

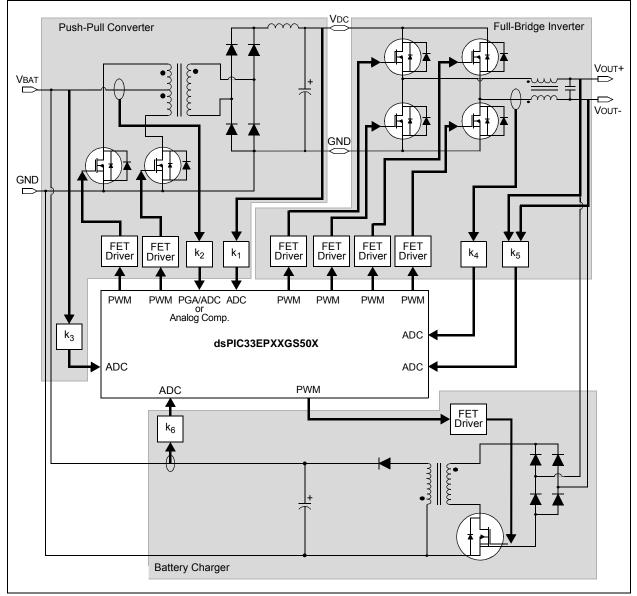
Welcome to E-XFL.COM

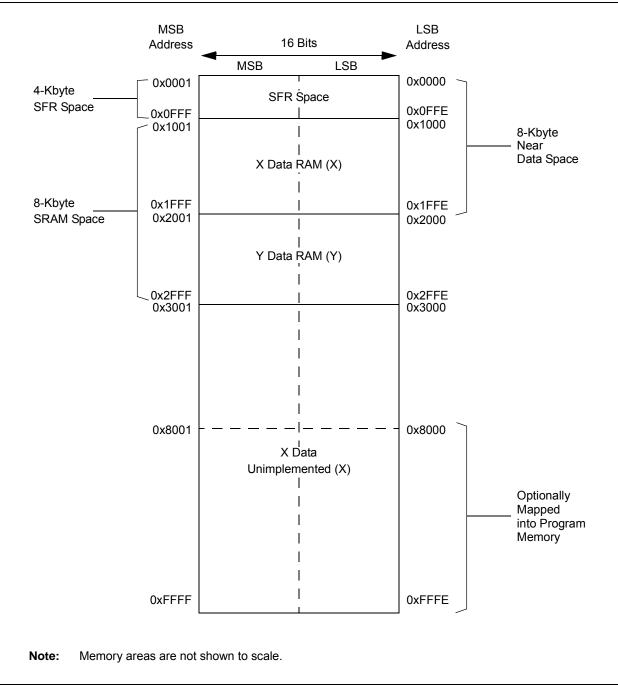
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFl


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	53
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 22x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep16gs506-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6: OFF-LINE UPS

FIGURE 4-8: DATA MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	_	PWMMD	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD		—	ADCMD	0000
PMD2	0762		—	—	-	IC4MD	IC3MD	IC2MD	IC1MD	-		—	-	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	Ι	_	_	_	_	CMPMD	_	_	_	_	_	_	_	_	I2C2MD	_	0000
PMD4	0766	Ι	_	_	_	_	_	_	_	_	_	_	_	REFOMD	_	_	_	0000
PMD6	076A	Ι	_	_	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	_	0000
PMD7	076C	Ι	_	_	_	CMP4MD	CMP3MD	CMP2MD	CMP1MD	_	_	_	_	_	_	PGA1MD	_	0000
PMD8	076E	_	—	_	—	_	PGA2MD	ABGMD	_	_	_	—	_	_	_	CCSMD		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: CONSTANT-CURRENT SOURCE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ISRCCON	0500	ISRCEN	_		_		OUTSEL2	OUTSEL1	OUTSEL0	_	_	ISRCCAL5	ISRCCAL4	ISRCCAL3	ISRCCAL2	ISRCCAL1	ISRCCAL0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PROGRAMMABLE GAIN AMPLIFIER REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PGA1CON	0504	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	_	_				GAIN2	GAIN1	GAIN0	0000
PGA1CAL	0506	_	—	—	—	_	—	_	_	—	—			PGACA	L<5:0>			0000
PGA2CON	0508	PGAEN	PGAOEN	SELPI2	SELPI1	SELPI0	SELNI2	SELNI1	SELNI0	—	_	_	—	_	GAIN2	GAIN1	GAIN0	0000
PGA2CAL	050A	_	—	—	—	_	—	_	_	—	—			PGACA	L<5:0>			0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.9 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXGS50X family architecture uses a 24-bit wide Program Space (PS) and a 16-bit wide Data Space (DS). The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXGS50X family devices provides two methods by which Program Space can be accessed during operation:

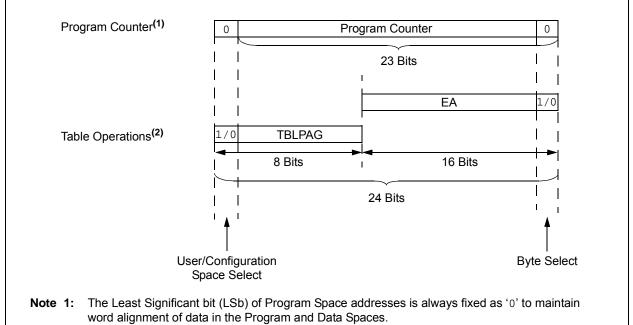

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-40: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access		Progra	m Space A	ddress	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>		0
(Code Execution)			0xxx xxxx x	xxx xxx	x xxxx xxx0	
TBLRD/TBLWT	User	TB	LPAG<7:0>		Data EA<15:0>	
(Byte/Word Read/Write)		0	xxx xxxx	XXXX		xx
	Configuration	TB	LPAG<7:0>		Data EA<15:0>	
		1	xxx xxxx	xxxx	* ****	xx

FIGURE 4-14: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: Table operations are not required to be word-aligned. Table Read operations are permitted in the configuration memory space.

6.1 Reset Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

6.1.1 KEY RESOURCES

- "Reset" (DS70602) in the "dsPIC33/PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	—	US1	US0	EDT	DL2	DL1	DL0
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

- 1 = Variable exception processing is enabled
- 0 = Fixed exception processing is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU Interrupt Priority Level is greater than 7 0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	_	—	—	NAE
bit 15							bit 8
U-0	U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0
—	—		DOOVR	—			APLL
bit 7							bit 0
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-9	Unimplemer	nted: Read as	'0'				
bit 8	NAE: NVM A	ddress Error S	Soft Trap Status	s bit			
			trap has occur				
			trap has not o	ccurred			
bit 7-5	Unimplemer	nted: Read as	'0'				
bit 4	DOOVR: DO	Stack Overflov	v Soft Trap Sta	tus bit			
	1 = DO stack	overflow soft t	rap has occurre	ed			
	0 = DO stack	overflow soft t	rap has not oc	curred			
bit 3-1	Unimplemer	nted: Read as	'0'				
bit 0	APLL: Auxili	ary PLL Loss o	of Lock Soft Tra	ap Status bit			
	1 = APLL loc	k soft trap has	occurred				
		le a aft trans has	wet easy word				

0 = APLL lock soft trap has not occurred

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	SGHT
bit 7		•				•	bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-1	Unimplemen	ted: Read as	'0'				
bit 0	SGHT: Softwa	are Generated	Hard Trap Sta	tus bit			
	1 = Software	generated har	d trap has occ	urred			
	0 = Software	generated har	d trap has not	occurred			

REGISTER 8-6: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON		ROSSLP	ROSEL	RODIV3 ⁽¹⁾	RODIV2 ⁽¹⁾	RODIV1 ⁽¹⁾	RODIV0 ⁽¹⁾
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_		—	—	_
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	1 = Reference	ence Oscillator e oscillator outp e oscillator outp	ut is enabled of		2)		
bit 14	Unimplemen	ted: Read as '0	,				
bit 13	ROSSLP: Re	ference Oscillat	or Run in Slee	ep bit			
		e oscillator outp e oscillator outp					
bit 12	ROSEL: Refe	erence Oscillato	r Source Sele	ct bit			
		crystal is used ock is used as					
bit 11-8	•	Reference Osc					
	1110 = Refer 1101 = Refer 1100 = Refer 1011 = Refer 1010 = Refer 1000 = Refer 0111 = Refer 0110 = Refer 0101 = Refer 0100 = Refer 0101 = Refer 0101 = Refer 0011 = Refer	ence clock divic ence clock divic	led by 16,384 led by 8,192 led by 4,096 led by 2,048 led by 1,024 led by 512 led by 512 led by 256 led by 128 led by 64 led by 32 led by 16 led by 8 led by 4				
bit 7-0	Unimplemen	ted: Read as '0	,				
	•						

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0
						bit 0
OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
10110100 = • • • • • • • • • • • • • • • • • • •	Input tied to RF Input tied to RF Input tied to Vs Assign Input Ca	2180 21 55 pture 3 (IC3)	to the Correspo	onding RPn Pi	n bits	
	IC4R6 R/W-0 IC3R6 bit OR IC4R<7:0>: . 10110101 = 10110100 =	IC4R6 IC4R5 R/W-0 R/W-0 IC3R6 IC3R5 bit W = Writable OR '1' = Bit is set IC4R<7:0>: Assign Input Ca 10110101 = Input tied to RF 10110100 = Input tied to RF 00000001 = Input tied to RF 00000001 = Input tied to VS IC3R<7:0>: Assign Input Ca	IC4R6 IC4R5 IC4R4 R/W-0 R/W-0 R/W-0 IC3R6 IC3R5 IC3R4 bit W = Writable bit OR OR '1' = Bit is set IC4R IC4R<7:0>: Assign Input Capture 4 (IC4) 10110101 = Input tied to RP181 10110100 = Input tied to RP180 . . . <tr tr=""></tr>	IC4R6 IC4R5 IC4R4 IC4R3 R/W-0 R/W-0 R/W-0 R/W-0 IC3R6 IC3R5 IC3R4 IC3R3 bit W = Writable bit U = Unimplen OR '1' = Bit is set '0' = Bit is cle IC4R<7:0>: Assign Input Capture 4 (IC4) to the Correspondence 10110101 = Input tied to RP181 10110100 = Input tied to RP180 . 00000001 = Input tied to RP1 00000001 = Input tied to Vss IC3R<7:0>: Assign Input Capture 3 (IC3) to the Correspondence	IC4R6 IC4R5 IC4R4 IC4R3 IC4R2 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC3R6 IC3R5 IC3R4 IC3R3 IC3R2 bit W = Writable bit U = Unimplemented bit, rea OR '1' = Bit is set '0' = Bit is cleared IC4R<7:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn Pi 10110101 = Input tied to RP181 10110100 = Input tied to RP180 . . 00000001 = Input tied to RP1 00000001 = Input tied to Vss IC3R<7:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn Pi	IC4R6 IC4R5 IC4R4 IC4R3 IC4R2 IC4R1 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 IC3R6 IC3R5 IC3R4 IC3R3 IC3R2 IC3R1 bit W = Writable bit U = Unimplemented bit, read as '0' IC3R1 IC3R2 IC3R1 constraint U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr IC4R V W = Writable bit U = Unimplemented bit, read as '0' X = Bit is unkr IC4R '1' = Bit is set '0' = Bit is cleared x = Bit is unkr IC4R IC4R IC4R IC4R IC4R X = Bit is unkr IC4R ID10101 = Input tied to RP181 ID101010 = Input tied to RP180 ID101010 = Input tied to RP180 ID100000001 = Input tied to RP1 IC4R IC4R

REGISTER 10-6: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

REGISTER 15-13: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER (x = 1 to 5)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDO	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		t	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 **PDCx<15:0>:** PWMx Generator Duty Cycle Value bits

Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.

2: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

3: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

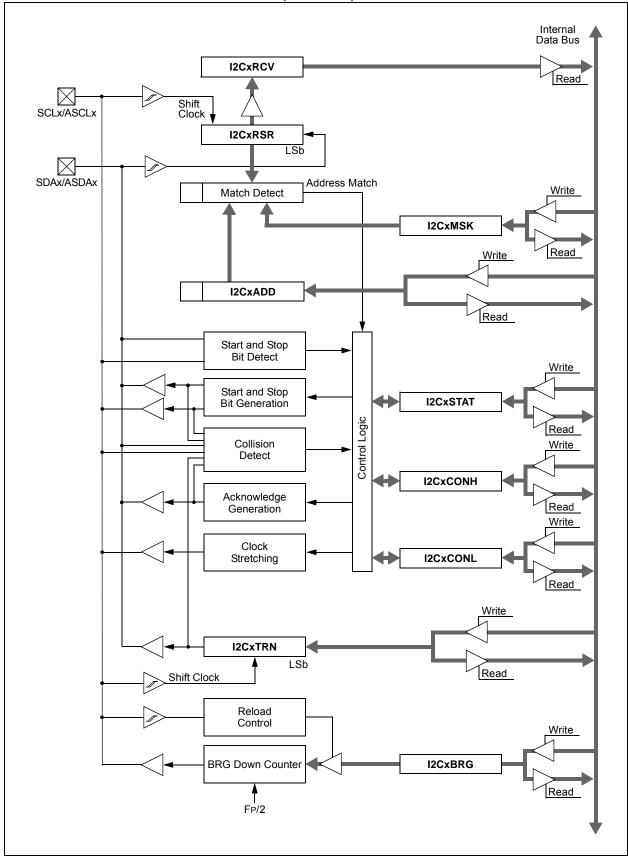
REGISTER 15-14: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER (x = 1 to 5)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	(<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 SDCx<15:0>: PWMx Secondary Duty Cycle for PWMxL Output Pin bits

Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.


- **2:** The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.
- **3:** As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 15-24: LEBCONX: PWMx LEADING-EDGE BLANKING (LEB) CONTROL REGISTER (x = 1 to 5)

	(X = 1	10 5)									
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_					
bit 15					•		bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—		BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL				
bit 7							bit 0				
Legend:											
R = Readat	ole bit	W = Writable I	oit	U = Unimplem	nented bit, read	as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15		HRising Edge 1									
	•	•		Leading-Edge	•	er					
bit 14	-	I Falling Edge	-	ing edge of PW							
				e Leading-Edge	Blanking counte	er					
				lling edge of PW							
bit 13	PLR: PWMxL	. Rising Edge T	rigger Enable	bit							
		= Rising edge of PWMxL will trigger the Leading-Edge Blanking counter									
	0 = Leading-Edge Blanking ignores the rising edge of PWMxL										
bit 12		Falling Edge T			Depking counts						
	•	•		Leading-Edge E Iling edge of PW	•	÷1					
bit 11	-		-	anking Enable bi							
		•		ne selected Faul							
	0 = Leading-E	Edge Blanking is	s not applied	to the selected F	ault input						
bit 10				lanking Enable I							
		 1 = Leading-Edge Blanking is applied to the selected current-limit input 0 = Leading-Edge Blanking is not applied to the selected current-limit input 									
bit 9-6	•	ted: Read as '0		to the selected t		ul					
bit 5	•			al High Enable b	_{i+} (1)						
DIL D						lected blanking	n signal is high				
		 1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is high 0 = No blanking when the selected blanking signal is high 									
bit 4	BCL: Blankin	g in Selected B	lanking Signa	I Low Enable bit	t(1)						
	1 = State blanking (of current-limit and/or Fault input signals) when the selected blanking signal is low 0 = No blanking when the selected blanking signal is low										
		-									
bit 3	BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when the PWMxH output is high										
		ng when the PV			lis) when the P		snign				
bit 2		ing in PWMxH L	•	0							
	1 = State blar	nking (of current	t-limit and/or l	Fault input signa	ls) when the P	WMxH output i	s low				
		ng when the PV									

Note 1: The blanking signal is selected via the BLANKSEL<3:0> bits in the AUXCONx register.

FIGURE 17-1: I2Cx BLOCK DIAGRAM (x = 1 OR 2)

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0	
bit 15				1			bit	
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL	
oit 7							bit	
Legend:		HC = Hardwar	e Clearable b	it				
R = Readabl	e bit	W = Writable b			ented bit, read	l as '0'		
n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own	
bit 15	1 = UARTx is		ARTx pins are			ed by UEN<1:0> UARTx power co		
oit 14		ted: Read as '0	,					
bit 13	•	Tx Stop in Idle M						
	1 = Discontin	•	eration when o	device enters Id	le mode			
pit 12		Encoder and De						
		oder and decod oder and decod						
pit 11	RTSMD: Mod	e Selection for	UxRTS Pin bi	t				
		in is in Simplex in is in Flow Co						
oit 10	Unimplemen	ted: Read as '0	,					
oit 9-8	UEN<1:0>: U	ARTx Pin Enab	le bits					
	10 = UxTX, U 01 = UxTX, U	IxRX, <u>UxCTS</u> ai IxRX and UxRT nd UxRX pins a	nd UxRTS pin S pins are en	s are enabled a abled and used;	nd used UxCTS pin is	controlled by PC controlled by PC BCLKx pins are	ORT latches	
bit 7	WAKE: Wake	-up on Start Bit	Detect During	g Sleep Mode E	nable bit			
	 1 = UARTx continues to sample the UxRX pin, interrupt is generated on the falling edge; bit is cleare in hardware on the following rising edge 0 = No wake-up is enabled 							
oit 6		BACK: UARTx Loopback Mode Select bit						
	1 = Enables	Loopback mode k mode is disab	;					
"a		Family Referen		r Transmitter (r information on		0000582) in the JARTx module fo	or receive or	
	bis feature is only available for the 16x PPC mode (PPCH $= 0$)							

2: This feature is only available for the 16x BRG mode (BRGH = 0).

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
9	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
10	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
11	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
12	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
13	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
14	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
15	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
16	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
17	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
18	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
19	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
20	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
21	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
22	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
23	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
24	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
25	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			(unless oth	•	s: 3.0V to 3.6V ≤ TA ≤ +85°C for Indu ≤ TA ≤ +125°C for Ex				
Parameter No.	Тур.	Max.	Units	Conditions					
Operating Current (IDD) ⁽¹⁾									
DC20d	7	12	mA	-40°C					
DC20a	7	12	mA	+25°C	3.3V	10 MIPS			
DC20b	7	12	mA	+85°C	5.50				
DC20c	7	12	mA	+125°C	-				
DC22d	11	19	mA	-40°C					
DC22a	11	19	mA	+25°C	3.3V	20 MIPS			
DC22b	11	19	mA	+85°C	3.3V	20 101195			
DC22c	11	19	mA	+125°C					
DC24d	19	30	mA	-40°C					
DC24a	19	30	mA	+25°C	3.3∨	40 MIPS			
DC24b	19	30	mA	+85°C	3.3V	40 1011-3			
DC24c	19	30	mA	+125°C	-				
DC25d	26	41	mA	-40°C		60 MIPS			
DC25a	26	41	mA	+25°C	3.3∨				
DC25b	26	41	mA	+85°C	3.3V	00 WIF 3			
DC25c	26	41	mA	+125°C					
DC26d	30	46	mA	-40°C					
DC26a	30	46	mA	+25°C	3.3V	70 MIPS			
DC26b	30	46	mA	+85°C					
DC27d	51	81	mA	-40°C		70 14100			
DC27a	51	81	mA	+25°C	3.3V	70 MIPS (Note 2)			
DC27b	52	82	mA	+85°C		(NOLE 2)			

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode with PLL, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- · CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating or being clocked (all defined PMDx bits are set)
- CPU is executing while(1) statement
- JTAG is disabled
- **2:** For this specification, the following test conditions apply:
 - · APLL clock is enabled
 - All 5 PWMs enabled and operating at maximum speed (PTCON2<2:0> = 000), PTPER = 1000h, 50% duty cycle
 - All other peripherals are disabled (corresponding PMDx bits are set)

TABLE 26-43: ADC MODULE SPECIFICATIONS

		STICS	Standard Op (unless othe	rwise stat	ed) ⁽⁵⁾				
		51100					≤ +85°C for Industrial ≤ +125°C for Extended		
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions		
			Device	Supply					
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of: VDD + 0.3 or 3.6	V	The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including during device power-up		
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V			
		1	Reference	e Inputs			1		
AD06	Vrefl	Reference Voltage Low	_	AVss	—	V	(Note 1)		
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.7	_	AVDD	V	(Note 3)		
AD08	IREF	Reference Input Current		5	10	μA	ADC operating or in standby		
	-		Analog	j Input	-				
AD12	VINH-VINL	Full-Scale Input Span	AVss		AVdd	V			
AD14	VIN	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V			
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	100	_	Ω	For minimum sampling time (Note 1)		
AD66	Vbg	Internal Voltage Reference Source	_	1.2	—	V			
		ADC Ac	curacy: Pseu	do-Differe	ential Input				
AD20a	Nr	Resolution		12		bits			
AD21a	INL	Integral Nonlinearity	> -3		< 3	LSb	AVss = 0V, AVDD = 3.3V		
AD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	AVss = 0V, AVDD = 3.3V (Note 2)		
AD23a	Gerr	Gain Error (Dedicated Core)	> 5	13	< 20	LSb	AVss = 0V, AVDD = 3.3V		
		Gain Error (Shared Core)	> -1	5	< 10	LSb			
AD24a	Eoff	Offset Error (Dedicated Core)	> 2	7	< 12	LSb	AVss = 0V, AVDD = 3.3V		
		Offset Error (Shared Core)	> -2	3	< 8	LSb			
AD25a	_	Monotonicity	_	_	_	_	Guaranteed		

Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.

3: These parameters are characterized but not tested in manufacturing.

4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

28.0 PACKAGING INFORMATION

28.1 Package Marking Information

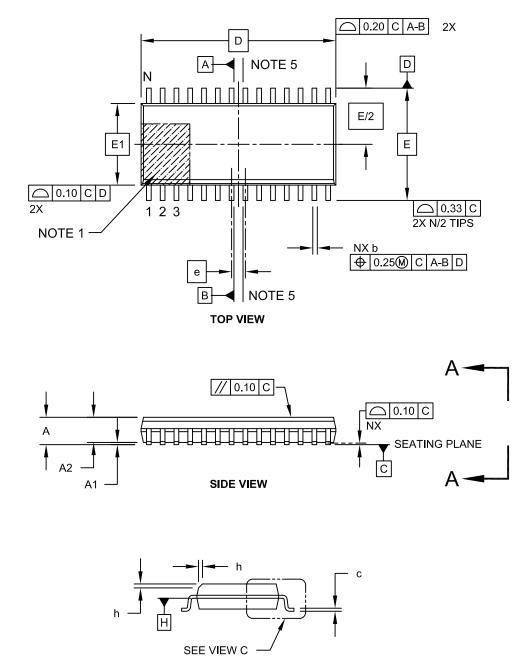
28-Lead SOIC (.300")

Example

28-Lead UQFN	(6x6x0.55 mm)
--------------	---------------

28-Lead QFN-S (6x6x0.9 mm)

Example

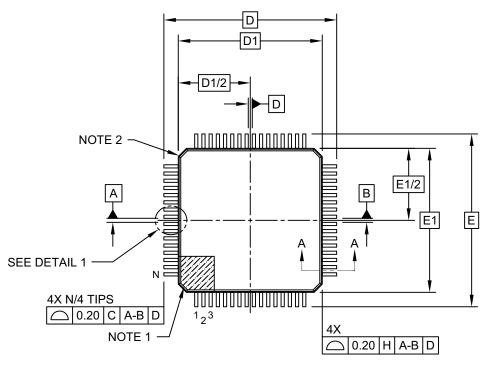


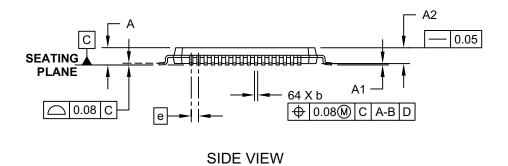
Legend	I: XXX Y YY WW NNN	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

28.2 Package Details

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging




Microchip Technology Drawing C04-052C Sheet 1 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

NOTES: