

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	60 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 12x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33ep32gs502t-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-3: PROGRAM MEMORY MAP FOR dsPIC33EP64GS50X DEVICES

7	GOTO Instruction	0x000000
	Reset Address	0x000002
Ð	Interrupt Vector Table	0x000004 0x0001FE
User Memory Space	User Program Flash Memory (22,207 instructions)	0x000200 0x00AF7E
er Mem	Device Configuration	0x00AF80 0x00AFFE
Use		0x00B000
	Unimplemented	
	(Read '0's)	
	Reserved	0x7FFFFE 0x800000 0x800E46
	Calibration Data	0x800E48
	Reserved	0x800E78 0x800E7A 0x800EFE
Configuration Memory Space	UDID	0x800F00 0x800F08 0x800F0A
nory S	Reserved	0x800F7E
n Mer	User OTP Memory	0x800F80 0x800FFC
Iratio	Reserved	0x801000
onfigu	Write Latches	0xF9FFFE 0xFA0000
ŏ		0xFA0002 0xFA0004
	Reserved	
	DEVID	0xFEFFFE 0xFF0000
	Reserved	0xFF0002 0xFF0004
_		0xFFFFFE

Note: Memory areas are not shown to scale.

TABLE 4	4-6:	OU	TPUT (COMPAR	RE 1 TH	ROUGH	Ουτρι		IPARE	4 REGI	Ster M	AP						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	—	—	ENFLTA	—	—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV		—	_	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0904							0	utput Comp	are 1 Seco	ndary Regist	er						xxxx
OC1R	0906								Output	Compare 1	Register							xxxx
OC1TMR	0908								Time	r Value 1 Re	egister							xxxx
OC2CON1	090A		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		—	ENFLTA		—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV		—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	090E		Output Compare 2 Secondary Register						xxxx									
OC2R	0910	Output Compare 2 Register					xxxx											
OC2TMR	0912		Timer Value 2 Register						xxxx									
OC3CON1	0914		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		—	ENFLTA		—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN	OCINV		—		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	0918							0	utput Comp	are 3 Seco	ndary Regist	er						xxxx
OC3R	091A								Output	Compare 3	Register							xxxx
OC3TMR	091C								Time	r Value 3 Re	egister							xxxx
OC4CON1	091E		—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0		—	ENFLTA		—	OCFLTA	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV		-		OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	0922							0	utput Comp	are 4 Seco	ndary Regist	er						xxxx
OC4R	0924								Output	Compare 4	Register							xxxx
OC4TMR	0926								Time	r Value 4 Re	egister							xxxx

-

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-26: ANALOG COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMP1CON	0540	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP1DAC	0542	_	—	—			CMREF<11:0>					0000						
CMP2CON	0544	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP2DAC	0546	-	—	_	-		CMREF<11:0>					0000						
CMP3CON	0548	CMPON	_	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP3DAC	054A	-	_	_	_						CMREF	<11:0>						0000
CMP4CON	054C	CMPON	—	CMPSIDL	HYSSEL1	HYSSEL0	FLTREN	FCLKSEL	DACOE	INSEL1	INSEL0	EXTREF	HYSPOL	CMPSTAT	ALTINP	CMPPOL	RANGE	0000
CMP4DAC	054E	—	—	_	_		CMREF<11:0>					0000						

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-27: JTAG INTERFACE REGISTER MAP

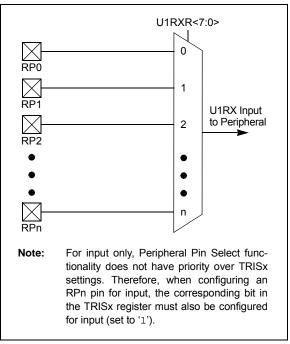
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	—		JDATAH<11:0>						xxxx					
JDATAL	0FF2					JDATAL<15:0>						0000						

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit
	1 = Device has been in Idle mode0 = Device has not been in Idle mode
bit 1	BOR: Brown-out Reset Flag bit
	1 = A Brown-out Reset has occurred0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit
	1 = A Power-on Reset has occurred0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the WDTEN<1:0> Configuration bits are '11' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.


NOTES:

10.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-19). Each register contains sets of 8-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 8-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 10-2 illustrates remappable pin selection for the U1RX input.

FIGURE 10-2: REMAPPABLE INPUT FOR U1RX

10.4.4.1 Virtual Connections

The dsPIC33EPXXGS50X devices support six virtual RPn pins (RP176-RP181), which are identical in functionality to all other RPn pins, with the exception of pinouts. These six pins are internal to the devices and are not connected to a physical device pin.

These pins provide a simple way for inter-peripheral connection without utilizing a physical pin. For example, the output of the analog comparator can be connected to RP176 and the PWM Fault input can be configured for RP176 as well. This configuration allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Function	RPnR<5:0>	Output Name
Default PORT	000000	RPn tied to Default Pin
U1TX	000001	RPn tied to UART1 Transmit
U1RTS	000010	RPn tied to UART1 Request-to-Send
U2TX	000011	RPn tied to UART2 Transmit
U2RTS	000100	RPn tied to UART2 Request-to-Send
SDO1	000101	RPn tied to SPI1 Data Output
SCK1	000110	RPn tied to SPI1 Clock Output
SS1	000111	RPn tied to SPI1 Slave Select
SDO2	001000	RPn tied to SPI2 Data Output
SCK2	001001	RPn tied to SPI2 Clock Output
SS2	001010	RPn tied to SPI2 Slave Select
OC1	010000	RPn tied to Output Compare 1 Output
OC2	010001	RPn tied to Output Compare 2 Output
OC3	010010	RPn tied to Output Compare 3 Output
OC4	010011	RPn tied to Output Compare 4 Output
ACMP1	011000	RPn tied to Analog Comparator 1 Output
ACMP2	011001	RPn tied to Analog Comparator 2 Output
ACMP3	011010	RPn tied to Analog Comparator 3 Output
SYNCO1	101101	RPn tied to PWM Primary Master Time Base Sync Output
SYNCO2	101110	RPn tied to PWM Secondary Master Time Base Sync Output
REFCLKO	110001	RPn tied to Reference Clock Output
ACMP4	110010	RPn tied to Analog Comparator 4 Output
PWM4H	110011	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM4L	110100	RPn tied to PWM Output Pins Associated with PWM Generator 4
PWM5H	110101	RPn tied to PWM Output Pins Associated with PWM Generator 5
PWM5L	110110	RPn tied to PWM Output Pins Associated with PWM Generator 5

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SCK1INR7	SCK1INR6	SCK1INR5	SCK1INR4	SCK1INR3	SCK1INR2	SCK1INR1	SCK1INR0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SDI1R7	SDI1R6	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 7-0	10110100 = 00000001 = 00000000 = SDI1R<7:0>: 10110101 =	Input tied to RF Input tied to RF Input tied to Vs Assign SPI1 D Input tied to RF Input tied to RF	2180 21 35 2ata Input (SD 2181	11) to the Corre	esponding RPn	Pin bits	
		Input tied to RF Input tied to Vs					

REGISTER 10-12: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

REGISTER 10-13: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

	U-0
L 1 A F	—
bit 15	bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SS1R7 | SS1R6 | SS1R5 | SS1R4 | SS1R3 | SS1R2 | SS1R1 | SS1R0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 SS1R<7:0>: Assign SPI1 Slave Select (SS1) to the Corresponding RPn Pin bits 10110101 = Input tied to RP181 10110100 = Input tied to RP180 •

00000001 = Input tied to RP1 00000000 = Input tied to Vss

REGISTER 15-22: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (x = 1 to 5) (CONTINUED)

bit 7-3	FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator bits 1111 = Fault 31 (Default) 10001 = Reserved 10000 = Analog Comparator 4 01111 = Analog Comparator 3 01100 = Analog Comparator 2 01101 = Analog Comparator 1 01100 = Fault 12 01011 = Fault 11 01000 = Fault 12 01011 = Fault 10 01000 = Fault 8 00111 = Fault 7 00110 = Fault 6 00101 = Fault 3 00010 = Fault 4 00011 = Fault 11
bit 2	FLTPOL: Fault Polarity for PWMx Generator bit ⁽¹⁾ 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high
bit 1-0	FLTMOD<1:0>: Fault Mode for PWMx Generator bits 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (cycle) 00 = The selected Fault source forces the PWMxH, PWMxL pins to FLTDATx values (latched condition)

Note 1: These bits should be changed only when PTEN = 0 (PTCON<15>).

REGISTER 15-23: STRIGX: PWMx SECONDARY TRIGGER COMPARE VALUE REGISTER (x = 1 to 5)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			STRGC	MP<12:5>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
		STRGCMP<4:0	>		—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
bit 15-3 STRGCMP<12:0>: Secondary Trigger Compare Value bits When the secondary PWMx functions in the local time base, this register contains the compare values that can trigger the ADC module.									
bit 2-0	Unimpleme	nted: Read as '	כ'						
Note 1: S	TRIGx cannot	generate the PV	VM trigger inte	errupts.					

20.3 Module Applications

This module provides a means for the SMPS dsPIC[®] DSC devices to monitor voltage and currents in a power conversion application. The ability to detect transient conditions and stimulate the dsPIC DSC processor and/or peripherals, without requiring the processor and ADC to constantly monitor voltages or currents, frees the dsPIC DSC to perform other tasks.

The comparator module has a high-speed comparator and an associated 12-bit DAC that provides a programmable reference voltage to the inverting input of the comparator. The polarity of the comparator output is user-programmable. The output of the module can be used in the following modes:

- Generate an Interrupt
- Trigger an ADC Sample and Convert Process
- Truncate the PWMx Signal (current limit)
- Truncate the PWMx Period (current minimum)
- Disable the PWMx Outputs (Fault latch)

The output of the comparator module may be used in multiple modes at the same time, such as: 1) generate an interrupt, 2) have the ADC take a sample and convert it, and 3) truncate the PWMx output in response to a voltage being detected beyond its expected value.

The comparator module can also be used to wake-up the system from Sleep or Idle mode when the analog input voltage exceeds the programmed threshold voltage.

20.4 Digital-to-Analog Comparator (DAC)

Each analog comparator has a dedicated 12-bit DAC that is used to program the comparator threshold voltage via the CMPxDAC register. The DAC voltage reference source is selected using the EXTREF and RANGE bits in the CMPxCON register.

The EXTREF bit selects either the external voltage reference, EXTREFx, or an internal source as the voltage reference source. The EXTREFx input enables users to connect to a voltage reference that better suits their application. The RANGE bit enables AVDD as the voltage reference source for the DAC when an internal voltage reference is selected.

Note: EXTREF2 is not available on all devices.

Each DACx has an output enable bit, DACOE, in the CMPxCON register that enables the DACx reference voltage to be routed to an external output pin (DACOUTx). Refer to Figure 20-1 for connecting the DACx output voltage to the DACOUTx pins.

Note 1:	Ensure that multiple DACOE bits are not
	set in software. The output on the
	DACOUTx pin will be indeterminate if
	multiple comparators enable the DACx
	output.

2: DACOUT2 is not available on all devices.

20.5 Pulse Stretcher and Digital Logic

The analog comparator can respond to very fast transient signals. After the comparator output is given the desired polarity, the signal is passed to a pulse stretching circuit. The pulse stretching circuit has an asynchronous set function and a delay circuit that ensures the minimum pulse width is three system clock cycles wide to allow the attached circuitry to properly respond to a narrow pulse event.

The pulse stretcher circuit is followed by a digital filter. The digital filter is enabled via the FLTREN bit in the CMPxCON register. The digital filter operates with the clock specified via the FCLKSEL bit in the CMPxCON register. The comparator signal must be stable in a high or low state, for at least three of the selected clock cycles, for it to pass through the digital filter.

TABLE 23-1: CONFIGURATION REGISTER MAP⁽³⁾ (CONTINUED)

	-•			••••=•			(,										
Name	Address	Device Memory Size (Kbytes)	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FDEVOPT	002BAC	16																	
	0057AC	32	—	_	_	_	_	_	_	—	_	_	DBCC	—	ALTI2C2	ALTI2C1	Reserved ⁽¹⁾	_	PWMLOCK
	00AFAC	64																	
FALTREG	002BB0	16																	
	0057B0	32	_	_	_	_	_	—	_	_	—	_		CTXT2<2:	0>	_	с	TXT1<2:0	>
	00AFB0	64																	
FBTSEQ	002BFC	16			•	•	•		•										
	0057FC	32		IBSE	EQ<11:0>		BSEQ<11:0>												
	00AFFC	64	1																
FBOOT ⁽⁴⁾	801000	_	—	_	_	_		_		—	_	_	_			_	_	BTMC	DE<1:0>

Note 1: These bits are reserved and must be programmed as '1'.

2: This bit is reserved and must be programmed as '0'.

3: When operating in Dual Partition mode, each partition will have dedicated Configuration registers. On a device Reset, the configuration values of the Active Partition are read at start-up, but during a soft swap condition, the configuration settings of the newly Active Partition are ignored.

4: FBOOT resides in configuration memory space.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles,

Slit6

Wb

Wd

Wdo

Wm,Wn

with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual' (DS70157).

Description
Means literal defined by "text"
Means "content of text"
Means "the location addressed by text"
Optional field or operation
a is selected from the set of values b, c, d
Register bit field
Byte mode selection
Double-Word mode selection
Shadow register select
Word mode selection (default)
One of two accumulators {A, B}
Accumulator write-back destination address register \in {W13, [W13]+ = 2}
4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Absolute address, label or expression (resolved by the linker)
File register address ∈ {0x00000x1FFF}
1-bit unsigned literal $\in \{0,1\}$
4-bit unsigned literal $\in \{015\}$
5-bit unsigned literal $\in \{031\}$
8-bit unsigned literal $\in \{0255\}$
10-bit unsigned literal \in {0255} for Byte mode, {0:1023} for Word mode
14-bit unsigned literal $\in \{016384\}$
16-bit unsigned literal \in {065535}
23-bit unsigned literal \in {08388608}; LSb must be '0'
Field does not require an entry, can be blank
DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
Program Counter
10-bit signed literal \in {-512511}
16-bit signed literal ∈ {-3276832767}

Destination W register ∈ { Wd, [Wd], [Wd++], [Wd--], [++Wd], [--Wd] }

{ Wnd, [Wnd], [Wnd++], [Wnd--], [++Wnd], [--Wnd], [Wnd+Wb] }

Dividend, Divisor Working register pair (direct addressing)

6-bit signed literal \in {-16...16}

Base W register \in {W0...W15}

Destination W register \in

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

25.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- Support for the entire device instruction set
- Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

25.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

25.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command-line interface
- · Rich directive set
- Flexible macro language
- · MPLAB X IDE compatibility

TABLE 26-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No.	Тур.	Max.	Units	Units Conditions					
Power-Down	Current (IPD) ⁽¹⁾								
DC60d	12	100	μA	-40°C					
DC60a	18	100	μA	+25°C	3.3V				
DC60b	130	400	μΑ	+85°C	3.3V				
DC60c	500	1100	μΑ	+125°C					

Note 1: IPD (Sleep) current is measured as follows:

• CPU core is off, oscillator is configured in EC mode and external clock is active; OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration Word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all set)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- JTAG is disabled

TABLE 26-9: DC CHARACTERISTICS: WATCHDOG TIMER DELTA CURRENT (△IwDT)⁽¹⁾

DC CHARACTER	RISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Parameter No. Typ. Max.			Units	Conditions				
DC61d	13	50	μΑ	-40°C				
DC61a	19	80	μA	+25°C	2.21/			
DC61b	12	—	μA	+85°C	3.3V			
DC61c	13	—	μA	+125°C				

Note 1: The \triangle IWDT current is the additional current consumed when the module is enabled. This current should be added to the base IPD current. All parameters are characterized but not tested during manufacturing.

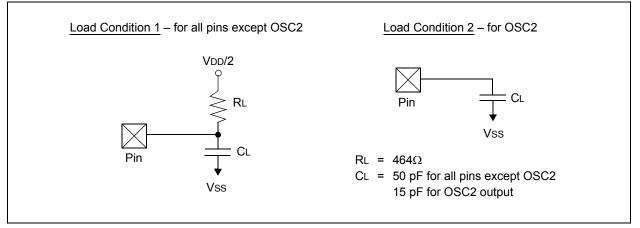
TABLE 26-14:	DC CHARACTERISTICS: PROGRAM MEMORY
--------------	------------------------------------

DC CHARACTERISTICS			(unless		vise state	pnditions: 3.0V to 3.6V ed) $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Symbol	Characteristic	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
		Program Flash Memory						
D130	Eр	Cell Endurance	10,000	_	_	E/W	-40°C to +125°C	
D131	Vpr	VDD for Read	3.0	—	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V		
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current during Programming ⁽²⁾	—	10	—	mA		
D136	IPEAK	Instantaneous Peak Current During Start-up	—	—	150	mA		
D137a	TPE	Page Erase Time	19.7	—	20.1	ms	TPE = 146893 FRC cycles, Ta = +85°C (Note 3)	
D137b	TPE	Page Erase Time	19.5	—	20.3	ms	TPE = 146893 FRC cycles, Ta = +125°C (Note 3)	
D138a	Tww	Word Write Cycle Time	46.5	—	47.3	μs	Tww = 346 FRC cycles, Ta = +85°C (Note 3)	
D138b	Tww	Word Write Cycle Time	46.0	-	47.9	μs	Tww = 346 FRC cycles, TA = +125°C (Note 3)	
D139a	Trw	Row Write Time	667	-	679	μs	Trw = 4965 FRC cycles, Ta = +85°C (Note 3)	
D139b	Trw	Row Write Time	660	_	687	μs	Trw = 4965 FRC cycles, Ta = +125°C (Note 3)	

Note 1: Data in "Typ." column is at 3.3V, +25°C unless otherwise stated.

2: Parameter characterized but not tested in manufacturing.

3: Other conditions: FRC = 7.37 MHz, TUN<5:0> = 011111 (for Minimum), TUN<5:0> = 100000 (for Maximum). This parameter depends on the FRC accuracy (see Table 26-20) and the value of the FRC Oscillator Tuning register (see Register 8-4). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".


26.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXGS50X family AC characteristics and timing parameters.

TABLE 26-15: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

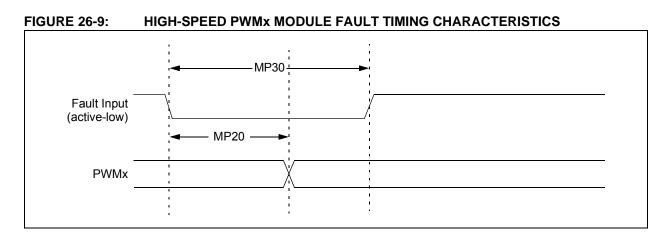

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Section 26.1 "DC Characteristics ".

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

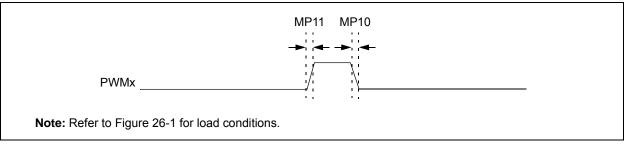


TABLE 26-16: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	—	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Cio	All I/O Pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx		_	400	pF	In I ² C mode

FIGURE 26-10: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

TABLE 26-30: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

			(unless	rd Opera otherwi ng tempe	se stateo rature -	i) -40°C ≤ T	3.0V to 3.6V $A \le +85^{\circ}C$ for Industrial $A \le +125^{\circ}C$ for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
MP10	TFPWM	PWMx Output Fall Time	—	_	—	ns	See Parameter DO32
MP11	TRPWM	PWMx Output Rise Time	_	_	_	ns	See Parameter DO31
MP20	Tfd	Fault Input ↓ to PWMx I/O Change	_	_	15	ns	
MP30	Tfh	Fault Input Pulse Width	15	—	—	ns	

Note 1: These parameters are characterized but not tested in manufacturing.

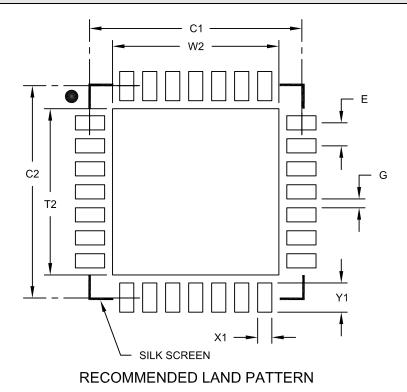
TABLE 26-44: ANALOG-TO-DIGITAL CONVERSION TIMING REQUIREMENTS

AC CH	ARACTE		$\begin{array}{ll} \mbox{Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristics	Min.	Тур. ⁽¹⁾	Max.	Units	Conditions	
				Clo	ck Para	meters		
AD50	TAD	ADC Clock Period	14.28		—	ns		
				Thr	oughpu	ut Rate		
AD51	Fтр	SH0-SH3	—		3.25		70 MHz ADC clock, 12 bits, no pending	
		SH4	_		3.25	Msps	conversion at time of trigger	

Note 1: These parameters are characterized but not tested in manufacturing.

2: The ADC module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is ensured, but not characterized.

TABLE 26-45: HIGH-SPEED ANALOG COMPARATOR MODULE SPECIFICATIONS


AC/DC CHARACTERISTICS ⁽²⁾			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Comments	
CM10	VIOFF	Input Offset Voltage	-35	±5	+35	mV		
CM11	VICM	Input Common-Mode Voltage Range ⁽¹⁾	0	—	AVDD	V		
CM13	CMRR	Common-Mode Rejection Ratio	60	—	_	dB		
CM14	TRESP	Large Signal Response	_	15	_	ns	V+ input step of 100 mV while V- input is held at AVDD/2. Delay measured from analog input pin to PWMx output pin.	
CM15	VHYST	Input Hysteresis	5	10	20	mV	Depends on HYSSEL<1:0>	
CM16	TON	Comparator Enabled to Valid Output	_	—	1	μs		

Note 1: These parameters are for design guidance only and are not tested in manufacturing.

2: The comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensio	MIN	NOM	MAX			
Contact Pitch	E		0.65 BSC			
Optional Center Pad Width	W2			4.70		
Optional Center Pad Length	T2			4.70		
Contact Pad Spacing	C1		6.00			
Contact Pad Spacing	C2		6.00			
Contact Pad Width (X28)	X1			0.40		
Contact Pad Length (X28)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A