

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UQFN Exposed Pad
Supplier Device Package	28-UQFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502-e-2n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

28-Pin QFN-S, UQFN

Pin	Pin Function		Pin Function
1	AN2/PGA1P3/PGA2P2/CMP1C/CMP2A/RA2	15	PGEC1/AN21/SDA1/RP39/RB7
2	AN3/PGA2P3/CMP1D/CMP2B/RP32/RB0	16	Vss
3	AN4/CMP2C/CMP3A/ISRC4/RP41/RB9	17	VCAP
4	AN5/CMP2D/CMP3B/ISRC3/RP42/RB10	18	TMS/PWM3H/ RP43 /RB11
5	Vss	19	TCK/PWM3L/RP44/RB12
6	OSC1/CLKI/AN6/CMP3C/CMP4A/ISRC2/RP33/RB1	20	PWM2H/ RP45 /RB13
7	OSC2/CLKO/AN7/PGA1N2/CMP3D/CMP4B/RP34/RB2	21	PWM2L/ RP46 /RB14
8	PGED2/AN18/DACOUT1/INT0/ RP35 /RB3	22	PWM1H/RA4
9	PGEC2/ADTRG31/EXTREF1/RP36/RB4	23	PWM1L/RA3
10	VDD	24	AVss
11	PGED3/SDA2/FLT31/RP40/RB8	25	AVdd
12	PGEC3/SCL2/ RP47 /RB15	26	MCLR
13	TDO/AN19/PGA2N2/ RP37 /RB5	27	AN0/PGA1P1/CMP1A/RA0
14	PGED1/TDI/AN20/SCL1/RP38/RB6	28	AN1/PGA1P2/PGA2P1/CMP1B/RA1

Legend: Shaded pins are up to 5 VDC tolerant. RPn represents remappable peripheral functions. See Table 10-1 and Table 10-2 for the complete list of remappable sources.

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com**. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS3000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXGS50X family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins regardless if ADC module is not used (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

REGISTER 5-2: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<15:8>			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = B			x = Bit is unki	nown			

bit 15-0 **NVMADR<15:0>:** Nonvolatile Memory Lower Write Address bits Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

REGISTER 5-3: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			NVMADR	23:16>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	t	U = Unimplen	nented bit, read	as '0'	

bit 15-8 Unimplemented: Read as '0'

-n = Value at POR

bit 7-0 NVMADRU<23:16>: Nonvolatile Memory Upper Write Address bits

'1' = Bit is set

Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written to by the user application.

'0' = Bit is cleared

x = Bit is unknown

REGISTER 8-2:	CLKDIV: CLOCK DIVISOR REGISTER
---------------	--------------------------------

				D 444 0		D 444 0	DALLA					
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0					
ROI	DOZE2(')	DOZE1()	DOZE0(')	DOZEN ^(2,3)	FRCDIV2	FRCDIV1	FRCDIV0					
bit 15							bit 8					
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
PLLPOST	1 PLLPOST0		PLLPRE4	PLLPRE3	PLLPRE2	PLLPRE1	PLLPRE0					
bit 7							bit 0					
Legend:												
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown					
bit 15	ROI: Recover 1 = Interrupts 0 = Interrupts	on Interrupt bi will clear the D have no effec	t OZEN bit and t t on the DOZE	he processor clo N bit	ock, and the pe	ripheral clock ra	itio is set to 1:1					
bit 14-12	DOZE<2:0>: 111 = FCY div 110 = FCY div 101 = FCY div 100 = FCY div 011 = FCY div 010 = FCY div 010 = FCY div 001 = FCY div 000 = FCY div	DOZE<2:0>: Processor Clock Reduction Select bits ⁽¹⁾ 111 = FcY divided by 128 110 = FcY divided by 64 101 = FcY divided by 32 100 = FcY divided by 16 011 = FcY divided by 8 (default) 010 = FcY divided by 4 001 = FcY divided by 2										
bit 11	DOZEN: Doze	e Mode Enable	bit ^(2,3)									
	1 = DOZE<2:0 0 = Processor	0> field specifie clock and per	es the ratio bet	ween the peripl atio is forced to	heral clocks an 1:1	d the processo	r clocks					
bit 10-8	FRCDIV<2:0>	: Internal Fast	RC Oscillator	Postscaler bits								
	111 = FRC divided by 256 110 = FRC divided by 64 101 = FRC divided by 32 100 = FRC divided by 16 011 = FRC divided by 8 010 = FRC divided by 4 001 = FRC divided by 2 000 = FRC divided by 2											
bit 7-6	PLLPOST<1:	0>: PLL VCO (Output Divider	Select bits (also	o denoted as 'l	N2', PLL postsc	aler)					
11 = Output divided by 8 10 = Reserved 01 = Output divided by 4 (default) 00 = Output divided by 2												
bit 5	Unimplemen	ted: Read as '	כ'									
Note 1: 2:	The DOZE<2:0> I DOZE<2:0> are iç This bit is cleared	bits can only be gnored. when the ROI	e written to whe bit is set and a	en the DOZEN an interrupt occ	bit is clear. If D urs.	OZEN = 1, any	v writes to					

3: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "I/O Ports" (DS7000598) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to **Section 4.0 "Memory Organization"** in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the Parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally, a Parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 illus-trates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/Os. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2013-2017 Microchip Technology Inc.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<7:0>
External Interrupt 2	INT2	RPINR1	INT2R<7:0>
Timer1 External Clock	T1CK	RPINR2	T1CKR<7:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<7:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<7:0>
Input Capture 1	IC1	RPINR7	IC1R<7:0>
Input Capture 2	IC2	RPINR7	IC2R<7:0>
Input Capture 3	IC3	RPINR8	IC3R<7:0>
Input Capture 4	IC4	RPINR8	IC4R<7:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<7:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<7:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<7:0>
PWM Fault 3	FLT3	RPINR13	FLT3R<7:0>
PWM Fault 4	FLT4	RPINR13	FLT4R<7:0>
UART1 Receive	U1RX	RPINR18	U1RXR<7:0>
UART1 Clear-to-Send	U1CTS	RPINR18	U1CTSR<7:0>
UART2 Receive	U2RX	RPINR19	U2RXR<7:0>
UART2 Clear-to-Send	U2CTS	RPINR19	U2CTSR<7:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<7:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<7:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<7:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<7:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<7:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<7:0>
PWM Synch Input 1	SYNCI1	RPINR37	SYNCI1R<7:0>
PWM Synch Input 2	SYNCI2	RPINR38	SYNCI2R<7:0>
PWM Fault 5	FLT5	RPINR42	FLT5R<7:0>
PWM Fault 6	FLT6	RPINR42	FLT6R<7:0>
PWM Fault 7	FLT7	RPINR43	FLT7R<7:0>
PWM Fault 8	FLT8	RPINR43	FLT8R<7:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0
bit 15		•					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7-0	10110101 = 10110100 =	Input tied to RI Input tied to RI Input tied to RI Input tied to Vs Assign PWM Input tied to RI	2181 2180 21 35 Fault 1 (FLT1) 2181) to the Corres	ponding RPn Pi	n bits	
	10110100 = • • • • • • • • • • • • • • • • • • •	Input tied to RI Input tied to RI Input tied to Vs	P180				

REGISTER 10-8: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

x = Bit is unknown

REGISTER 15-15: PHASEX: PWMx PRIMARY PHASE-SHIFT REGISTER (x = 1 to 5)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASE	Ex<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable bi	t	W = Writable bit		U = Unimplen	nented bit read	1 as '0'	

bit 15-0 **PHASEx<15:0>:** PWMx Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

Note 1: If PWMCONx<9> = 0, the following applies based on the mode of operation:

'1' = Bit is set

- Complementary, Redundant and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs
- True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Phase-shift value for PWMxH only
- When the PHASEx/SPHASEx registers provide the phase shift with respect to the master time base; therefore, the valid range is 0x0000 through period

'0' = Bit is cleared

- **2:** If PWMCONx<9> = 1, the following applies based on the mode of operation:
 - Complementary, Redundant, and Push-Pull Output mode (IOCONx<11:10> = 00, 01 or 10); PHASEx<15:0> = Independent time base period value for PWMxH and PWMxL
 - True Independent Output mode (IOCONx<11:10> = 11); PHASEx<15:0> = Independent time base period value for PWMxH only
 - When the PHASEx/SPHASEx registers provide the local period, the valid range is 0x0000 through 0xFFF8

-n = Value at POR

REGISTER 16-2: SPIx	CON1: SPIX CONTR	OL REGISTER 1
---------------------	------------------	---------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾) CKP	MSTEN	SPRE2 ⁽³⁾	SPRE1 ⁽³⁾	SPRE0 ⁽³⁾	PPRE1 ⁽³⁾	PPRE0 ⁽³⁾
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPIx Mas	ter modes only	()		
	1 = Internal S	Plx clock is dis	sabled, pin fun	ctions as I/O			
1.11.4.4	0 = Internal S	PIX CIOCK IS EN	abled				
DIT 11		able SDOx Pir	I DIT	in functions o			
	1 = SDOx pin 0 = SDOx pin	is not used by	v the module; p	oin tunctions a	s 1/O		
bit 10	MODE16: Wo	ord/Byte Comm	nunication Sele	ect bit			
	1 = Communi	ication is word-	wide (16 bits)				
	0 = Communi	ication is byte-	wide (8 bits)				
bit 9	SMP: SPIx D	ata Input Sam	ole Phase bit				
	Master Mode:	<u>.</u>					
	1 = Input data	a is sampled at	the end of dat	ta output time data output tin	ne		
	0 – Input data Slave Mode:	a is sampled at			lie		
	SMP must be	cleared when	SPIx is used i	n Slave mode			
bit 8	CKE: SPIx CI	lock Edge Sele	ect bit ⁽¹⁾				
	1 = Serial out	put data chang	ges on transitio	on from active	clock state to Id	le clock state (i	refer to bit 6)
	0 = Serial out	put data chang	ges on transitio	on from Idle clo	ock state to activ	/e clock state (i	refer to bit 6)
bit 7	SSEN: Slave	Select Enable	bit (Slave mod	de) ⁽²⁾			
	$1 = \frac{SSx}{SSx}$ pin is	s used for Slav	e mode	is controlled l	au port function		
hit 6	0 = SSX pin is	S not used by the	ne module, pin sit	ris controlleu i	by port function		
DILO	1 - Idle state	for clock is a h	uiah level: activ	o etato is a lov			
	0 = Idle state	for clock is a l	ow level; active	e state is a hig	h level		
bit 5	MSTEN: Mas	ter Mode Enat	ole bit	-			
	1 = Master m	ode					
	0 = Slave mo	de					
Note 1:	The CKE bit is not	used in Frame	d SPI modes. I	Program this b	it to '0' for Frame	ed SPI modes (FRMEN = 1).

- **2:** This bit must be cleared when FRMEN = 1.
- **3:** Do not set both primary and secondary prescalers to the value of 1:1.

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽	¹⁾	USIDL	IREN ⁽²⁾	RTSMD	<u> </u>	UEN1	UEN0		
bit 15							bit 8		
R/W-0, H	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL		
bit 7							bit 0		
Legend:		HC = Hardwar	e Clearable bi	t					
R = Reada	ıble bit	W = Writable I	oit	U = Unimplem	ented bit, read	as '0'			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	 bit 15 UARTEN: UARTx Enable bit⁽¹⁾ 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is minimal 								
bit 14	Unimplemen	ted: Read as 'o)'						
bit 13	USIDL: UART	x Stop in Idle N	/lode bit						
	1 = Discontin 0 = Continue	ues module op s module opera	eration when c ation in Idle mo	levice enters Id de	le mode				
bit 12	IREN: IrDA [®] I	Encoder and De	ecoder Enable	bit ⁽²⁾					
	1 = IrDA enco 0 = IrDA enco	oder and decoo oder and decoo	ler are enableo ler are disable	t d					
bit 11	RTSMD: Mod 1 = <u>UxRTS</u> p 0 = <u>UxRTS</u> p	e Selection for in is in Simplex in is in Flow Co	UxRTS Pin bit mode ontrol mode						
bit 10	Unimplemen	ted: Read as 'o)'						
bit 9-8	UEN<1:0>: U	ARTx Pin Enab	ole bits						
	11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by PORT latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 11 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by PORT latches 10 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by PORT latches 10 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by PORT latches								
bit 7	WAKE: Wake	-up on Start Bit	Detect During	Sleep Mode E	nable bit				
	1 = UARTx c in hardwa 0 = No wake-	ontinues to san are on the follow up is enabled	nple the UxRX ving rising edg	pin, interrupt is e	generated on t	he falling edge	; bit is cleared		
bit 6	LPBACK: UA	RTx Loopback	Mode Select b	pit					
	1 = Enables I 0 = Loopback	_oopback mode mode is disab	e Ied						
Note 1:	Refer to " Univer "dsPIC33/PIC24 transmit operation	sal Asynchror Family Referen 1.	nous Receive Ince Manual' for	r Transmitter (information on	UART)" (DS70 enabling the U	000582) in the ARTx module f	or receive or		

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-12: ADCORExH: DEDICATED ADC CORE x CONTROL REGISTER HIGH (x = 0 to 3)⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1				
—	—	—	EISEL2	EISEL1	EISEL0	RES1	RES0				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0				
bit 7							bit 0				
Legend:											
R = Read	able bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-13	bit 15-13 Unimplemented: Read as '0'										
bit 12-10	EISEL<2:0>:	ADC Core x Ea	rly Interrupt Ti	me Selection bit	ts						
	111 = Early in	nterrupt is set an	d an interrupt i	s generated 8 T	ADCORE clocks	prior to when th	e data is ready				
	110 = Early in	nterrupt is set an	d an interrupt i	s generated 7 T	ADCORE clocks	prior to when th	e data is ready				
	101 = Early in	nterrupt is set an	d an interrupt i	s generated 6 T	ADCORE clocks	prior to when th	e data is ready				
	100 = Early in	nterrupt is set an	d an interrupt i	s generated 5 T	ADCORE clocks	prior to when th	e data is ready				
	011 = Early in	terrupt is set an	d an interrupt i	s generated 4 T	ADCORE clocks	prior to when th	e data is ready				
	010 = Early in	iterrupt is set an	d an interrupt i	s generated 3 T	ADCORE clocks	prior to when th	e data is ready				
	001 = Early in	iterrupt is set an	d an interrupt i id an interrupt	s generated 2 1.	ADCORE CIOCKS	prior to when th prior to when th	e data is ready				
hit 9-8	BES-1:0>: A	DC Core x Res	olution Selecti	on hits	TADCORE CIOCK		c data is ready				
	11 = 12-bit re			011 0113							
	10 = 10-bit re	solution									
	01 = 8-bit res	olution									
	00 = 6-bit res	olution									
bit 7	Unimplemen	ted: Read as 'd)'								
bit 6-0	ADCS<6:0>:	ADC Core x In	put Clock Divid	der bits							
	These bits de	etermine the nu	umber of Sou	rce Clock Perio	ods (TCORESRC) for one Core	Clock Period				
	(TADCORE).										
	1111111 = 2	54 Source Cloc	k Periods								
	•										
	•										
	•	Source Clock	Pariode								
	0000011 = 0	Source Clock F	Periods								
	0000001 = 2	Source Clock	Periods								
	0000000 = 2	Source Clock I	Periods								
	_ ,, _						• • •				
Note 1:	For the 6-bit ADC not valid and sho	; core resolutior uld not be used.	1 (RES<1:0> = . For the 8-bit /	00), the EISEI ADC core resolu	L<2:0> bits sett ution (RES<1:0	tings, from '100 > = 01), the El:)' to '111', are SEL<2:0> bits				

settings, '110' and '111', are not valid and should not be used.

REGISTER 19-32: ADCMPxENL: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER LOW (x = 0 or 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CMPEN<15:8>										
						bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CMPEN<7:0>										
						bit 0				
	R/W-0	R/W-0 R/W-0	R/W-0 R/W-0 CMPEN R/W-0 R/W-0 R/W-0 CMPEN	R/W-0 R/W-0 R/W-0 CMPEN<15:8> R/W-0 R/W-0 R/W-0 CMPEN<7:0>	R/W-0 R/W-0 R/W-0 R/W-0 CMPEN<15:8>	R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CMPEN<15:8>				

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-0 CMPEN<15:0>: Comparator Enable for Corresponding Input Channels bits

0 = Conversion result for corresponding channel is not used by the comparator

REGISTER 19-33: ADCMPxENH: ADC DIGITAL COMPARATOR x CHANNEL ENABLE REGISTER HIGH (x = 0 or 1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	_		CMPEN<21:16>							
bit 7							bit 0			

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	nplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-6 Unimplemented: Read as '0'

bit 5-0

CMPEN<21:16>: Comparator Enable for Corresponding Input Channels bits

0 = Conversion result for corresponding channel is not used by the comparator

^{1 =} Conversion result for corresponding channel is used by the comparator

^{1 =} Conversion result for corresponding channel is used by the comparator

REGISTER 20-2: CMPxDAC: COMPARATOR x DAC CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
			_		CMREF	-<11:8>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CMRE	F<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-12	Unimplemen	ted: Read as 'd)'					
bit 11-0	CMREF<11:0	>: Comparator	Reference Vo	oltage Select b	its			
	1111111111	11						
	•							
	•							
	•	= ([CMREF	<11:0>] * (AV	'DD)/4096) volt	s (EXTREF = 0)		
	 or ([CMREF<11:0>] * (EXTREF)/4096) volts (EXTREF = 1) 							
	•							
	•							
	0000000000	00						

21.0 PROGRAMMABLE GAIN AMPLIFIER (PGA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family devices have two Programmable Gain Amplifiers (PGA1, PGA2). The PGA is an op amp-based, non-inverting amplifier with user-programmable gains. The output of the PGA can be connected to a number of dedicated Sample-and-Hold inputs of the Analog-to-Digital Converter and/or to the high-speed analog comparator module. The PGA has five selectable gains and may be used as a ground referenced amplifier (single-ended) or used with an independent ground reference point.

Key features of the PGA module include:

- Single-Ended or Independent Ground Reference
- Selectable Gains: 4x, 8x, 16x, 32x and 64x
- High Gain Bandwidth
- Rail-to-Rail Output Voltage
- Wide Input Voltage Range

TABLE 26-18: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standar (unless Operatir	rd Operat otherwis	ing Conc e stated) ature -4 -4	litions: : :0°C ≤ TA :0°C ≤ TA	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended
Param No.	Symbol Characteristic		Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes
OS51	Fvco	On-Chip VCO System Frequency	120	—	340	MHz	
OS52	52 ТLOCK PLL Start-up Time (Lock Time)		0.9	1.5	3.1	ms	
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases, or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPIx bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 26-19: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard (unless of Operating	Operatin herwise temperati	g Conditi stated) ure -40° -40°	ons: 3.0\ C ≤ Ta ≤ - C ≤ Ta ≤ -	/ to 3.6V ⊦85°C fo ⊦125°C f	r Industrial or Extended
Param No.	Symbol	Characteris	Characteristic			Max	Units	Conditions
OS56	Fhpout	On-Chip 16x PLL CO Frequency	0	112	118	120	MHz	
OS57	FHPIN	On-Chip 16x PLL Phase Detector Input Frequency		7.0	7.37	7.5	MHz	
OS58	Tsu	Frequency Generator Lock		—	—	10	μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested in manufacturing.

TABLE 26-31: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP	
15 MHz	Table 26-31	—	—	0,1	0,1	0,1	
9 MHz	_	Table 26-32	—	1	0,1	1	
9 MHz	_	Table 26-33	—	0	0,1	1	
15 MHz		—	Table 26-34	1	0	0	
11 MHz	_	—	Table 26-35	1	1	0	
15 MHz		_	Table 26-36	0	1	0	
11 MHz		_	Table 26-37	0	0	0	

FIGURE 26-11: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

TABLE 26-46: DACx MODULE SPECIFICATIONS

AC/DC CHARACTERISTICS ⁽²⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min. Typ. Max.			Units	Comments	
DA01	EXTREF	External Voltage Reference ⁽¹⁾	0	—	AVdd	V		
DA02	CVRES	Resolution		12		bits		
DA03	INL	Integral Nonlinearity Error	-16	-12	0	LSB		
DA04	DNL	Differential Nonlinearity Error	-1.8	±1	1.8	LSB		
DA05	EOFF	Offset Error	-8	3	15	LSB		
DA06	EG	Gain Error	-1.2	-0.5	0	%		
DA07	TSET	Settling Time ⁽¹⁾	_	700	_	ns	Output with 2% of desired output voltage with a 10-90% or 90-10% step	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

DC CH	ARACTER	$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments
DA11	RLOAD	Resistive Output Load Impedance	10K	—	_	Ohm	
DA11a	CLOAD	Output Load Capacitance	—	—	35	pF	Including output pin capacitance
DA12	Ιουτ	Output Current Drive Strength	—	300	—	μA	Sink and source
DA13	VRANGE	Output Drive Voltage Range at Current Drive of 300 µA	AVss + 250 mV	—	AVDD – 900 mV	V	
DA14	VLRANGE	Output Drive Voltage Range at Reduced Current Drive of 50 μA	AVss + 50 mV	—	AVDD – 500 mV	V	
DA15	IDD	Current Consumed when Module is Enabled	—	_	1.3 x IOUT	μA	Module will always consume this current, even if no load is connected to the output
DA30	VOFFSET	Input Offset Voltage		±5		mV	

TABLE 26-47: DACX OUTPUT (DACOUTX PIN) SPECIFICATIONS

Note 1: The DACx module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Number of Pins	N	44		
Pitch	е	0.65 BSC		
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E	8.00 BSC		
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D	8.00 BSC		
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2