - bit                                  |                   |                 |                  |
| bit 15       | 1 = Rising edg | ge of PWMxH v                    | vill trigger the   | Leading-Edge E<br>ling edge of PW      | •                 | PL              |                  |
| bit 14       | -              | I Falling Edge 1                 | -                  |                                        |                   |                 |                  |
|              |                |                                  |                    | e Leading-Edge                         | Blanking counte   | er              |                  |
|              | -              |                                  | -                  | lling edge of PW                       | /MxH              |                 |                  |
| bit 13       |                | Rising Edge T                    |                    |                                        |                   |                 |                  |
|              |                |                                  |                    | Leading-Edge E<br>sing edge of PW      |                   | r               |                  |
| bit 12       | -              | Falling Edge T                   | -                  |                                        |                   |                 |                  |
|              | 1 = Falling ed | ge of PWMxL v                    | vill trigger the   | Leading-Edge E<br>lling edge of PW     | •                 | er              |                  |
| bit 11       | -              |                                  | -                  | anking Enable bi                       |                   |                 |                  |
|              |                |                                  |                    | ne selected Faul<br>to the selected F  |                   |                 |                  |
| bit 10       | CLLEBEN: C     | urrent-Limit Lea                 | ading-Edge B       | lanking Enable I                       | bit               |                 |                  |
|              |                |                                  |                    | ne selected curre<br>to the selected o |                   | ut              |                  |
| bit 9-6      | Unimplemen     | ted: Read as '0                  | 2                  |                                        |                   |                 |                  |
| bit 5        | BCH: Blankin   | g in Selected B                  | lanking Signa      | al High Enable b                       | it <sup>(1)</sup> |                 |                  |
|              |                |                                  |                    | Fault input signa<br>ng signal is high |                   | lected blanking | g signal is high |
| bit 4        | BCL: Blankin   | g in Selected B                  | lanking Signa      | I Low Enable bit                       | t(1)              |                 |                  |
|              |                | nking (of currenting when the se |                    | Fault input signa<br>ng signal is low  | als) when the se  | elected blankin | g signal is low  |
| bit 3        | BPHH: Blank    | ing in PWMxH I                   | High Enable b      | oit                                    |                   |                 |                  |
|              |                | nking (of currenting when the PV |                    | Fault input signa<br>is high           | als) when the P   | WMxH output i   | is high          |
| bit 2        | BPHL: Blanki   | ing in PWMxH L                   | ow Enable b        | it                                     |                   |                 |                  |
|              |                | nking (of currenting when the PV |                    | Fault input signa<br>is low            | als) when the P\  | WMxH output i   | s low            |
|              |                |                                  |                    |                                        |                   |                 |                  |

**Note 1:** The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

#### REGISTER 21-1: PGAxCON: PGAx CONTROL REGISTER (CONTINUED)

- bit 2-0 GAIN<2:0>: PGAx Gain Selection bits
  - 111 = Reserved
  - 110 = Gain of 64x
  - 101 = Gain of 32x
  - 100 = Gain of 16x
  - 011 = Gain of 8x
  - 010 = Gain of 4x
  - 001 = Reserved
  - 000 = Reserved

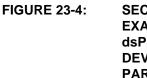
#### REGISTER 21-2: PGAxCAL: PGAx CALIBRATION REGISTER

| U-0             | U-0 | U-0              | U-0   | U-0              | U-0              | U-0             | U-0   |
|-----------------|-----|------------------|-------|------------------|------------------|-----------------|-------|
| —               | —   | —                |       | —                | _                | —               | —     |
| bit 15          |     |                  |       |                  |                  |                 | bit 8 |
|                 |     |                  |       |                  |                  |                 |       |
| U-0             | U-0 | R/W-0            | R/W-0 | R/W-0            | R/W-0            | R/W-0           | R/W-0 |
| —               | —   |                  |       | PGAC             | CAL<5:0>         |                 |       |
| bit 7           |     |                  |       |                  |                  |                 | bit 0 |
|                 |     |                  |       |                  |                  |                 |       |
| Legend:         |     |                  |       |                  |                  |                 |       |
| R = Readable    | bit | W = Writable     | bit   | U = Unimple      | mented bit, read | l as '0'        |       |
| -n = Value at P | OR  | '1' = Bit is set |       | '0' = Bit is cle | eared            | x = Bit is unkr | nown  |

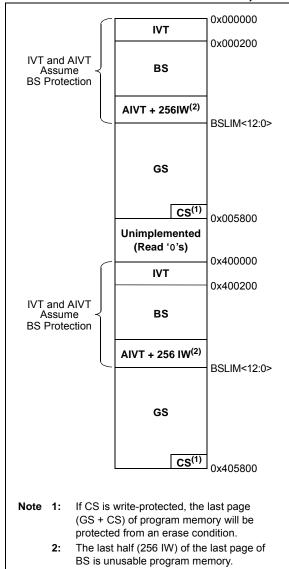
bit 15-6 Unimplemented: Read as '0'

bit 5-0 **PGACAL<5:0>:** PGAx Offset Calibration bits

The calibration values for PGA1 and PGA2 must be copied from Flash addresses, 0x800E48 and 0x800E4C, respectively, into these bits before the module is enabled. Refer to the calibration data address table (Table 23-3) in **Section 23.0 "Special Features"** for more information.


The different device security segments are shown in Figure 23-3. Here, all three segments are shown but are not required. If only basic code protection is required, then GS can be enabled independently or combined with CS, if desired.

| FIGURE 23-3:                            | SECURITY SI<br>EXAMPLE FC<br>dsPIC33EP64<br>DEVICES          | DR          |
|-----------------------------------------|--------------------------------------------------------------|-------------|
|                                         |                                                              | -0x000000   |
|                                         | IVT                                                          | 0x000200    |
| IVT and AIVT<br>Assume<br>BS Protection | BS                                                           |             |
|                                         | AIVT + 256 IW <sup>(2)</sup>                                 |             |
|                                         | GS                                                           | BSLIM<12:0> |
|                                         | CS <sup>(1)</sup>                                            | 0x00B000    |
| + CS) of                                | write-protected, the<br>program memory w<br>erase condition. |             |
|                                         | half (256 IW) of the usable program me                       | 1 0         |


dsPIC33EP64GS50X family devices can be operated in Dual Partition mode, where security is required for each partition. When operating in Dual Partition mode, the Active and Inactive Partitions both contain unique copies of the Reset vector, Interrupt Vector Tables (IVT and AIVT, if enabled) and the Flash Configuration Words. Both partitions have the three security segments described previously. Code may not be executed from the Inactive Partition, but it may be programmed by, and read from, the Active Partition, subject to defined code protection. Figure 23-4 shows the different security segments for a device operating in Dual Partition mode.

The device may also operate in a Protected Dual Partition mode or in Privileged Dual Partition mode. In Protected Dual Partition mode, Partition 1 is permanently erase/write-protected. This implementation allows for a "Factory Default" mode, which provides a fail-safe backup image to be stored in Partition 1. For example, a fail-safe bootloader can be placed in Partition 1, along with a fail-safe backup code image, which can be used or rewritten into Partition 2 in the event of a failed Flash update to Partition 2.

Privileged Dual Partition mode performs the same function as Protected Dual Partition mode, except additional constraints are applied in an effort to prevent code in the Boot Segment and General Segment from being used against each other.



SECURITY SEGMENTS EXAMPLE FOR dsPIC33EP64GS50X DEVICES (DUAL PARTITION MODES)



#### 25.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

#### 25.7 MPLAB REAL ICE In-Circuit Emulator System

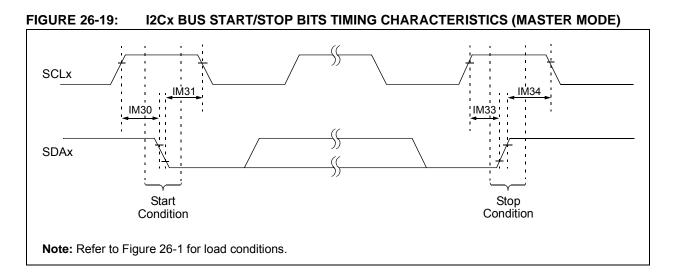
The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

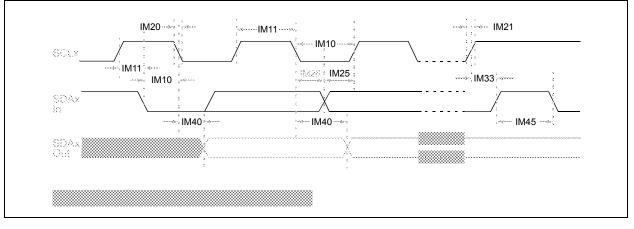
The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

#### 25.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

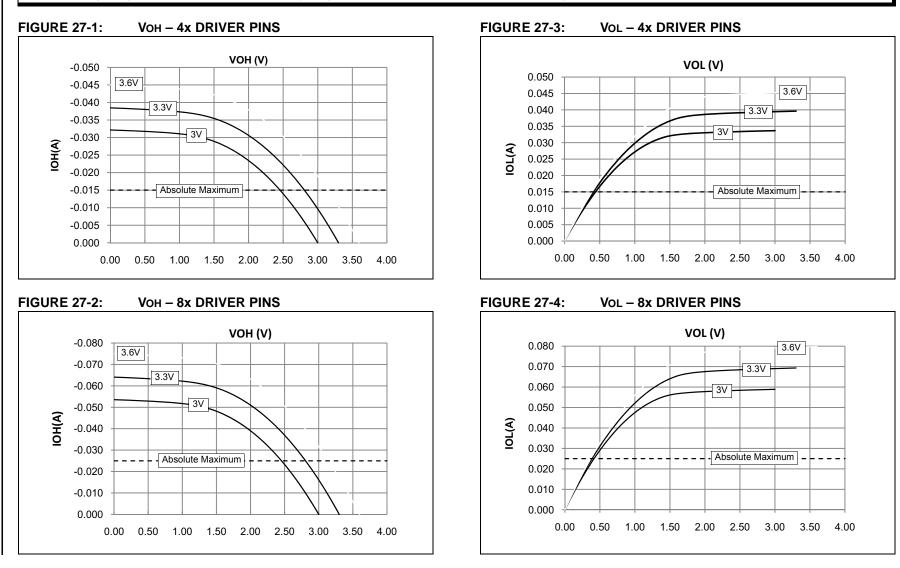

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

#### 25.9 PICkit 3 In-Circuit Debugger/ Programmer


The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming<sup>™</sup> (ICSP<sup>™</sup>).

#### 25.10 MPLAB PM3 Device Programmer

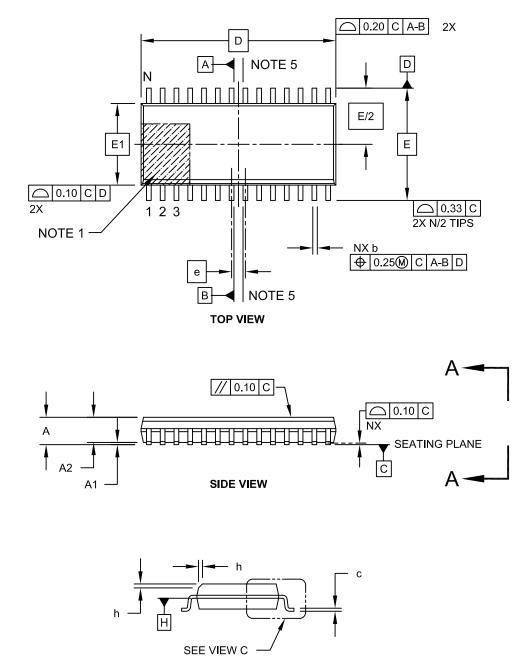
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.








## 27.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS


Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.



#### 28.2 Package Details

#### 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





Microchip Technology Drawing C04-052C Sheet 1 of 2

#### **Revision C (October 2015)**

Updates Note 2 in Table 1-1.

Updates Figure 2-5.

Inserts new Section 4.2 "Unique Device Identifier (UDID)" and adds Table 4-1. Subsequent tables were renumbered accordingly. Updates Table 4-3 (which was Table 4-2), Table 4-5 (which was Table 4-2), Table 4-10 (which was Table 4-9), Table 4-11 (which was Table 4-10), Table 4-21 (which was Table 4-20), Table 4-32 (which was Table 4-31), Table 4-36 (which was Table 4-35) and Table 4-37 (which was Table 4-36). Updates Section 4.8.1 "Bit-Reversed Addressing Implementation" (which was Section 4.7.1).

Updates Register 9-1.

Updates Figure 12-2 and Register 12-2.

Updates Register 13-1.

#### Updates Note 1 in Section 14.0 "Output Compare".

Updates Register 15-1, Register 15-6, Register 15-20 and Register 15-22.

Updates Figure 17-1.

Updates Register 18-2.

Updates Figure 19-2 and Figure 19-3. Updates Register 19-1, Register 19-2, Register 19-3, Register 19-4, Register 19-26 and Register 19-33. Adds Register 19-27.

Updates Figure 21-2.

#### Updates Section 23.6.2 "Sleep and Idle Modes".

Updates Table 26-8, Table 26-11, Table 26-29. Adds new Table 26-42. Subsequent tables were renumbered accordingly. Updates Table 26-43 (which was Table 26-42), Table 26-46 (which was Table 26-45) and Table 26-48 (which was Table 26-47).

## Updated diagrams in Section 28.0 "Packaging Information".

Updates the Product Identification System section.

Other minor typographic corrections throughout the document.

#### Revision D (May 2017)

Updates Pin 14 Function on page 3, updates Pin 11 Function on page 4, updates Pin 41 Function on page 5, updates Pin 41 Function on page 6, updates Pin 45 Function on page 7 and updates Pin 43 Function on page 8.

Updates Table 1-1, Table 4-8, Table 4-9, Table 4-10, Table 4-11, Table 4-12, Table 4-16, Table 26-4, Table 26-40, Table 26-43 and Table 26-45.

Updates Register 5-1, Register 8-4, Register 15-22, Register 19-5, Register 19-6, Register 19-26, Register 19-27, Register 19-28, Register 19-29 and Register 19-30.

Updates Figure 20-2, Figure 26-20 and Figure 26-22.

Adds 48-Lead Thin Quad Flatpack (Y8) - 7x7x1.0 mm Body TQFP drawings to **Section 28.0** "**Packaging Information**" section.

Updates Section 20.6 "Hysteresis"

### INDEX

Α

| Absolute Maximum Ratings                    |       |
|---------------------------------------------|-------|
| AC Characteristics                          |       |
| ADC Specifications                          |       |
| Analog Current Specifications               |       |
| Analog-to-Digital Conversion Requirements   |       |
| Auxiliary PLL Clock                         | . 317 |
| Capacitive Loading Requirements on          |       |
| Output Pins                                 |       |
| External Clock Requirements                 |       |
| High-Speed PWMx Requirements                |       |
| I/O Requirements                            |       |
| I2Cx Bus Data Requirements (Master Mode)    | . 339 |
| I2Cx Bus Data Requirements (Slave Mode)     | . 341 |
| Input Capture x Requirements                | . 323 |
| Internal FRC Accuracy                       | . 318 |
| Internal LPRC Accuracy                      | . 318 |
| Load Conditions                             | . 315 |
| OCx/PWMx Module Requirements                | . 324 |
| Output Compare x Requirements               |       |
| PLL Clock                                   |       |
| Reset, WDT, OST, PWRT Requirements          |       |
| SPIx Master Mode (Full-Duplex, CKE = 0,     |       |
| CKP = x, SMP = 1) Requirements              | 329   |
| SPIx Master Mode (Full-Duplex, CKE = 1,     |       |
| CKP = x, SMP = 1) Requirements              | 328   |
| SPIx Master Mode (Half-Duplex,              |       |
| Transmit Only) Requirements                 | 327   |
| SPIx Maximum Data/Clock Rate Summary        |       |
| SPIx Slave Mode (Full-Duplex, CKE = 0,      | . 520 |
| CKP = 0, SMP = 0) Requirements              | 337   |
| SPIx Slave Mode (Full-Duplex, CKE = 0,      | . 557 |
| CKP = 1, $SMP = 0$ ) Requirements           | 225   |
| SPIx Slave Mode (Full-Duplex, CKE = 1,      | . 555 |
| CKP = 0, SMP = 0) Requirements              | 221   |
|                                             | . 551 |
| SPIx Slave Mode (Full-Duplex, CKE = 1,      | 222   |
| CKP = 1, SMP = 0) Requirements              | . 333 |
| Temperature and Voltage Specifications      |       |
| Timer1 External Clock Requirements          |       |
| Timer2/Timer4 External Clock Requirements   |       |
| Timer3/Timer5 External Clock Requirements   |       |
| UARTx I/O Requirements                      | . 342 |
| AC/DC Characteristics                       | ~ ~   |
| DACx Specifications                         | . 346 |
| High-Speed Analog Comparator Specifications | . 345 |
| PGAx Specifications                         | . 347 |
| Analog-to-Digital Converter. See ADC.       |       |
| Arithmetic Logic Unit (ALU)                 | 30    |
| Assembler                                   |       |
| MPASM Assembler                             |       |
| MPLAB Assembler, Linker, Librarian          | . 300 |
| В                                           |       |
| -                                           |       |
| Bit-Reversed Addressing                     |       |
| Example                                     |       |
| Implementation                              |       |
| Sequence Table (16-Entry)                   | 74    |
| Block Diagrams                              |       |

| Addressing for Table Registers            | . 77 |
|-------------------------------------------|------|
| CALL Stack Frame                          |      |
| Connections for On-Chip Voltage Regulator | 285  |
| Constant-Current Source                   |      |
| CPU Core                                  | . 22 |
| Data Access from Program Space            |      |
| Address Generation                        | . 75 |
| Dedicated ADC Cores 0-3                   |      |
| dsPIC33EPXXGS50X Family                   |      |
| High-Speed Analog Comparator x            |      |
| High-Speed PWM Architecture               |      |
| Hysteresis Control                        |      |
| I2Cx Module                               | 216  |
| Input Capture x                           | 171  |
| Interleaved PFC                           | . 18 |
| MCLR Pin Connections                      | . 16 |
| Multiplexing Remappable Outputs for RPn   |      |
| Off-Line UPS                              | . 20 |
| Oscillator System                         | 104  |
| Output Compare x Module                   | 175  |
| PGAx Functions                            |      |
| PGAx Module                               | 271  |
| Phase-Shifted Full-Bridge Converter       | . 19 |
| PLL Module                                | 105  |
| Programmer's Model                        | . 24 |
| PSV Read Address Generation               | . 66 |
| Recommended Minimum Connection            | . 16 |
| Remappable Input for U1RX                 | 128  |
| Reset System                              |      |
| Security Segments for dsPIC33EP64GS50X    | 288  |
| Security Segments for dsPIC33EP64GS50X    |      |
| (Dual Partition Modes)                    | 288  |
| Shared Port Structure                     |      |
| Simplified Conceptual of High-Speed PWM   | 184  |
| SPIx Module                               |      |
| Suggested Oscillator Circuit Placement    | . 17 |
| Timerx (x = 2 through 5)                  | 168  |
| Type B/Type C Timer Pair (32-Bit Timer)   |      |
| UARTx Module                              |      |
| Watchdog Timer (WDT)                      |      |
| Brown-out Reset (BOR)                     | 285  |
| С                                         |      |
| ~                                         |      |

# С

| C Compilers                  |          |
|------------------------------|----------|
| MPLAB XC                     | 300      |
| Code Examples                |          |
| Port Write/Read              | 126      |
| PWM Write-Protected Register |          |
| Unlock Sequence              | 182      |
| PWRSAV Instruction Syntax    | 115      |
| Code Protection              | 277, 287 |
| CodeGuard Security           | 277, 287 |
| Configuration Bits           | 277      |
| Description                  |          |
| Constant-Current Source      | 275      |
| Control Register             | 276      |
| Description                  | 275      |
| Features Overview            | 275      |
|                              |          |

16-Bit Timer1 Module......163 ADC Module......230