

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	77
6.0	Resets	
7.0	Interrupt Controller	
8.0	Oscillator Configuration	103
9.0	Power-Saving Features	115
10.0	I/O Ports	125
11.0	Timer1	163
12.0	Timer2/3 and Timer4/5	
13.0	Input Capture	171
14.0	Output Compare	175
15.0	High-Speed PWM	
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit (I ² C)	
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	High-Speed, 12-Bit Analog-to-Digital Converter (ADC)	
20.0	High-Speed Analog Comparator	
21.0	Programmable Gain Amplifier (PGA)	
22.0	Constant-Current Source	
23.0	Special Features	
24.0	Instruction Set Summary	
25.0	Development Support	
26.0	Electrical Characteristics	
27.0		
	Packaging Information	
Appe	endix A: Revision History	
Index	(
	Microchip Web Site	
Custo	omer Change Notification Service	
Custo	omer Support	
Prod	uct Identification System	

TABLE 4-20: PERIPHERAL PIN SELECT INPUT REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0				INT1F	<7:0>				_	_	_	_	—	_			0000
RPINR1	06A2	_	_	_	_	_	_	_	_				INT2	R<7:0>				0000
RPINR2	06A4				T1CKF	R<7:0>				_	_	—	_	_	_	—	_	0000
RPINR3	06A6	T3CKR7	T3CKR6	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	T2CKR7	T2CKR6	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	0000
RPINR7	06AE	IC2R7	IC2R6	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	IC1R7	IC1R6	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	0000
RPINR8	06B0	IC4R7	IC4R6	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	IC3R7	IC3R6	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	0000
RPINR11	06B6	_	_	_	_	_	_	_	_				OCFA	R<7:0>				0000
RPINR12	06B8	FLT2R7	FLT2R6	FLT2R5	FLT2R4	FLT2R3	FLT2R2	FLT2R1	FLT2R0	FLT1R7	FLT1R6	FLT1R5	FLT1R4	FLT1R3	FLT1R2	FLT1R1	FLT1R0	0000
RPINR13	06BA	FLT4R7	FLT4R6	FLT4R5	FLT4R4	FLT4R3	FLT4R2	FLT4R1	FLT4R0	FLT3R7	FLT3R6	FLT3R5	FLT3R4	FLT3R3	FLT3R2	FLT3R1	FLT3R0	0000
RPINR18	06C4	U1CTSR7	U1CTSR6	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTS0	U1RXR7	U1RXR6	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	0000
RPINR19	06C6	U2CTSR7	U2CTSR6	U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	U2RXR7	U2RXR6	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	0000
RPINR20	06C8	SCK1INR7	SCK1INR6	SCK1INR5	SCK1INR4	SCK1INR3	SCK1INR2	SCK1INR1	SCK1INR0	SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	0000
RPINR21	06CA	_	_	_	_	_	_	_	_				SS1F	R<7:0>				0000
RPINR22	06CC	SCK2INR7	SCK2INR6	SCK2INR5	SCK2INR4	SCK2INR3	SCK2INR2	SCK2INR1	SCK2INR0	SDI2R7	SDI2R6	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	0000
RPINR23	06CE	_	_	_	_	_	_	_	_				SS2F	R<7:0>				0000
RPINR37	06EA				SYNCI	R<7:0>									0000			
RPINR38	06EC	_	—	—	_	—	—	_	—	SYNCI2R<7:0>					0000			
RPINR42	06F4	FLT6R7	FLT6R6	FLT6R5	FLT6R4	FLT6R3	FLT6R2	FLT6R1	FLT6R0	FLT5R7	FLT5R6	FLT5R5	FLT5R4	FLT5R3	FLT5R2	FLT5R1	FLT5R0	0000
RPINR43	06F6	FLT8R7	FLT8R6	FLT8R5	FLT8R4	FLT8R3	FLT8R2	FLT8R1	FLT8R0	FLT7R7	FLT7R6	FLT7R5	FLT7R4	FLT7R3	FLT7R2	FLT7R1	FLT7R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: ANALOG COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
CMP1CON	0540	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000		
CMP1DAC	0542	_	—	—			CMREF<11:0>							0000						
CMP2CON	0544	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000		
CMP2DAC	0546	-	—	_	-						CMREF	<11:0>						0000		
CMP3CON	0548	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000		
CMP3DAC	054A	-	_	_	_						CMREF	<11:0>						0000		
CMP4CON	054C	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000		
CMP4DAC	054E	—	—	_	_						CMREF	<11:0>		CMREF<11:0> 0						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: JTAG INTERFACE REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	—						JDATA	H<11:0>						xxxx
JDATAL	0FF2								JDATA	L<15:0>								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.7.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.8 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.8.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these situations are met:

- BWMx bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed
	Addressing can be enabled simultaneously
	using the same W register, but Bit-
	Reversed Addressing operation will always
	take precedence for data writes when
	enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

7.3 Interrupt Resources

Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page contains the latest updates and additional information.

7.3.1 KEY RESOURCES

- "Interrupts" (DS70000600) in the "dsPIC33/ PIC24 Family Reference Manual"
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All Related "dsPIC33/PIC24 Family Reference Manual" Sections
- Development Tools

7.4 Interrupt Control and Status Registers

dsPIC33EPXXGS50X family devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.4.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS), as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior, contains the Global Interrupt Enable bit (GIE) and the Alternate Interrupt Vector Table Enable bit (AIVTEN).

INTCON3 contains the status flags for the Auxiliary PLL and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap Status bit (SGHT).

7.4.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.4.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.4.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt sources can be assigned to one of seven priority levels.

7.4.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<7:0>) and Interrupt Level bits (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP<2:0> bits in the first position of IPC0 (IPC0<2:0>).

7.4.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual".

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
10.00-0	10.00-0	10.00-0	10.00-0	100-0	100-0	11-0	10.00-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
(3)	(2)	(2)					
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0
Logond:		C = Clearable	hit				

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10)

- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
GIE	DISI	SWTRAP	_	_	_		AIVTEN
bit 15							bit
U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
		—	INT4EP		INT2EP	INT1EP	INT0EP
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	GIE: Global	Interrupt Enable	e bit				
		ts and associate					
		ts are disabled, I	•	till enabled			
bit 14		Instruction Statu					
		struction is active struction is not a					
bit 13		Software Trap St					
DIL 15		e trap is enabled					
		e trap is disabled					
bit 12-9	Unimpleme	ented: Read as '	0'				
bit 8	AIVTEN: Al	ternate Interrupt	Vector Table E	Enable			
		ternate Interrupt					
		andard Interrupt					
bit 7-5	-	ented: Read as '					
bit 4		ternal Interrupt 4	-	Polarity Selec	ct bit		
	•	t on negative ed t on positive edg	•				
bit 3	-	ented: Read as '					
bit 2	-	ternal Interrupt 2		Polarity Selec	rt hit		
SIL 2		t on negative ed	0				
		t on positive edg					
bit 1	INT1EP: Ex	ternal Interrupt 1	Edge Detect	Polarity Selec	ct bit		
		t on negative ed					
	•	t on positive edg					
bit 0		ternal Interrupt (-	Polarity Selec	ct bit		
		t on negative edg					
	0 = memup	t on positive edg	e				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
—	—	—	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

| R-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VECNUM7 | VECNUM6 | VECNUM5 | VECNUM4 | VECNUM3 | VECNUM2 | VECNUM1 | VECNUM0 |
| bit 7 | • | | | | | · | bit 0 |

Legend:								
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit	read as '0'				
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-12	Unimple	mented: Read as '0'						
bit 11-8	ILR<3:0>	New CPU Interrupt Priority	Level bits					
		1111 = CPU Interrupt Priority Level is 15						
	•							
	•							
	•							
	0001 = CPU Interrupt Priority Level is 1							
0000 = CPU Interrupt Prior		PU Interrupt Priority Level is	0					
bit 7-0	VECNUM<7:0>: Vector Number of Pending Interrupt bits							
	11111111 = 255, Reserved; do not use							
	•							
	•							
	•							
		00001001 = 9, IC1 – Input Capture 1						
	00001000 = 8, INTO – External Interrupt 0							
	00000111 = 7, Reserved; do not use 00000110 = 6, Generic soft error trap							
	00000101 = 5, Reserved; do not use							
	00000101 = 3, Nescrived, do not use $00000100 = 4$, Math error trap							
	00000011 = 3, Stack error trap							
	0000010 = 2, Generic hard trap							
		1 = 1, Address error trap						
	0000000	0 = 0, Oscillator fail trap						

REGISTER 10-13: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

	U-0
L 1 A F	—
bit 15	bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS1R7 | SS1R6 | SS1R5 | SS1R4 | SS1R3 | SS1R2 | SS1R1 | SS1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 SS1R<7:0>: Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 •

00000001 = Input tied to RP1 00000000 = Input tied to Vss

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is set	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-7	Unimpleme	nted: Read as '	·0'				
bit 6	-			I ² C Slave mode	only)		
	•	interrupt on det	•		ony)		
		ection interrupts		condition			
bit 5	•	•		¹² C Slave mode	only)		
	SCIE: Start Condition Interrupt Enable bit (I ² C Slave mode only) 1 = Enables interrupt on detection of Start or Restart conditions						
		ection interrupts					
bit 4	BOEN: Buffe	er Overwrite En	able bit (I ² C SI	ave mode only)			
	1 = I2CxRC	V is updated an	d ACK is gene	rated for a recei	ved address/da	ata byte, ignorir	ng the state of
		OV only if the R				<i>y v c</i>	•
	0 = I2CxRC	V is only update	ed when I2CO	/ is clear			
bit 3	SDAHT: SD	Ax Hold Time S	election bit				
				after the falling			
				after the falling	-		
bit 2				Enable bit (I ² C	Slave mode on	ly)	
		slave bus collis					
		is collision inter		npled low when	the module is i	n a high state	the BCL bit i
				node is only vali			
bit 1		ress Hold Enabl		-	a aannig aata a		
			•	CLx for a match	ning received	address byte.	the SCI RF
				and SCLx will be			
		s holding is disa					
bit 0	DHEN: Data	Hold Enable bi	t (I ² C Slave me	ode only)			
					بطغم أستعمله أ	a alawa harduu	
DILU	1 = Followir	ng the 8th falling	g edge of SCL	x for a received	u data byte, the	e slave narowa	are clears th
bit U	SCLRE	ng the 8th falling L (I2CxCONL< Iding is disabled	12>) bit and S		u dala dyle, ine	e slave narowa	are clears th

REGISTER 17-2: I2CxCONH: I2Cx CONTROL REGISTER HIGH

18.3 UART Control Registers

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

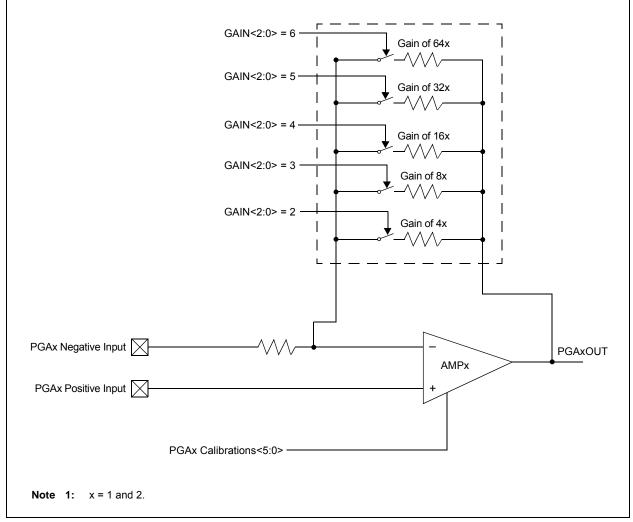
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN1	UEN0
bit 15				1			bit
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit
Legend:		HC = Hardwar	e Clearable b	it			
R = Readabl	e bit	W = Writable b		U = Unimplem	ented bit, read	l as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
bit 15	1 = UARTx is		ARTx pins are			ed by UEN<1:0> UARTx power co	
oit 14		ted: Read as '0	,				
bit 13	•	Tx Stop in Idle N					
	1 = Discontin	•	eration when o	device enters Id	le mode		
pit 12		Encoder and De					
		oder and decod oder and decod					
pit 11	RTSMD: Mod	le Selection for	UxRTS Pin bi	t			
		in is in Simplex in is in Flow Co					
oit 10	Unimplemen	ted: Read as '0	,				
oit 9-8	UEN<1:0>: U	ARTx Pin Enab	le bits				
	10 = UxTX, U 01 = UxTX, U	JxRX, <u>UxCTS</u> ai JxRX and UxRT nd UxRX pins a	nd UxRTS pin S pins are ena	s are enabled a abled and used;	nd used UxCTS pin is	controlled by PC controlled by PC BCLKx pins are	ORT latches
bit 7	WAKE: Wake	-up on Start Bit	Detect During	g Sleep Mode E	nable bit		
	in hardwa	ontinues to sam are on the follow -up is enabled			generated on	the falling edge;	bit is cleare
oit 6		RTx Loopback	Mode Select I	bit			
	1 = Enables	Loopback mode k mode is disab	:				
"0		Family Referen		r Transmitter (r information on		0000582) in the JARTx module fo	or receive or
			the 16y BPC	modo (BBCH -	0)		

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 19-29: ADCAL0H: ADC CALIBRATION REGISTER 0 HIGH

R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0
CAL3RDY	—	—	—	_	CAL3DIFF	CAL3EN	CAL3RUN
bit 15							bit 8
R-0, HSC	U-0	U-0	U-0	r-0	R/W-0	R/W-0	R/W-0
CAL2RDY		—		_	CAL2DIFF	CAL2EN	CAL2RUN
bit 7	·	·	•				bit 0
Legend:		r = Reserved	bit	U = Unimpler	nented bit, read	as '0'	
R = Readabl	e bit	W = Writable	bit	HSC = Hardw	vare Settable/C	earable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		Dedicated ADC			g bit		
		ed ADC Core 3 c					
hit 11 10		ed ADC Core 3 c		progress			
bit 14-12 bit 11	-	nted: Read as ' /lust be written a					
bit 10				ntial Mada Cali	ibration bit		
	CAL3DIFF: Dedicated ADC Core 3 Differential-Mode Calibration bit 1 = Dedicated ADC Core 3 will be calibrated in Differential Input mode						
	0 = Dedicated ADC Core 3 will be calibrated in Single-Ended Input mode						
bit 9	CAL3EN: De	edicated ADC C	ore 3 Calibratio	on Enable bit	·		
	1 = Dedicate	ed ADC Core 3 o	calibration bits	(CALxRDY, CA	LxDIFF and CA	LxRUN) can b	e accessed by
	software	e					
1.1.0		ed ADC Core 3					
bit 8		Dedicated ADC it is set by soft			ara 2 adibratia	n avala ia atar	tad: this hit is
		ically cleared by				IT CYCLE IS SLAI	teu, this bit is
		e can start the n		cycle			
bit 7	CAL2RDY:	Dedicated ADC	Core 2 Calibra	tion Status Flag	g bit		
		ed ADC Core 2 c					
		ed ADC Core 2 c		progress			
bit 6-4	-	nted: Read as '					
bit 3		/lust be written a					
bit 2		Dedicated ADC					
		ed ADC Core 2 v ed ADC Core 2 v					
bit 1		edicated ADC C		-			
bit i		ed ADC Core 2 (LxDIFF and CA	LxRUN) can b	e accessed by
	software			(,,		,,	
	0 = Dedicate	ed ADC Core 2	calibration bits	are disabled			
bit 0		Dedicated ADC					
		it is set by soft		icated ADC Co	ore 2 calibratio	n cycle is star	ted; this bit is
		ically cleared by e can start the n		cycle			
				0,000			

21.0 PROGRAMMABLE GAIN AMPLIFIER (PGA)


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Programmable Gain Amplifier (PGA)" (DS70005146) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family devices have two Programmable Gain Amplifiers (PGA1, PGA2). The PGA is an op amp-based, non-inverting amplifier with user-programmable gains. The output of the PGA can be connected to a number of dedicated Sample-and-Hold inputs of the Analog-to-Digital Converter and/or to the high-speed analog comparator module. The PGA has five selectable gains and may be used as a ground referenced amplifier (single-ended) or used with an independent ground reference point.

Key features of the PGA module include:

- Single-Ended or Independent Ground Reference
- Selectable Gains: 4x, 8x, 16x, 32x and 64x
- High Gain Bandwidth
- Rail-to-Rail Output Voltage
- Wide Input Voltage Range

DC CH	ARACTE	RISTICS	(unless	otherwise	stated) ture -40	°C ≤ Ta s	0V to 3.6V ≤ +85°C for Industrial ≤ +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ pin \text{ at high-impedance}, \\ -40^\circC \leq TA \leq +85^\circC \end{array}$
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +85^{\circ}C$
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	$Vss \le VPIN \le VDD,$ pin at high-impedance, -40°C \le TA ≤ +125°C
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	-1	—	+1	μA	Analog pins shared with external reference pins, $-40^{\circ}C \le TA \le +125^{\circ}C$
DI55		MCLR	-5	—	+5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	-5	—	+5	μA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

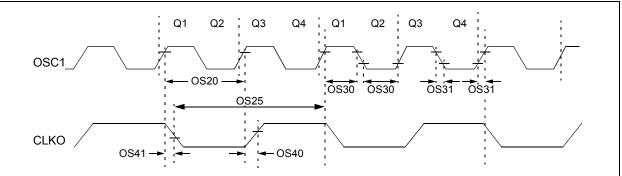
TABLE 26-11: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See the "Pin Diagrams" section for the 5V tolerant I/O pins.

5: VIL Source < (Vss – 0.3). Characterized but not tested.


6: VIH Source > (VDD + 0.3) for pins that are not 5V tolerant only.

7: Digital 5V tolerant pins do not have internal high-side diodes to VDD and cannot tolerate any "positive" input injection current.

8: Injection Currents > | 0 | can affect the ADC results by approximately 4-6 counts.

9: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

FIGURE 26-2: EXTERNAL CLOCK TIMING

AC CHA	AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symb	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC	
		Oscillator Crystal Frequency	3.5 10		10 40	MHz MHz	XT HS	
OS20	Tosc	Tosc = 1/Fosc	8.33		DC	ns	+125°C	
		Tosc = 1/Fosc	7.14		DC	ns	+85°C	
OS25	Тсү	Instruction Cycle Time ⁽²⁾	16.67		DC	ns	+125°C	
		Instruction Cycle Time ⁽²⁾	14.28	_	DC	ns	+85°C	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.45 x Tosc	—	0.55 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ^(3,4)	—	5.2		ns		
OS41	TckF	CLKO Fall Time ^(3,4)	—	5.2	—	ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	—	12	_	mA/V	HS, VDD = 3.3V, TA = +25°C	
			—	6	—	mA/V	XT, VDD = 3.3V, TA = +25°C	

TABLE 26-17: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized but not tested in manufacturing.

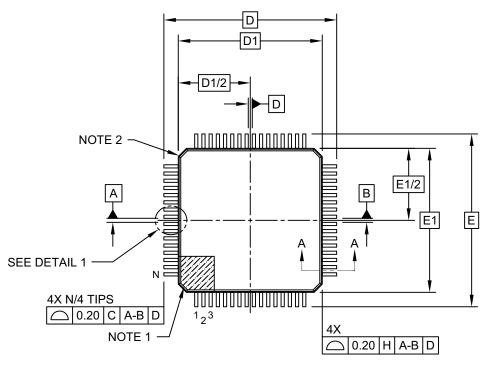
TABLE 26-43: ADC MODULE SPECIFICATIONS

		STICS	Standard Op (unless othe	rwise stat	ed) ⁽⁵⁾			
			Operating ter	mperature			5°C for Industrial 25°C for Extended	
Param No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Conditions	
	• •	•	Device	Supply	·		•	
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of: VDD + 0.3 or 3.6	V	The difference between AVDD supply and VDD supply must not exceed ±300 mV at all times, including during device power-up	
AD02	AVss	Module Vss Supply	Vss	_	Vss + 0.3	V		
			Reference	e Inputs				
AD06	VREFL	Reference Voltage Low	_	AVss	—	V	(Note 1)	
AD07	Vref	Absolute Reference Voltage (VREFH – VREFL)	2.7	_	AVDD	V	(Note 3)	
AD08	IREF	Reference Input Current	_	5	10	μA	ADC operating or in standby	
			Analog	j Input				
AD12	VINH-VINL	Full-Scale Input Span	AVss		AVdd	V		
AD14	VIN	Absolute Input Voltage	AVss – 0.3	_	AVDD + 0.3	V		
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	100	_	Ω	For minimum sampling time (Note 1)	
AD66	Vbg	Internal Voltage Reference Source	—	1.2	—	V		
		ADC Ac	curacy: Pseu	do-Differe	ential Input			
AD20a	Nr	Resolution		12		bits		
AD21a	INL	Integral Nonlinearity	> -3		< 3	LSb	AVss = 0V, AVDD = 3.3V	
AD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	AVss = 0V, AVDD = 3.3V (Note 2)	
AD23a	Gerr	Gain Error (Dedicated Core)	> 5	13	< 20	LSb	AVss = 0V, AVDD = 3.3V	
		Gain Error (Shared Core)	> -1	5	< 10	LSb		
AD24a	Eoff	Offset Error (Dedicated Core)	> 2	7	< 12	LSb	AVss = 0V, AVDD = 3.3V	
		Offset Error (Shared Core)	> -2	3	< 8	LSb		
AD25a		Monotonicity		_	_	_	Guaranteed	

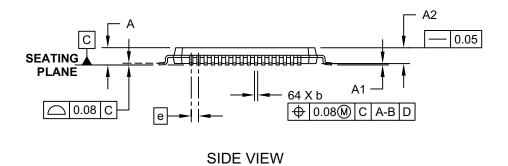
Note 1: These parameters are not characterized or tested in manufacturing.

2: No missing codes, limits based on characterization results.

3: These parameters are characterized but not tested in manufacturing.


4: Characterized with a 1 kHz sine wave.

5: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.


NOTES:

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2

INDEX

Α

Absolute Maximum Ratings	
AC Characteristics	
ADC Specifications	
Analog Current Specifications	
Analog-to-Digital Conversion Requirements	
Auxiliary PLL Clock	. 317
Capacitive Loading Requirements on	
Output Pins	
External Clock Requirements	
High-Speed PWMx Requirements	
I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	. 339
I2Cx Bus Data Requirements (Slave Mode)	. 341
Input Capture x Requirements	. 323
Internal FRC Accuracy	. 318
Internal LPRC Accuracy	. 318
Load Conditions	. 315
OCx/PWMx Module Requirements	. 324
Output Compare x Requirements	
PLL Clock	
Reset, WDT, OST, PWRT Requirements	
SPIx Master Mode (Full-Duplex, CKE = 0,	
CKP = x, SMP = 1) Requirements	329
SPIx Master Mode (Full-Duplex, CKE = 1,	
CKP = x, SMP = 1) Requirements	328
SPIx Master Mode (Half-Duplex,	
Transmit Only) Requirements	327
SPIx Maximum Data/Clock Rate Summary	
SPIx Slave Mode (Full-Duplex, CKE = 0,	. 520
CKP = 0, SMP = 0) Requirements	337
SPIx Slave Mode (Full-Duplex, CKE = 0,	. 557
CKP = 1, $SMP = 0$) Requirements	225
SPIx Slave Mode (Full-Duplex, CKE = 1,	. 555
CKP = 0, SMP = 0) Requirements	221
	. 551
SPIx Slave Mode (Full-Duplex, CKE = 1,	222
CKP = 1, SMP = 0) Requirements	. 333
Temperature and Voltage Specifications	
Timer1 External Clock Requirements	
Timer2/Timer4 External Clock Requirements	
Timer3/Timer5 External Clock Requirements	
UARTx I/O Requirements	. 342
AC/DC Characteristics	~ ~
DACx Specifications	. 346
High-Speed Analog Comparator Specifications	. 345
PGAx Specifications	. 347
Analog-to-Digital Converter. See ADC.	
Arithmetic Logic Unit (ALU)	30
Assembler	
MPASM Assembler	
MPLAB Assembler, Linker, Librarian	. 300
В	
-	
Bit-Reversed Addressing	
Example	
Implementation	
Sequence Table (16-Entry)	74
Block Diagrams	

Addressing for Table Registers	. 77
CALL Stack Frame	
Connections for On-Chip Voltage Regulator	285
Constant-Current Source	
CPU Core	. 22
Data Access from Program Space	
Address Generation	. 75
Dedicated ADC Cores 0-3	
dsPIC33EPXXGS50X Family	
High-Speed Analog Comparator x	
High-Speed PWM Architecture	
Hysteresis Control	
I2Cx Module	216
Input Capture x	171
Interleaved PFC	. 18
MCLR Pin Connections	. 16
Multiplexing Remappable Outputs for RPn	
Off-Line UPS	. 20
Oscillator System	104
Output Compare x Module	175
PGAx Functions	
PGAx Module	271
Phase-Shifted Full-Bridge Converter	. 19
PLL Module	105
Programmer's Model	. 24
PSV Read Address Generation	. 66
Recommended Minimum Connection	. 16
Remappable Input for U1RX	128
Reset System	
Security Segments for dsPIC33EP64GS50X	288
Security Segments for dsPIC33EP64GS50X	
(Dual Partition Modes)	288
Shared Port Structure	
Simplified Conceptual of High-Speed PWM	184
SPIx Module	
Suggested Oscillator Circuit Placement	. 17
Timerx (x = 2 through 5)	168
Type B/Type C Timer Pair (32-Bit Timer)	
UARTx Module	
Watchdog Timer (WDT)	
Brown-out Reset (BOR)	285
С	
~	

С

C Compilers	
MPLAB XC	300
Code Examples	
Port Write/Read	126
PWM Write-Protected Register	
Unlock Sequence	182
PWRSAV Instruction Syntax	115
Code Protection	277, 287
CodeGuard Security	277, 287
Configuration Bits	277
Description	
Constant-Current Source	275
Control Register	276
Description	275
Features Overview	275

16-Bit Timer1 Module......163 ADC Module......230