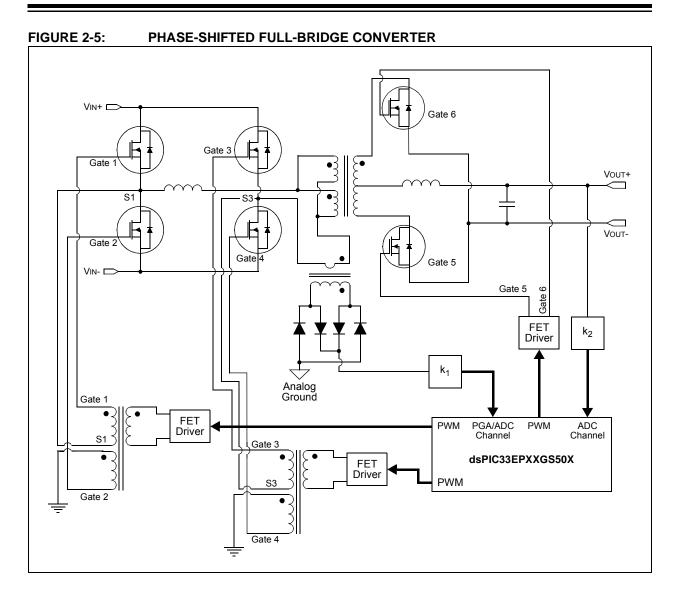


Welcome to E-XFL.COM

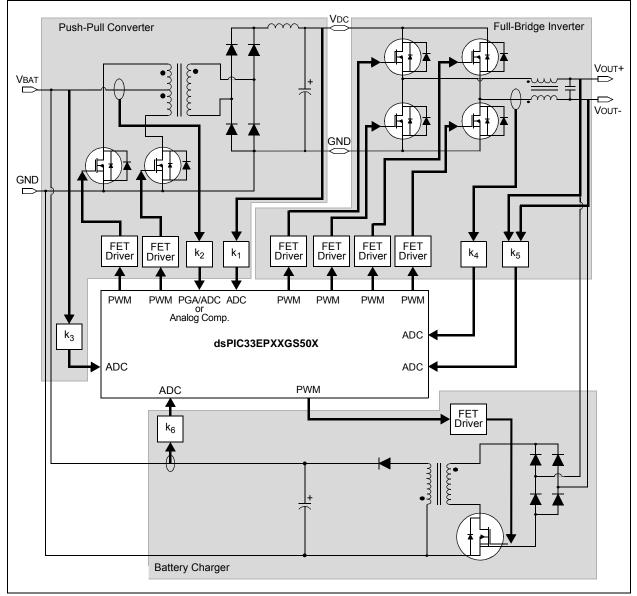
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

•XFI


Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	70 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 2-6: OFF-LINE UPS

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "CPU" (DS70359) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for Digital Signal Processing (DSP). The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXGS50X devices have sixteen, 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

In addition, the dsPIC33EPXXGS50X devices include two Alternate Working register sets which consist of W0 through W14. The Alternate registers can be made persistent to help reduce the saving and restoring of register content during Interrupt Service Routines (ISRs). The Alternate Working registers can be assigned to a specific Interrupt Priority Level (IPL1 through IPL6) by configuring the CTXTx<2:0> bits in the FALTREG Configuration register. The Alternate Working registers can also be accessed manually by using the CTXTSWP instruction. The CCTXI<2:0> and MCTXI<2:0> bits in the CTXTSTAT register can be used to identify the current and most recent, manually selected Working register sets.

3.2 Instruction Set

The instruction set for dsPIC33EPXXGS50X devices has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base Data Space can be addressed as up to 4K words or 8 Kbytes, and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into Program Space (PS) at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access Program Space as if it were Data Space. Refer to "**Data Memory**" (DS70595) in the "*dsPIC33/PIC24 Family Reference Manual*" for more details on PSV and table accesses.

On dsPIC33EPXXGS50X devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU Circular Addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data re-ordering for radix-2 FFT algorithms.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- · Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction. **CORCON: CORE CONTROL REGISTER**

REGISTER 3-2:

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0					
VAR		US1	US0	EDT ⁽¹⁾	DL2	DL1	DL0					
bit 15							bit					
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0					
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF					
bit 7	OAID	OAIDW	ACCOAL	11 2011	UIA	THE	bit					
Legend:		C = Clearable	- hit									
R = Readable	bit	W = Writable		U = Unimpler	mented bit, rea	d as '0'						
-n = Value at F		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown					
		1 - Dit 13 301	•		arcu		lowin					
bit 15		•	ocessing Later									
	 1 = Variable exception processing is enabled 0 = Fixed exception processing is enabled 											
bit 14	Unimplemen	ted: Read as '	0'									
bit 13-12	Unimplemented: Read as '0' US<1:0>: DSP Multiply Unsigned/Signed Control bits											
	11 = Reserved											
	10 = DSP engine multiplies are mixed-sign											
	01 = DSP engine multiplies are unsigned 00 = DSP engine multiplies are signed											
bit 11	EDT: Early DO Loop Termination Control bit ⁽¹⁾ 1 = Terminates executing DO loop at the end of current loop iteration											
	1 = Terminate 0 = No effect	es executing Do	o loop at the e	nd of current lo	oop iteration							
bit 10-8	DL<2:0>: DO Loop Nesting Level Status bits											
	111 = 7 DO loops are active											
	•											
	•											
	001 = 1 DO loop is active 000 = 0 DO loops are active											
bit 7		•										
	SATA: ACCA Saturation Enable bit 1 = Accumulator A saturation is enabled											
		itor A saturatio										
bit 6	SATB: ACCB	Saturation En	able bit									
		itor B saturatio										
bit 5	SATDW: Data Space Write from DSP Engine Saturation Enable bit											
	1 = Data Space write saturation is enabled 0 = Data Space write saturation is disabled											
bit 4	ACCSAT: Accumulator Saturation Mode Select bit											
		ration (super s ration (normal										
L:1 0		•	Level Status b	_{oit 3} (2)								
bit 3		contraped monity										

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 2	SFA: Stack Frame Active Status bit
	 1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG 0 = Stack frame is not active; W14 and W15 address the base Data Space
bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding is enabled0 = Unbiased (convergent) rounding is enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	 1 = Integer mode is enabled for DSP multiply 0 = Fractional mode is enabled for DSP multiply
Note 1:	This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 3-3: CTXTSTAT: CPU W REGISTER CONTEXT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0		
—	—	—	—	—	CCTXI2	CCTXI1	CCTXI0		
bit 15 bit 8									
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0		
	—	—	_	—	MCTXI2	MCTXI1	MCTXI0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						as '0'			
-n = Value at POR (1' = Bit is set 0' = Bit is cleared x = Bit is unknow						nown			

bit 15-11	Unimplemented: Read as '0'						
bit 10-8	CCTXI<2:0>: Current (W Register) Context Identifier bits						
	111 = Reserved						
	•						
	•						
	•						
	011 = Reserved						
	010 = Alternate Working Register Set 2 is currently in use						
	001 = Alternate Working Register Set 1 is currently in use						
	000 = Default register set is currently in use						
bit 7-3	Unimplemented: Read as '0'						
bit 2-0	MCTXI<2:0>: Manual (W Register) Context Identifier bits						
	111 = Reserved						
	•						
	•						
	•						
	011 = Reserved						
	010 = Alternate Working Register Set 2 was most recently manually selected						
	001 = Alternate Working Register Set 1 was most recently manually selected						
	000 = Default register set was most recently manually selected						

TABLE 4-2: CPU CORE REGISTER MAP (CONTINUED)

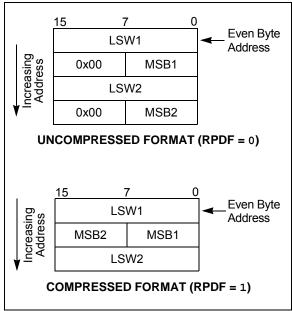
							,											
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DOENDL	003E	3E DO Loop End Address Register Low (DOENDL<15:1>)										—	0000					
DOENDH	0040	_	_	_	_	_	_	_	_	_	_	DO LO	oop End Ad	dress Regis	ster High ([DOENDH<	5:0>)	0000
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	VAR	_	US1	US0	EDT	DL2	DL1	DL0	SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_	BWM3	BWM2	BWM1	BWM0	YWM3	YWM2	YWM1	YWM0	XWM3	XWM2	XWM1	XWM0	0000
XMODSRT	0048						X Mode Star	t Address F	Register (XN	10DSRT<1	5:1>)						_	0000
XMODEND	004A						X Mode End	I Address R	egister (XN	ODEND<1	5:1>)						_	0001
YMODSRT	004C						Y Mode Star	t Address F	Register (YN	10DSRT<1	5:1>)						_	0000
YMODEND	004E						Y Mode End	I Address R	egister (YN	ODEND<1	5:1>)						_	0001
XBREV	0050	BREN							XBRE	V<14:0>								0000
DISICNT	0052	— — DISICNT<13:0>								0000								
TBLPAG	0054	TBLPAG<7:0>							0000									
CTXTSTAT	005A	_	_	_	_	_	CCTXI2	CCTXI1	CCTXI0	_	_	_	_	—	MCTXI2	MCTXI1	MCTXI0	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The contents of this register should never be modified. The DSWPAG must always point to the first page.

5.2 RTSP Operation

The dsPIC33EPXXGS50X family Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a single page (8 rows or 512 instructions) of memory at a time and to program one row at a time. It is possible to program two instructions at a time as well.


The page erase and single row write blocks are edgealigned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively. Figure 26-14 in **Section 26.0 "Electrical Characteristics"** lists the typical erase and programming times.

Row programming is performed by loading 192 bytes into data memory and then loading the address of the first byte in that row into the NVMSRCADR register. Once the write has been initiated, the device will automatically load the write latches and increment the NVMSRCADR and the NVMADR(U) registers until all bytes have been programmed. The RPDF bit (NVMCON<9>) selects the format of the stored data in RAM to be either compressed or uncompressed. See Figure 5-2 for data formatting. Compressed data helps to reduce the amount of required RAM by using the upper byte of the second word for the MSB of the second instruction.

The basic sequence for RTSP word programming is to use the TBLWTL and TBLWTH instructions to load two of the 24-bit instructions into the write latches found in configuration memory space. Refer to Figure 4-1 through Figure 4-4 for write latch addresses. Programming is performed by unlocking and setting the control bits in the NVMCON register.

All erase and program operations may optionally use the NVM interrupt to signal the successful completion of the operation. For example, when performing Flash write operations on the Inactive Partition in Dual Partition mode, where the CPU remains running, it is necessary to wait for the NVM interrupt before programming the next block of Flash program memory.

FIGURE 5-2: UNCOMPRESSED/ COMPRESSED FORMAT

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000000, 0x000004, 0x000008, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
T1CKR7	T1CKR6	T1CKR5	T1CKR4	T1CKR3	T1CKR2	T1CKR1	T1CKR0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	_	-	—	—	
bit 7						•	bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown		
bit 15-8	10110101 = 10110100 = 00000001 =	: Assign Timer' Input tied to RF Input tied to RF Input tied to RF Input tied to Vs	2181 2180 21	ck (T1CK) to t	he Correspondi	ng RPn Pin bits	5	

REGISTER 10-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

bit 7-0 Unimplemented: Read as '0'

REGISTER 15-13: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER (x = 1 to 5)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDO	Cx<7:0>			
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit			U = Unimplen	nented bit, rea	d as '0'	
-n = Value at I	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-0 **PDCx<15:0>:** PWMx Generator Duty Cycle Value bits

Note 1: In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary, Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and PWMxL.

2: The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period – 0x0008.

3: As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

REGISTER 15-14: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER (x = 1 to 5)^(1,2,3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDCx	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	-	-	SDCx	(<7:0>	-	-	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 SDCx<15:0>: PWMx Secondary Duty Cycle for PWMxL Output Pin bits

Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.

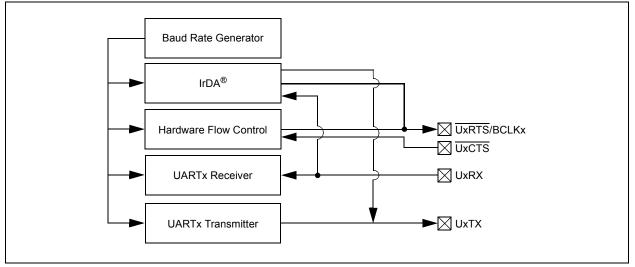
- **2:** The smallest pulse width that can be generated on the PWMx output corresponds to a value of 0x0008, while the maximum pulse width generated corresponds to a value of Period 0x0008.
- **3:** As the duty cycle gets closer to 0% or 100% of the PWMx period (0 to 40 ns, depending on the mode of operation), PWMx duty cycle resolution will increase from 1 to 3 LSBs.

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXGS50X family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Universal Asynchronous Receiver Transmitter (UART)" (DS70000582) in the "dsPIC33/PIC24 Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXGS50X family of devices contains two UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXGS50X device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.


The primary features of the UARTx module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps in 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps in 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit Mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- A Separate Interrupt for all UARTx Error Conditions
- · Loopback mode for Diagnostic Support
- · Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx module is shown in Figure 18-1. The UARTx module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UARTx SIMPLIFIED BLOCK DIAGRAM

R-0, HSC	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC					
SHRRDY	—	_	—	C3RDY	C2RDY	C1RDY	CORDY					
bit 15							bit 8					
R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
SHRPWR bit 7		—	—	C3PWR	C2PWR	C1PWR	C0PWR					
							bit (
Legend:		U = Unimplem	nented bit, rea	id as '0'								
R = Readabl	e bit	W = Writable	oit	HSC = Hardw	are Settable/C	learable bit						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown					
bit 15	SHRRDY: Sh	ared ADC Core	Ready Flag	bit								
	SHRRDY: Shared ADC Core Ready Flag bit 1 = ADC core is powered and ready for operation											
bit 14-12		is not ready fo	-									
bit 14-12		ted: Read as '		ag hit								
	C3RDY: Dedicated ADC Core 3 Ready Flag bit 1 = ADC core is powered and ready for operation											
		is not ready fo										
bit 10		cated ADC Cor	•	•								
	 1 = ADC core is powered and ready for operation 0 = ADC core is not ready for operation 											
bit 9		•	•	ag hit								
	C1RDY: Dedicated ADC Core 1 Ready Flag bit 1 = ADC core is powered and ready for operation											
		is not ready fo										
bit 8	CORDY: Dedicated ADC Core 0 Ready Flag bit											
	 1 = ADC core is powered and ready for operation 0 = ADC core is not ready for operation 											
bit 7		-	•	able hit								
	SHRPWR: Shared ADC Core x Power Enable bit 1 = ADC Core x is powered											
	0 = ADC Core x is off											
bit 6-4	-	ted: Read as 'o										
bit 3		licated ADC Co	re 3 Power E	nable bit								
	1 = ADC core is powered											
bit 2	 0 = ADC core is off C2PWR: Dedicated ADC Core 2 Power Enable bit 											
	1 = ADC core											
	0 = ADC core	0 = ADC core is off										
bit 1	C1PWR: Dedicated ADC Core 1 Power Enable bit											
	1 = ADC core 0 = ADC core											
bit 0		licated ADC Co	re 0 Power E	nable bit								
	1 = ADC core	•										
	0 = ADC core	us off										

REGISTER 19-9: ADCON5L: ADC CONTROL REGISTER 5 LOW

REGISTER 21-1: PGAxCON: PGAx CONTROL REGISTER (CONTINUED)

- bit 2-0 GAIN<2:0>: PGAx Gain Selection bits
 - 111 = Reserved
 - 110 = Gain of 64x
 - 101 = Gain of 32x
 - 100 = Gain of 16x
 - 011 = Gain of 8x
 - 010 = Gain of 4x
 - 001 = Reserved
 - 000 = Reserved

REGISTER 21-2: PGAxCAL: PGAx CALIBRATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—					—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			PGAC	CAL<5:0>			
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-6 Unimplemented: Read as '0'

bit 5-0 PGACAL<5:0>: PGAx Offset Calibration bits

The calibration values for PGA1 and PGA2 must be copied from Flash addresses, 0x800E48 and 0x800E4C, respectively, into these bits before the module is enabled. Refer to the calibration data address table (Table 23-3) in **Section 23.0 "Special Features"** for more information.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽¹⁾	Status Flags Affected
9	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
10	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
11	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
12	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
13	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
14	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
15	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
16	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
17	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
18	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
19	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
20	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
21	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
22	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
23	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
24	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
25	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 24-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Note 1: Read and Read-Modify-Write (e.g., bit operations and logical operations) on non-CPU SFRs incur an additional instruction cycle.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				\leq TA \leq +85°C for Industrial
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions			Conditions	
DO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_		0.4	V	$ \begin{array}{l} V{\rm DD} = 3.3{\rm V}, \\ {\rm IOL} \le 6 \mbox{ mA}, \ -40^{\circ}{\rm C} \le {\rm Ta} \le +85^{\circ}{\rm C}, \\ {\rm IOL} \le 5 \mbox{ mA}, \ +85^{\circ}{\rm C} < {\rm Ta} \le +125^{\circ}{\rm C} \end{array} $
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_	—	0.4	V	V_{DD} = 3.3V, IOL \leq 12 mA, -40°C \leq TA \leq +85°C, IOL \leq 8 mA, +85°C $<$ TA \leq +125°C
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	_	_	V	IOH ≥ -10 mA, VDD = 3.3V
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	_	V	IOH ≥ -15 mA, VDD = 3.3V
DO20A	Von1	Output High Voltage	1.5 ⁽¹⁾	_	_		$IOH \ge -14 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
	4x Source Driver Pins ⁽²⁾	2.0 ⁽¹⁾			V	$IOH \ge -12 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
			3.0(1)	_	-		IOH \ge -7 mA, VDD = 3.3V
l			1.5 ⁽¹⁾	_	_		$IOH \ge -22 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$
	8x Source Driver Pins ⁽³⁾	2.0 ⁽¹⁾	_	_	V	$IOH \ge -18 \text{ mA}, \text{ VDD} = 3.3 \text{ V}$	
			3.0(1)	—	—		IOH \geq -10 mA, VDD = 3.3V

TABLE 26-12: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

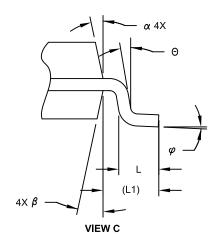
Note 1: Parameters are characterized but not tested.

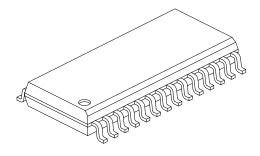
2: Includes RA0-RA2, RB0-RB1, RB9-RB10, RC1-RC2, RC9-RC10, RC12 and RD7 pins.

3: Includes all I/O pins that are not 4x driver pins (see **Note 2**).

TABLE 26-13: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) ⁽¹⁾ Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min. ⁽²⁾	Тур.	Max.	Units	Conditions
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.65	_	2.95	V	VDD (Notes 2 and 3)


Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, PGAs and comparators) may have degraded performance.

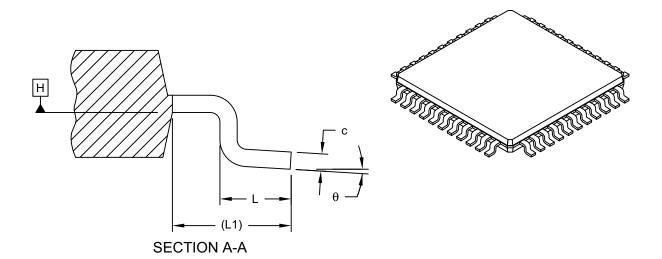

2: Parameters are for design guidance only and are not tested in manufacturing.

3: The VBOR specification is relative to VDD.

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	ILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1.0 mm Body [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

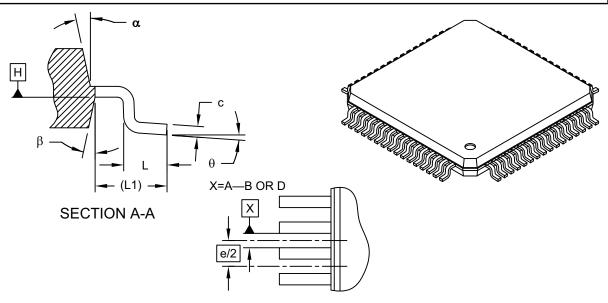
	Units			S
Dimension	Dimension Limits		NOM	MAX
Number of Leads	Ν		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	-	1.20
Standoff	A1	0.05	-	0.15
Molded Package Thickness	A2	0.95	1.00	1.05
Overall Width	E	12.00 BSC		
Molded Package Width	E1	10.00 BSC		
Overall Length	D	12.00 BSC		
Molded Package Length	D1		10.00 BSC	
Lead Width	b	0.30	0.37	0.45
Lead Thickness	С	0.09	-	0.20
Lead Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	θ	0°	3.5°	7°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Exact shape of each corner is optional.

3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL 1

	Units	N	IILLIMETER:	S
Dimension	Limits	MIN	NOM	MAX
Number of Leads	Ν		64	
Lead Pitch	е		0.50 BSC	
Overall Height	Α	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	¢	0°	3.5°	7°
Overall Width	Е	12.00 BSC		
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

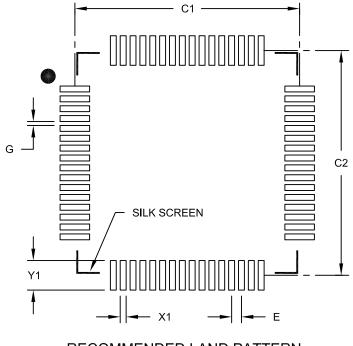
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085C Sheet 2 of 2

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	P	MILLIMETER	S
Dimensio	Dimension Limits		NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

CPU

Addressing Modes	21
Clocking System Options	
Fast RC (FRC) Oscillator	
FRC Oscillator with PLL (FRCPLL)	105
FRC Oscillator with Postscaler	
Low-Power RC (LPRC) Oscillator	
Primary (XT, HS, EC) Oscillator	
Primary Oscillator with PLL	
Control Registers	
Data Space Addressing	21
Instruction Set	21
Registers	21
Resources	25
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Address Space	37
Memory Map for dsPIC33EP16GS50X Devices	38
Memory Map for dsPIC33EP32GS50X Devices	
Memory Map for dsPIC33EP64GS50X Devices	
Near Data Space	
Organization, Alignment	
SFR Space	
Width	
Data Space	
Extended X	69
Paged Data Memory Space (figure)	67
Paged Memory Scheme	66
DC Characteristics	
Brown-out Reset (BOR)	313
Constant-Current Source Specifications	
DACx Output (DACOUTx Pin) Specifications	346
Doze Current (IDOZE)	309
I/O Pin Input Specifications	310
I/O Pin Output Specifications	
Idle Current (IIDLE)	307
Operating Current (IDD)	306
Operating MIPS vs. Voltage	304
Power-Down Current (IPD)	308
Program Memory	
Temperature and Voltage Specifications	
Watchdog Timer Delta Current (∆IWDT)	308
DC/AC Characteristics	
Graphs and Tables	349
Demo/Development Boards, Evaluation and	
Starter Kits	
Development Support	
Device Calibration	
Addresses	
and Identification	283
Device Programmer	
MPLAB PM3	
Doze Mode	
DSP Engine	30
F	

E

Electrical Characteristics	
AC	
Equations	
Device Operating Frequency	
FPLLO Calculation	
Fvco Calculation	
Errata	10

F

Filter Capacitor (CEFC) Specifications	305
Flash Program Memory	77
and Table Instructions	
Control Registers	80
Dual Partition Flash Configuration	79
Operations	
Resources	
RTSP Operation	
Flexible Configuration	

G

Getting Started Guidelines	. 15
Connection Requirements	
CPU Logic Filter Capacitor Connection (VCAP)	. 16
Decoupling Capacitors	. 15
External Oscillator Pins	. 17
ICSP Pins	. 17
Master Clear (MCLR) Pin	. 16
Oscillator Value Conditions on Start-up	. 18
Targeted Applications	. 18
Unused I/Os	. 18

Н

High-Speed Analog Comparator	
Applications	265
Description	264
Digital-to-Analog Comparator (DAC)	265
Features Overview	263
Hysteresis	266
Pulse Stretcher and Digital Logic	265
Resources	266
High-Speed PWM	
Description	181
Features	181
Resources	182
Write-Protected Registers	182
High-Speed, 12-Bit Analog-to-Digital	
Converter (ADC)	229
Control Registers	232
Features Overview	229
Resources	232

I

I/O Ports
Configuring Analog/Digital Port Pins 126
Helpful Tips 132
Open-Drain Configuration 126
Parallel I/O (PIO) 125
Resources 133
Write/Read Timing 126
In-Circuit Debugger
MPLAB ICD 3 30'
PICkit 3 Programmer 302
In-Circuit Emulation
In-Circuit Serial Programming (ICSP) 277, 287
Input Capture
Control Registers 172
Resources 17
Input Change Notification (ICN) 126

NOTES: